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Objectives: To determine whether the contributions of genetics and bicuspid aortic valve
(BAV) independently influence aortic (Ao) dimensions. Background: Ao dilation is a risk
factor for aneurysm, dissection, and sudden cardiac death. Frequent association of BAV
with Ao dilation implicates a common underlying defect possibly due to genetic factors.
Methods: Families enriched for BAV underwent standardized transthoracic echocardiogra-
phy. In addition to BAV status, echocardiographic measures of Ao (annulus to descending
Ao), pulmonary artery, and mitral valve annulus (MVA) diameters were obtained. Using
variance components analysis, heritability was estimated with and without BAV status.
Additionally, bivariate genetic analyses between Ao dimensions and BAV were performed.
Results: Our cohort was obtained from 209 families enriched for BAV. After adjusting for
age, body surface area, and sex, individuals with BAV had a statistically significant increase
in all echocardiographic measurements (p < 0.006) except descending Ao and MVA. Indi-
viduals with BAV were at greater odds of having Ao dilation (OR = 4.44, 95% CI 2.93–6.72)
than family members without BAV. All echocardiographic measurements exhibited moder-
ate to strong heritability (0.25–0.53), and these estimates were not influenced by inclusion
of BAV as a covariate. Bivariate genetic analyses supported that the genetic correlation
between BAV and echo measures were not significantly different from zero. Conclusion:

We show for the first time that echocardiographic measurements of Ao, pulmonary artery
and MVA diameters are quantitative traits that exhibit significant heritability. In addition,
our results suggest the presence of BAV independently influences the proximal Ao and
pulmonary artery measures but not those in the descending Ao or MVA.
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INTRODUCTION
Thoracic aorta (Ao) dilation describes an enlargement of Ao
dimensions; it is an important clinical problem because it may
be a risk factor for an aortopathy characterized by aneurysm for-
mation, Ao dissection, and sudden cardiac death (Hiratzka et al.,
2010). Thoracic Ao dilation and aneurysm (TAA) is associated
with known connective tissue disorders, e.g., Marfan syndrome
(OMIM 154700) and non-syndromic familial clustering of iso-
lated cases are well known, e.g., aortic aneurysm, familial thoracic;
AAT1 (OMIM 607086; Hiratzka et al., 2010) and AAT6 (OMIM
611788; Guo et al., 2007). Bicuspid aortic valve (BAV, OMIM
109730) has also been associated with TAA (Hahn et al., 1992;
Michelena et al., 2008; Elefteriades and Farkas, 2010); the TAA–
BAV association persists even when the BAV is functionally normal

Abbreviations: Ao, aorta; AoA, ascending aorta; AoD, descending aorta; AoR, aortic
root; AoT, transverse aorta; AoVA, aortic valve annulus; BAV, bicuspid aortic valve;
CVM, cardiovascular malformation; HLHS, hypoplastic left heart syndrome; MPA,
main pulmonary artery; MVA, mitral valve annulus; PVA, pulmonary valve annulus;
OR, odds ratio; STJ, sinotubular junction; TAA, thoracic aortic aneurysm.

(Hahn et al., 1992; Burks et al., 1998; Nistri et al., 1999; Cecconi
et al., 2005; Beroukhim et al., 2006; Michelena et al., 2008).

Bicuspid aortic valve describes an aortic valve with two rather
than three cusps. BAV is the most common cardiovascular mal-
formation (CVM) in humans; a figure of 1–2% is usually cited
(reviewed in Siu and Silversides, 2010). Previous studies have sup-
ported a strong underlying genetic basis of BAV (Andelfinger et al.,
2002; Cripe et al., 2004; Garg et al., 2005; Martin et al., 2007; Hin-
ton et al., 2009). Family-based studies also support a genetic basis
for Ao dilation and TAA (Guo et al., 2001; Vaughan et al., 2001;
Hasham et al., 2003). The frequent association of BAV with TAA
and the observation of abnormal Ao tissue architecture in patients
with BAV lead to the postulation of a common underlying defect
(Mckusick, 1972; de Sa et al., 1999). Human genetic studies have
demonstrated that Ao dilation is increased in first degree relatives
of individuals with BAV (Huntington et al., 1997; Cripe et al.,
2004; Biner et al., 2009; Elefteriades and Farkas, 2010), further
implicating a common underlying genetic etiology (Loscalzo et al.,
2007). However, the reasons for co-occurrence may not be due to
common underlying genetic etiology; instead, other factors, e.g.,
altered aortic blood flow may act upon susceptible individuals to
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increase risk. Unfortunately, no studies have directly addressed
whether Ao dimensions are associated with BAV due to genetics.

Given the heritability of BAV and the increased risk of Ao dila-
tion in BAV family members, the objective of this study was to
determine whether the contributions of heritability and BAV inde-
pendently influence Ao dimensions. To accomplish this objective,
we examined the heritability of echocardiographic (echo) mea-
surements in a family-based cohort enriched for BAV, emphasizing
Ao dimensions at multiple sites, including and excluding BAV as a
covariate. Additionally, bivariate genetic analyses were performed
to formally test whether Ao dimensions and BAV share underlying
genetic factors.

MATERIALS AND METHODS
SUBJECTS
Previously (Hinton et al., 2007), we found that first degree rela-
tive recurrence risk of BAV was identical in kindreds ascertained
by identifying probands with either BAV or hypoplastic left heart
syndrome (HLHS OMIM 242550). Therefore, to obtain a family-
based cohort enriched for BAV we utilized families ascertained
independently by identifying probands with either BAV or HLHS
(Hinton et al., 2007, 2009). The sampling methods were reported
previously (Hinton et al., 2009), and thus will be described briefly.
Probands with a known genetic syndrome (e.g., Turner syndrome)
were excluded. All first degree relatives of the proband were invited
to participate. To expand the pedigrees, we used a sequential sam-
pling strategy as previously described (Cripe et al., 2004; Martin
et al., 2007). This cohort includes 169 and 40 pedigrees recruited
based on the proband having BAV and HLHS, respectively. In
the BAV families, 5.1% of non-probands had BAV; while in the
HLHS families, 3.6% of non-probands had BAV. This protocol was
approved by the Institutional Review Board of Cincinnati Chil-
dren’s Hospital Medical Center. Informed consent was obtained
from all participants.

ECHOCARDIOGRAPHY
For all participants, cardiovascular phenotype was determined
by a cross-sectional 2-dimensional and Doppler transthoracic
echocardiogram performed at our center and/or a detailed med-
ical history including records describing cardiac catheterization,

surgical procedures, or echocardiograms (Cripe et al., 2004; Mar-
tin et al., 2007). Commercially available echocardiographic sys-
tems (Hewlett–Packard Sonos 5500, GE Vivid 7 or a GE Vivid
5) were utilized. Aortic valve morphology was examined in both
systole and diastole in the parasternal short axis view. All addi-
tional anatomic and hemodynamic abnormalities were recorded
in probands and relatives. A single experienced echocardiographer
(Linda H. Cripe) interpreted all echocardiograms performed on
site. To eliminate effects that cardiac surgery may have on some
aorta echo measures, individuals with a history of cardiac surgery
were excluded from analyses utilizing aorta echo measures. As all
HLHS participants undergo cardiac surgery in infancy, they were
excluded from the quantitative analysis of echo measures.

Echo measurements of Ao diameters were obtained at six sites,
including the aortic valve annulus (AoVA), aortic root (AoR),
sinotubular junction (STJ), ascending aorta (AoA), transverse
aorta (AoT), and descending aorta (AoD). Echo measures of the
mitral valve annulus (MVA), pulmonary valve annulus (PVA), and
main pulmonary artery (MPA) were also obtained (Figure 1). Ao
diameters were measured from leading edge to leading edge in
the parasternal long axis in end diastole, as previously described
(Roman et al., 1989; Lang et al., 2006). By 2-dimensional imaging
the MPA segment and the PVA were measured in the paraster-
nal short axis view. The MV annulus was measured in the apical
four chamber view using 2-dimensional images. Echocardiog-
raphy variables were measured in triplicate. Individuals with a
measurement of AoR, or AoA greater than published normal val-
ues were given a clinical diagnosis of Ao dilation (Roman et al.,
1989).

DERIVED VARIABLES
Body surface area
We used the Mosteller formula to calculate body surface area (BSA)
as described previously (Mosteller, 1987).

STATISTICAL ANALYSIS
Data cleaning
Echo measurements were first evaluated among individuals. Mea-
sures outside of 4 SD were reviewed and errors were excluded.

FIGURE 1 | Illustration of the locations of the echocardiographic

measures. Abbreviation definitions: AoR, aortic root; AoVA, aortic valve
annulus; STJ, sinotubular junction; AoA, ascending aorta; AoT, transverse

aorta; AoD, descending aorta; PVA, pulmonary valve annulus; MPA, main
pulmonary artery; MVA, mitral valve annulus; RV, right ventricle; LV, left
ventricle; RA, right atrium; LA, left atrium.
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Since the measures were in triplicate, we then evaluated intraob-
server variability. Prior to data cleaning, average SD of triplicate
measures was low [range 0.07 (AoA) to 0.31 (PVA)], suggesting
that these variables were measured reproducibly. When the tripli-
cate SD exceeded 4 SD units (based on the average of all triplicates
across individuals), values within the triplicate, which exhibited
>20% difference from the other measures within the triplicate
were excluded. Less than 0.3% of all echo measures were excluded.

Phenotypic associations between echo measures and BAV and/or
CVM
To investigate whether echo measures were associated with the
presence or absence of BAV and or CVM, we first examined the
effect of incorporating a covariate effect for BAV and CVM as sep-
arate terms using a variance components model. In this model the
random effects are defined by familial relationships (Eq. 1) and
covariates are included as fixed effects. Other covariates included
age, age squared, sex, age by sex, age squared by sex, and BSA.

Genetic analysis
To investigate the heritability of echo measures, we applied a vari-
ance components model, which is a mixed model. In the variance
components model, the fixed effects are the covariates of age, age
squared, sex, age by sex, age squared by sex, and BSA. The adjust-
ment of covariates allows removal of known variation prior to
modeling the random effects. The random effects are defined by
partitioning the covariance between relative pairs into additive
genetic and error covariance. In this way, the covariance between
relative pairs is defined as

Ω = 2Φσ2
g + Iσ2

e (1)

where σ2
g is the genetic variance due to residual additive genetic fac-

tors, and σ2
e is the error variance (residual variance not explained

by the additive genetic component). The additive genetic vari-
ance is multiplied by the structuring matrix for familial patterning
(2Φ) which follows expected additive genetic transmission. In this
matrix, parents and offspring would be expected to share 1/2 of
their genes in common based on expected Mendelian transmission
(Falconer, 1989). The error variance is multiplied by the iden-
tity matrix (I) which is simply a matrix whose diagonal elements
are one and remaining elements are zero (permitting individual
specific effects).

To solve for the variance terms, we used maximum-likelihood
based variance decomposition implemented in the computer
package SOLAR (Southwest Foundation for Biomedical Research,
San Antonio, TX, USA), which allows us to simultaneously con-
sider all possible relative pairs (Almasy and Blangero, 1998). Her-
itability is an estimate and is calculated as h2 = σ2

g /(σ
2
g + σ2

e ).
Significance of the heritability estimates was assessed by likeli-
hood ratio tests. The maximum likelihood for the model in which
all parameters were estimated are compared to those for restricted
models in which the value of the parameter to be tested will be held
constant at some value (usually zero). Twice the difference in the
natural logarithm likelihoods of the two models to be compared is
distributed asymptotically, approximately as a 1/2:1/2 mixture of
χ2

1 variable and a point mass at zero (Self and Liang, 1987). Values
of p ≤ 0.05 were considered significant.

Bivariate analysis. In the multivariate model, the phenotype
covariance between two traits is decomposed to include the
genetic correlation between traits due to additive genetic effects
and the correlation between traits due to shared (unmeasured)
environmental effects,

Ωab = 2Φρg σgaσgb + Iρeσeaσeb (2)

where a and b are the two traits of interest, ρg is the additive
genetic correlation between the two traits and ρe is the correlation
between unmeasured environmental effects. The genetic correla-
tion estimates the proportion of genes shared in common between
the two traits. This approach has been implemented in SOLAR
(Comuzzie et al., 1994).

Quantitative definition of Ao dilation
Because echo measures vary by age, sex, and BSA (Roman et al.,
1989), identification of individuals at the tails of the distribution
in our cohort was challenging. Thus, to better understand the dis-
tribution of echo measures in individuals with and without BAV,
we normalized the data adjusting for age, sex, and BSA. Each echo
measure (y) in individuals without BAV was first analyzed using a
regression model (see Eq. 3 below). Age, sex, and BSA showed
significant effect (p ≤ 0.05), thus being included in the final
model.

yi = β0 + βage × agei + βsex × sexi + βBSA × BSAi + εi (3)

The mean (με_nonBAV) and the standard deviation (SDε_nonBAV) of
the estimated residuals for each echo measure were calculated. We
then applied Eq. 3 to the entire dataset. Estimated residuals were
normalized to generate normalization-scores using Eq. 4.

score = εi − με_nonBAV

SDε_nonBAV
(4)

Normalization-scores were then evaluated using t -tests to com-
pare BAV to non-BAV participants, to ensure consistency with the
family-based SOLAR analyses. Chi-square analysis was used to
determine if individuals with BAV were more likely to have mea-
sures exceeding 2 SD units. We recognize that both the t -test and
the chi-square analyses assume independent samples thus our use
of these tests may be biased. However, as we are using these analy-
ses to augment the family-based analyses in SOLAR, we are not
concerned about incorrect inference.

Using the normalization-scores, we defined individuals as hav-
ing Ao dilation when normalization-scores exceeded 2 units for
AoAV, AoR, STJ, or AoA. This quantitative definition of Ao dila-
tion is distinct from the usual clinical diagnosis of Ao dilation
which is characterized by a measurement of AoR or AoA greater
than published normal values (Roman et al., 1989). To compare
frequency of Ao dilation between individuals with and without
BAV, chi-square analysis was used.

In this study the reference samples are from family members
without BAV; thus, the normalization-scores are not equivalent to
population referent values. Since it is known that family members
without BAV may have Ao dilation (Bella et al., 2002; Loscalzo
et al., 2007; Biner et al., 2009), this approach may underestimate
Ao dilation in family members with BAV.
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Multiple testing correction
For all tests described above, we were evaluating nine echocar-
diographic measures. Thus when using the standard nominal
significance of α = 0.05,we will have an inflated type I error rate. To
correct for this, we apply Bonferroni correction (0.05/9 = 0.006)
to achieve our significance threshold.

RESULTS
PATIENT CHARACTERISTICS
Our cohort was obtained from 209 BAV-enriched families
(n = 1955 individuals). The number of individuals with BAV
(n = 255) and intervention for Ao valve disease (n = 70) or mitral
valve disease (n = 12) provide a description of the disease burden
of this large cohort. A further characterization includes a clinical
diagnosis of AoR dilation in 48 individuals including 5 individuals
with AoR replacement and 3 individuals with combined Ao valve
intervention and root replacement.

However, inclusion in the quantitative analyses presented in
this study required measurements from the echocardiogram pro-
tocol performed at our center. Thus, from the larger cohort, 1143
individuals, consisting of 2723 relative pairs (Table 1), met this
criterion and were included. Descriptive characteristics of this
smaller cohort are provided in Table 2. Briefly, 175 individuals
had BAV and 144 had CVM, e.g., atrial septal defect, ventric-
ular septal defect including 48 individuals with both BAV and
CVM. Participants spanned a broad age range (0.01–88.41 years,
mean = 28.0 ± 18.9) with slightly over one-third of the cohort
≤18 years of age. To eliminate effects that cardiac surgery may have
on some aorta echo measures, 47 individuals were excluded from
the heritability analysis because of a history of cardiac surgery. The
two cohorts with echo measures (1143 versus 1096) did not signif-
icantly differ on any demographic measures (not shown). Further,
we compared the univariate effects of BSA on STJ and AoR to the
univariate effects presented by Roman et al. (1989), and found no
substantial differences (data not shown).

BAV INCREASES SOME BUT NOT ALL ECHO MEASURES
We performed a covariate analysis in SOLAR. As expected, age
and BSA were associated with statistically significant increases in
all echo measures. Further, as previously observed (Roman et al.,
1989) females had smaller measures than males. After adjusting
for age, sex, and BSA in the family-based cohort, presence of BAV

Table 1 | Pedigree structure of the cohort.

Relationship n Percentage

Parent–offspring 905 33.2

Siblings 597 21.9

Avuncular 553 20.3

Grandparent–grandchild 235 8.6

First cousins 213 7.8

Half-siblings 50 1.8

Grand avuncular 45 1.6

Identical twins 2 0.07

Other 123 4.5

Total 2723 100

is associated with a statistically significant increase in some but
not all echo measures (p-value range 0.009–3.3 × 10−25; Table 3).
Affected measures included AoVA, AoR, STJ, AoA, AoT, PVA, and
MPA. AoD and MVA measures were not associated with BAV. CVM
showed significant effects on AoR, STJ,AoA, and AoT. Importantly,
while BAV and CVM have similar effect on some measures (STJ
and AoT) other measures exhibit different magnitudes of effect
(see beta values for BAV and CVM-Table 3).

ECHO MEASURES ARE QUANTITATIVE TRAITS THAT EXHIBIT
SIGNIFICANT HERITABILITY
After correcting for BSA, sex, and age, all Ao, pulmonary
artery and mitral valve measures exhibited significant heritabil-
ity (p < 4.6 × 10−5 for all) with moderate to strong estimates (h2

range 0.24 ± 0.07 to 0.52 ± 0.07; Table 3), identifying echo mea-
sures as quantitative traits. Heritability estimates were markedly
similar when incorporating the influence of BAV and CVM, sug-
gesting a genetic basis for echo measures, which are distinct from
the underlying etiology of BAV or CVM.

ECHO MEASURES DO NOT SHARE UNDERLYING GENETIC EFFECTS
WITH BAV
Given the consistency in heritability measures, we then tested
whether there was evidence of underlying shared genetic effects
using bivariate genetic analyses. The genetic correlation between
two traits, ρG, can be interpreted to be an estimate of the pro-
portion of genes shared in common between the two traits.
No estimates of ρG were significantly different using a nominal
significance threshold of α ≤ 0.05 (Table 4).

NORMALIZED ECHO MEASURES EXHIBIT DIFFERENCES BY BAV
To verify the impact of BAV on specific echo measures, we eval-
uated normalization-scores adjusted for age, gender, and BSA.

Table 2 | Descriptive statistics of the cohort.

Non-BAV BAV

No. individuals 968 175

% Male 45.3 73.7

Age 29.9 ± 18.5 17.4 ± 17.5

% <18 years 31.9 66.9

Body surface area (BSA) 1.63 ± 0.53 1.27 ± 0.67

% CVM 9.9 27.4

% Ao dilation 2.2 9.7

Aortic valve annulus (AoVA) 2.04 ± 0.44 1.96 ± 0.66

Aortic root (AoR) 2.70 ± 0.61 2.51 ± 0.95

Sinotubular junction (STJ) 2.34 ± 0.56 2.16 ± 0.83

Ascending aorta (AoA) 2.46 ± 0.59 2.47 ± 0.92

Transverse aorta (AoT) 2.18 ± 0.53 1.99 ± 0.80

Descending aorta (AoD) 1.80 ± 0.48 1.50 ± 0.62

Pulmonary valve annulus (PVA) 2.15 ± 0.56 2.05 ± 0.74

Main pulmonary artery (MPA) 2.01 ± 0.48 1.95 ± 0.66

Mitral valve annulus (MVA) 2.97 ± 0.59 2.52 ± 0.83

Values are reported as mean ± SD or frequencies. Continuous variables are shown

as mean ± SD. Units for all echo measures in centimeter.
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Table 3 | Heritability estimates of aortic and pulmonary artery measures with and without the inclusion of BAV/CVM as covariates.

Echo measurement Model without BAV or

CVM as covariate

Model with BAV and/or CVM as covariate

Heritability p-Value h2 Heritability p-Value h2 Beta BAV

± SE

p-Value

BAV

Beta CVM

± SE

p-Value

CVM

Aortic valve annulus (AoVA) 0.26 ± 0.07 0.000014 0.26 ± 0.07 6.2 × 10−6 0.12 ± 0.02 6.3 × 10−7 – 0.13

Aortic root (AoR) 0.52 ± 0.07 7.9 × 10−18 0.53 ± 0.07 1.6 × 10−18 0.13 ± 0.03 0.000031 0.18 ± 0.04 7.9 × 10−7

Sinotubular junction (STJ) 0.43 ± 0.07 3.5 × 10−12 0.41 ± 0.07 2.0 × 10−11 0.13 ± 0.03 4.0 × 10−6 0.14 ± 0.03 0.00005

Ascending aorta (AoA) 0.32 ± 0.08 7.0 × 10−7 0.38 ± 0.08 7.2 × 10−9 0.32 ± 0.03 3.2 × 10−25 0.14 ± 0.04 0.00016

Transverse aorta (AoT) 0.24 ± 0.07 0.000046 0.26 ± 0.07 8.7 × 10−6 0.13 ± 0.03 0.0001 0.12 ± 0.04 0.0020

Descending aorta (AoD) 0.29 ± 0.07 1.7 × 10−6 * * – 0.30 – 0.13

Pulmonary valve annulus (PVA) 0.32 ± 0.07 0.000021 0.33 ± 0.07 5.0 × 10−7 0.14 ± 0.05 0.025 – 0.15

Main pulmonary artery (MPA) 0.28 ± 0.08 7.0 × 10−7 0.30 ± 0.08 0.000013 0.12 ± 0.04 0.01 − 0.23

Mitral valve annulus (MVA) 0.25 ± 0.07 0.000042 * * − 0.60 − 0.63

*Neither BAV or CVM was a significant covariate.

Table 4 | Genetic correlations between aortic and pulmonary artery

measures and BAV.

Echocardiographic measurement ρG ± SE p-Value

Aortic valve annulus (AoVA) −0.27 ± 0.21 0.19

Aortic root (AoR) 0.18 ± 0.14 0.21

Sinotubular junction (STJ) 0.02 ± 0.17 0.91

Ascending aorta (AoA) −0.11 ± 0.18 0.54

Transverse aorta (AoT) −0.19 ± 0.07 0.35

Descending aorta (AoD) −0.20 ± 0.10 0.35

Pulmonary valve annulus (PVA) 0.14 ± 0.19 0.48

Main pulmonary artery (MPA) 0.10 ± 0.21 0.66

Mitral valve annulus (MVA) −0.33 ± 0.20 0.11

The p-value is testing whether ρG is statistically different from zero, by comparing

the log likelihood of a model in which ρG is estimated versus a model in which ρG

is constrained to zero. Twice the difference in the log likelihoods is distributed as

a chi-square statistic.

When used as continuous measures (t -tests), we found that
normalization-scores for some echo measures were increased
in individuals with BAV (p < 0.005; Figure 2), but AoD and
MVA were not (p > 0.93). When normalization-scores were
dichotomized (chi-square), BAV was associated with an increased
proportion of observations exceeding a threshold of 2 SD for
AoVA, AoR, STJ, AoA, and AoT (p < 0.0001), suggesting all proxi-
mal thoracic Ao regions are prone to dilation. MPA showed a slight
increase in observations exceeding 2 SD in individuals with BAV
versus those without (5.5 versus 3.4%), but this difference was not
statistically significant (p = 0.28).

BAV ASSOCIATED WITH INCREASED FREQUENCY OF AO DILATION
Among the 1143 individuals with echo measures, a clinical diag-
nosis of Ao dilation or a history of AoR replacement was identified
in 38 (3.1%) participants represented by 33 (15.8%) families: 17
had BAV and 21 had a normal Ao valve. While familial cluster-
ing of clinically significant Ao dilation was typically not present,
individuals with BAV were at greater odds of having clinical
Ao dilation (OR = 4.82, 95% CI = 2.49–9.33, p < 0.0001) than

individuals without BAV. Using a quantitative definition of Ao
dilation as exceeding 2 normalization-score units for any prox-
imal Ao echo measures (AoVA, AoR, STJ, or AoA), we found
that 133 (11.6%) individuals from 83 (39.7%) families met this
criteria. Ao dilation thus defined in 84 individuals with BAV. Fur-
ther, individuals with BAV were more likely than family members
without BAV to exhibit Ao dilation (OR = 4.44, 95% CI 2.93–
6.72). Importantly, only modest correlation was present between
the normalization-scores of these four Ao measures (average pair-
wise Pearson correlation = 0.37 ± 0.27), suggesting that increased
measurement at one Ao site was not very predictive of increased
measures at other Ao sites. Indeed, among individuals, we identi-
fied different patterns of dilation, with some individuals showing
increased measures across all proximal Ao echo sites, while others
exhibited dilation at a single site (Figure 3).

DISCUSSION
In this study, we show for the first time that Ao dimensions are
independently influenced by both genetics and BAV. To demon-
strate these findings we first showed that the presence of BAV
is associated with increased echo measures in the proximal por-
tion of the Ao and pulmonary artery but not in the descending
Ao or mitral valve. Second, this family-based study demonstrated
that echo measures of the Ao, pulmonary artery, and MVA exhibit
moderate heritability, meaning that some variability in the mea-
sures is determined by genetic effects, i.e., they are quantitative
traits. Importantly, the heritability estimates were markedly stable
when accounting for BAV and bivariate analyses did not support
shared underlying genetic effects of BAV and Ao measures. Taken
together these results suggest that the genetic basis for dimensions
of all echo measures we studied is distinct (independent) from the
underlying genetic etiology of BAV.

BAV IS ASSOCIATED WITH INCREASED AO AND PULMONARY ARTERY
MEASURES
Our finding of BAV being associated with increased Ao measures
was consistent with previous studies in children and adults (Hahn
et al., 1992; Nistri et al., 1999; Keane et al., 2000b; Nkomo et al.,
2003; Beroukhim et al., 2006; Warren et al., 2006; Yuan et al.,
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FIGURE 2 | Distribution of echocardiographic normalization-scores

(z-scores) in family members with BAV (solid line) and without BAV

(dashed line). z -score measures >2 units (vertical dashed line) are
considered abnormal. When used as continuous measures, we found that

z -scores for some echo measures of AoVA, AoR, STJ, AoA, AoT, and MPA
were increased in individuals with BAV (p < 0.005). BAV was associated with
an increased proportion of Ao dilation, i.e., measures exceeding a threshold of
2 z -score units for AoVA, AoR, STJ, AoA, and AoT (p < 0.0001).

2010). Further, our estimates of Ao dimensions were similar to
values reported previously (Beroukhim et al., 2006). In addition,
we found that the pulmonary artery also exhibits increased diam-
eter in BAV patients; this is not surprising given previous findings
of abnormal histopathology and dilation of the pulmonary artery
in BAV patients (de Sa et al., 1999). Abnormal pulmonary artery
dimensions also imply common pathology in both great arteries,
suggesting the durability of the Ross procedure may be limited in
such cases. Similar pathology in the Ao and MPA is not surprising
given their common developmental origin from the outflow tract
endocardial cushions and the conotruncus. This may be clinically
relevant in the context of individuals with BAV who require aortic
valve replacement and may be candidates for the Ross procedure
(placement of the pulmonary valve in the aortic position).

ECHO MEASURES ARE HERITABLE AND PERSIST WHEN CONTROLLING
FOR BAV
These results demonstrate that echo measures are heritable, and
this genetic effect is not attenuated with the inclusion of BAV as

a covariate. These findings are consistent with a previous report
showing a heritability of 0.51 for the AoR measured at the sinuses
of Valsalva (Figure 1; AoR) in an adult cohort (Bella et al., 2002).
Further, identification of linkage regions in families enriched for
TAA (Guo et al., 2001; Hasham et al., 2003) also supports a genetic
basis of the Ao measures. In addition to providing the first evi-
dence of heritability across these echo measures, these results may
provide insight into the relationship between the echo measures
and BAV. Specifically, it has been proposed that BAV and Ao dila-
tion have a common underlying genetic etiology (Loscalzo et al.,
2007). If both BAV and Ao and pulmonary artery measures were
influenced by the same genes, one would expect that adding BAV
as a covariate in the genetic model would reduce the genetic sig-
nal. However, our heritability estimates were markedly similar
before and after inclusion of BAV. Nonetheless, as heritability is
a function of both the additive genetic and total phenotypic vari-
ance, heritability may remain constant if both the additive genetic
and environmental variance are influenced by a covariate. Thus,
taken alone these results provide only circumstantial evidence of
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FIGURE 3 | Variations in BAV-associated aortopathy. (A) Pathology
oriented to show anatomy that correlates with the echocardiographic
parasternal long axis view. (B–F) The proximal thoracic aorta dimensions are
designated by numbered lines (1 =AoVA, 2 =AoR, 3 = STJ, 4 =AoA). (B) A
normal heart is showing aortic dimensions with normalization-scores
(z -scores) approximating 0 (white lines). (C) Hearts with BAV and high
normal aortic dimensions at all sites (z -scores between +1 and +2; yellow
lines); (D) BAV and dilation (z -score > 2) of AoR only (red line); (E) BAV and
dilation of the AoA only (red line); and (F) BAV and dilation of all four sites
(red lines). AOV, aortic valve; LA, left atrium; LV, left ventricle; MV, mitral
valve. (A) Is a modified reproduction with permission (Edwards, 2008).

the independence of the underlying genetics of BAV and echo
measures.

NO EVIDENCE OF SHARED UNDERLYING GENETIC EFFECTS BETWEEN
BAV AND ECHO MEASURES
Results from the bivariate genetic analyses do not support that
there are shared underlying genetic effects between BAV and aortic
echo measures. While no previous studies have directly exam-
ined bivariate genetic relationships between BAV and aortic echo
measures, loci identified for TAA (Guo et al., 2001, 2007, 2009,
2011; Hasham et al., 2003) do not overlap with loci identified for
BAV (Martin et al., 2007; Hinton et al., 2009). Thus, the evidence
of minimal impact of BAV on heritability of Ao echo measures,
non-significant genetic correlations in the bivariate analyses, and
the lack of overlap in previously identified TAA and BAV linkage
regions provides strong evidence that BAV and Ao dimensions do
not share underlying genetic effects.

If underlying genetic factors are not the cause of an associa-
tion between BAV and aortic echo measures, the question remains
why are these two phenotypes associated? We can speculate that
the association between BAV and Ao dilation may be due to
degenerative changes in tissue media or hemodynamic factors.
Several studies have examined aortic tissue from BAV patients.
In patients with aortic valve disease, those with BAV have more
severe degenerative changes in the media of the AoA and MPA,
including a loss of elastic fibers (Roberts and Roberts, 1991), than
patients with tricuspid aortic valves (de Sa et al., 1999). Specifically,
Fedak et al. (2002, 2003) speculated that deficiency of fibrillin-1
in BAV patients might trigger matrix metalloproteinase (MMP)
production, leading to maladaptive remodeling of extracellular
matrix and ultimately Ao dilation. Further, there is evidence that

hemodynamic changes may increase the risk of Ao dilation. Both
computational fluid dynamics simulations and analysis of blood
flow patterns in the AoA of patients with BAV demonstrate that
asymmetric blood flow patterns and perturbations in flow velocity
may contribute to aneurysm formation (Hope et al., 2010; Viscardi
et al., 2010). Thus, previous work supports the plausibility of some
shared pathogenesis in the context of distinct genetic etiologies for
BAV and Ao dilation.

BAV IS ASSOCIATED WITH AORTIC DILATION
We also found that BAV was associated with increased Ao dila-
tion, using both a clinical and research diagnosis. Our findings
are in agreement with previous studies, which report an increased
prevalence of aortic aneurysm/dissection in BAV versus non-BAV
individuals (Ando et al., 1998; Coady et al., 1999) or individ-
uals with BAV (Burks et al., 1998; Keane et al., 2000a; Cecconi
et al., 2005; Warren et al., 2006). Indeed, we found that individ-
uals with BAV have a 4.44-fold increase in Ao dilation, which is
a risk factor for aneurysm and ultimately dissection. Importantly,
we confirmed the findings of previous studies, showing that the Ao
valve annulus, AoR, STJ, and the ascending Ao are dilated in BAV
individuals,but the descending Ao is not (Nistri et al.,1999;Warren
et al., 2006; Siu and Silversides, 2010); this is not surprising given
the different developmental origins and disease manifestations of
ascending versus descending Ao (Appelbaum et al., 1976; Waste-
son et al., 2008). While we found consistent association with BAV
with the clinical and research diagnosis of Ao dilation, substan-
tially more individuals were classified as dilated using the research
than the clinical diagnosis (11.6 versus 3.1%, respectively). The
increased proportion of the research diagnosis is likely due to
the fact that the research diagnosis uses all four measures of the
proximal Ao whereas the clinical diagnosis uses two. Further, our
normalization-scores may underestimate the frequency and sever-
ity of Ao dilation – BAV association. First, the cohort we studied
has a relatively young age and individuals with the most severe
disease manifestations, e.g., individuals with a history of cardiac
surgery for valve replacement or AoR replacement, were excluded
from the quantitative analyses. Second, the use of family mem-
bers without BAV as the comparison group may diminish the true
difference between affected and unaffected individuals since fam-
ily members without BAV may be Ao dilation (Bella et al., 2002;
Loscalzo et al., 2007; Biner et al., 2009).

FUTURE CONSIDERATIONS/STUDY DESIGN
A unique component of our study is the use of family members
without BAV as the comparison group. The use of family members
to assess risk may have a decided advantage over the traditional
case–control design for estimated increased risk of Ao dilation
associated with BAV. Indeed, in the case–control design, it is likely
that cases and controls may differ in their underlying genetic back-
ground. As BAV is determined in large part by genetics (Cripe et al.,
2004; Mcbride et al., 2005; Martin et al., 2007) and similarly TAA
has been shown to have a genetic basis (Guo et al., 2001, 2011;
Vaughan et al., 2001; Hasham et al., 2003), differences in genetic
backgrounds may create confounding as associations may be due
to random segregation of genes. This is a problem because con-
founding can create spurious associations (Knowler et al., 1988).
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Nonetheless, the use of family-based controls may not be reflective
of the general population. In future studies, investigators should
be aware of the strengths and weaknesses of case–control versus
family-based designs.

A challenge for comparing results of the many investigations
in this area has been the varied research methodology. A strength
of the results presented is the comprehensive evaluation of echo
measures; examining only a single Ao region, e.g., the AoR, may
dramatically underestimate the rates of aortopathy. Indeed, the
clinical recognition of Ao dilation was dramatically lower than
when comparing normalization-scores at multiple Ao sites, i.e.,
AoVA, AoR, STJ, and AoA.

One potential limitation of our study is that there was no data
available for blood pressure in our sample. However, Roman et al.
(1989) demonstrated that once adjusting for age, blood pressure
had no independent effect on aortic size. Further, Biner et al.
(2009) showed that AoR elastic properties, including distensibil-
ity and stiffness index, are abnormal in family members of BAV
patients, regardless of a history of hypertension. These results sug-
gest that the inclusion of hypertension data would not dramatically
alter our findings.

CONCLUSION
We have shown genetics and the presence of BAV independently
influence variation in Ao and pulmonary artery diameters. These

results have implications for both BAV patients and their fam-
ilies. Specifically, BAV patients are at increased risk of develop-
ing valve disease and aortic dilation, underscoring the impor-
tance of monitoring for both aortic valve disease and aor-
topathy. Further, because there is evidence for distinct under-
lying genetic etiologies of BAV and TAA, family members of
BAV patients may also be at risk for TAA, even if they don’t
have BAV. Indeed, the ability to identify those individuals at
risk for disease progression will be complicated and individu-
als with BAV may have different risk profiles. As the genetic
bases of these diseases are elucidated and the phenotypic clas-
sification system is refined, the possibilities of identifying new
therapeutics and modifying clinical recommendations will be
realized.
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