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Predicting bloodstream infection 
outcome using machine learning
Yazeed Zoabi1,2,6, Orli Kehat3,6, Dan Lahav1,2,4, Ahuva Weiss‑Meilik3,7*, Amos Adler1,5,7* & 
Noam Shomron1,2,7*

Bloodstream infections (BSI) are a main cause of infectious disease morbidity and mortality 
worldwide. Early prediction of BSI patients at high risk of poor outcomes is important for earlier 
decision making and effective patient stratification. We developed electronic medical record‑based 
machine learning models that predict patient outcomes of BSI. The area under the receiver‑operating 
characteristics curve was 0.82 for a full featured inclusive model, and 0.81 for a compact model using 
only 25 features. Our models were trained using electronic medical records that include demographics, 
blood tests, and the medical and diagnosis history of 7889 hospitalized patients diagnosed with 
BSI. Among the implications of this work is implementation of the models as a basis for selective 
rapid microbiological identification, toward earlier administration of appropriate antibiotic therapy. 
Additionally, our models may help reduce the development of BSI and its associated adverse health 
outcomes and complications.

Bloodstream infections (BSI) can lead to prolonged hospital stays, and life-threatening and aggressive complica-
tions, in addition to high costs to health care  systems1–4. Increasing rates of antimicrobial-resistant pathogens, 
particularly gram-negative bacteria, limit treatment options; this often prompts empirical use of broad-range 
 antibiotics5. Therefore, timely and critical assessment of available microbiology results are necessary to ensure that 
individuals with BSI receive prompt, effective, and targeted treatment, for optimal clinical  outcomes5. However, 
the current standard-of-care, which mostly depends on blood culture-based diagnosis, is often extremely  slow6.

Sepsis is a life-threatening medical condition, defined as the body’s systemic immunological response to an 
infectious process, which may cause end-stage organ dysfunction and eventually  death7. Several studies have 
utilized electronic medical records (EMRs) to construct prediction models for mortality from  sepsis8,9 and sepsis 
 onset10–13. From a clinical perspective, these types of early warning systems may be useful in detecting patients 
at risk of BSI, and typically provide information at a certain point in time (for example,  preoperatively14) or in 
a certain time-window before deterioration (see review  in15). Identifying a patient at risk can trigger early goal-
directed therapy regarding confirmation of infection, administration of antimicrobial therapy, and transition to 
the intensive care unit (ICU).

In contrast to studies that aimed to detect patients at risk of BSI, the current study focused on patients with 
confirmed infections. Based on EMRs of patients hospitalized with positive blood cultures, we constructed 
machine learning models that predict poor outcomes of hospitalized patients with BSI, which was confirmed by 
identifying a bacterial morphology on direct gram stain from a positive blood culture (Fig. 1; see “Methods”). 
Our prediction occurs at a certain point of time: just after confirming a BSI, yet well before performing specific 
pathogen identification. At this point of time, early goal-directed clinical practice can be diverted to patients at 
risk for poor clinical outcomes. As part of that, the prediction can facilitate the use of costly diagnostic proce-
dures, such as the use of rapid microbiological identification techniques that are costly and not widely available 
instead of the traditional lengthy  methods16. A forewarning system could direct the required resources to the 
patients with BSI in the greatest need.
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Figure 1.  Data and cohort characteristics. (a) Cohort selection. Bloodstream infection in this cohort was 
confirmed by identifying a bacterial morphology on direct gram stain from a positive blood culture. Next, 
patients with only contaminants were excluded (a list of bacteria classified as contaminants is available as 
a supplementary file). Subsequently, previous admissions for each patient and patients with no lab tests 
information were excluded. Finally, the cohort was divided into training and validation sets (see “Methods”). (b) 
Feature modality distribution. Pie charts are divided according to the sum of data points in each feature set. A 
substantial proportion of the data originates from laboratory test results during current or previous admissions. 
The Circos plot shows the correlation between continuous features from the entire cohort (test and training 
sets). Correlation strength is determined by Pearson correlation, thicker bands correspond to a stronger Pearson 
correlation coefficient.

Table 1.  Population characteristics. CCI Charlson Comorbidity Index.

Training set Test set

General

N 6434 1455

Age [median ( ±)] 74 (24) 73 (22)

Females [%] 47.7 46.25

CCI

Mild [%] 20.66 20.03

Moderate [%] 40.4 37.94

Severe [%] 38.94 42.03

Admission type

Elective [%] 5.08 5.54

Emergency [%] 91.17 90.36

Urgent [%] 3.75 4.1

Other

Infectious background [%] 9.71 9.42

Surgery during hospital stay [%] 14.45 13.33

Clinical outcomes

Short-term mortality [%] 23.17 18.49

Long hospital stay [%] 12.17 9.07

Mechanical ventilation [%] 1.23 0.97

Composite score [%] 34.24 26.6
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Results
The inclusive model. The characteristics of the population used for the training and testing of the inclusive 
model are described in Table 1 (see “Methods”). From 7889 adults with a BSI, 2590 (32.8%) positive compos-
ite outcomes were recorded. The contribution of each feature of the inclusive model to predict the composite 
outcome was measured by SHaply Additive exPlanations (SHAP) scores, for each patient (Fig. 2). The predic-
tive contribution of missingness (gray points) was also assessed. Accordingly, a missing value of a feature (e.g., 
albumin) serves as a signal regarding the patient’s risk. SHAP values of three selected variables—age, monocyte 
%, albumin—are presented in Fig. 2b–d.

The main features that influenced model prediction of a poor outcome included: low albumin, high red cell 
distribution width (RDW), and high creatinine. RDW and albumin have been associated with mortality, and 
have been used as prognostic markers in a number of  studies17–24. This ranking shown partly in Fig. 2 contributed 
to the creation of the compact model described in the following subsection. The top 20 features ranked by the 
SHAP scores were also calculated (see Supplementary Fig. S1).

Performance of the inclusive prediction model on the test set showed area under the receiver-operating char-
acteristics curve (auROC) of 0.82 (95% confidence interval (CI): 0.80–0.845), which indicates good discrimina-
tion; and an area under the precision-recall curve (auPRC) of 0.65 (95% CI 0.61–0.70) (Fig. 3). The calibration 
plot, which runs very close to the diagonal, shows excellent calibration (Fig. 3c).

The calibrated model was also tested on two subsets of the future test set, which comprised only patients 
hospitalized in the ICU (N = 91), or patients tested in the ER (N = 268), and where the prevalence of the com-
posite adverse outcome was 56.7% and 27.75%, respectively. Results for these subsets showed an auROC curve 
of 0.72 (95% CI 0.614–0.812) for ICU and 0.82 (95% CI 0.758–0.889) for ER (see full results in Supplementary 
Figs. S2 and S3).

The Charlson Comorbidity Index (CCI) was found as a predictor of poor outcome (Fig. 2a). CCI is a well-
known mortality predictor in various medical  situations25,26. Thus, we compared the ROC curve we receive 
from CCI, and from the inclusive and compact model. auROC 0.62 (95% CI 0.585–0.648), which shows that 

Figure 2.  Feature analysis of the inclusive model. (a) A summary plot of the SHaply Additive exPlanations 
(SHAP) values for each feature. From top to bottom, the features are ordered by their overall influence on the 
final prediction (sum of SHAP values). In each feature (line), each point represents a specific case (individual), 
with colors ranging from red (high values of the predictor) to blue (low values of the predictor). Gray points 
signal missing values. A point’s location on the X-axis represents the SHAP value—the effect the variable had 
on the prediction in a given individual; points further right indicate greater risk, and points to the left indicate 
lesser risk. The vertical line in the middle represents no change in risk. (b) A plot of SHAP for different values of 
age (years). The light histogram along the X-axis shows the density of the data. (c) A plot of SHAP for different 
values of monocytes percentage (%) in the blood. The light histogram along the X-axis shows the density of the 
data. (d) A plot of SHAP for different values of albumin (g/L). The light histogram along the x-axis shows the 
density of the data. (a–d) are based on the future test set, n = 1455 unique patients.
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the inclusive model is much better at predicting a poor outcome compared to CCI. ROC curves can be found 
in Supplementary Fig. S4a.

The compact model. The numerous EMR features, more than 600, incorporated in the inclusive model 
render its external validation and the reproducibility of results very difficult. This limits its applicability to other 
hospitals. Hence, we established a simpler and more compact prediction model that incorporates the features 
with the greatest impact on outcome, and that are most commonly listed in EMR datasets from other hospitals. 
To this end, we trained and evaluated the performance of a compact model with only 25 features, including sim-
ple demographic information, a single blood test, and a brief medical history (Fig. 4d). We used the same cohort 
of patients of the training and test sets from the previous analysis (see the inclusive model). The compact model 
achieves an auROC of 0.81 (95% CI 0.78–0.83) (Fig. 4a), and an auPRC of 0.63 (95% CI 0.58–0.68) (Fig. 4b), 
which are only slightly lower than the values of the inclusive model, with good calibration (Fig. 4c). SHAP scores 
are shown in Fig. 5. ROC curves comparing compact model performance and CCI predictions can be found in 
Supplementary Fig. S4b.

The code to test this model is available in our GitHub repository.

Discussion
In this study, we examined the ability to utilize EMRs to predict a composite poor outcome of patients with BSI, 
which may promote both rapid interventions and patient stratification. Several scoring systems have been devel-
oped in recent years for stratifying the risk of patients with  sepsis8,10–13,15, but not for outcomes of patients with 
BSI. In addition, none are commonly used in routine practice nor recommended according to current guidelines.

Figure 3.  Performance of the inclusive model (a). Receiver-operating characteristics (ROC) curves for 
predictions of the inclusive model on the prospective test set. The light band around the curve represents 
pointwise 95% confidence intervals derived by bootstrapping. (b) A plot of the precision (positive predictive 
value, PPV) against the recall (sensitivity) of the predictor for different thresholds. The light band around the 
curve represents pointwise 95% confidence intervals derived by bootstrapping. (c) Calibration plot, plotting the 
observed outcome against the predicted probabilities. The diagonal gray line represents perfect calibration. A 
smoothed line is fit to the curve, and points are drawn to represent the averages in ten discretized bins. The rug 
under the plot illustrates the distribution of predictions.
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Our results show that EMRs can be used to produce accurate predictions of BSI outcomes. Our retrospective 
analysis demonstrates the feasibility of accurate prediction of BSI outcomes using data available in EMRs. In the 
inclusive model, the prediction was after a gram-stain, and yielded an auROC of 0.82, and an auPRC of 0.65. In 
the compact model, the prediction was based on only 25 features available at the time of culture, not including 
gram-stain results; and yielded an auROC of 0.81, and an auPRC of 0.63. Notably, these models outperformed 
CCI, which is the standard scoring system for mortality. The high performance of machine learning models 
demonstrates their potential in contributing to infection management by providing accurate information at very 
early stages of the  infection27–29. Recent studies have shown machine learning models to outperform standard 
scoring  systems27,30,31. In line with these findings, our results show enhanced performance in comparison to the 
CCI score. It should be noted that CCI predicts mortality, rather than composite poor outcome used in the cur-
rent study. While our clinical outcome was composed of several variables, it relies heavily on mortality, as 68% of 
all adverse outcome patients had shown short-term mortality. The substantial improvement in prediction ability 
(auROC of 0.62 vs. 0.83 for the full model and auROC of 0.62 vs. 0.81 for the compact model) demonstrates the 
advantage in using machine learning generated scores over the standard conventional scores.

In addition to the well-established risk factors for complications from BSI, such as age and previous infections, 
our analysis revealed less-known factors as highly predictive of a poor outcome from BSIs. The main factors 
that were identified as increasing risk included: red cell distribution width, albumin, and creatinine. Red cell 
distribution width and albumin have been associated with mortality, and have been used as prognostic markers 
in a number of  studies17–24. The Charlson Comorbidity Index has also been found to predict mortality in various 
medical  situations25,26. However, other factors revealed as central by our analysis, such as serum creatinine values 
and monocyte counts, are less well recognized and used as predictors of a poor outcome in patients with BSI.

Although maximal model explainability requires using the patient’s entire EMR, we demonstrated that a 
subset of features, available from only simple demographic information and a single blood test, enables accurate 
prediction with only a slight decrease in auROC, from 0.82 in the inclusive model to 0.81 in the compact model. 
This may enable accurate BSI outcome estimation by embedded systems in emergency departments of hospitals.

Figure 4.  Performance of the compact model. (a) Receiver-operating characteristics (ROC) curves for 
predictions of the compact model on the prospective test set. The light band around the curve represents 
pointwise 95% confidence intervals derived by bootstrapping. (b) A plot of the precision (positive predictive 
value, PPV) against the recall (sensitivity) of the predictor for different thresholds. The light band around the 
curve represents pointwise 95% confidence intervals derived by bootstrapping. (c) Calibration plot, plotting the 
observed outcome against the predicted probabilities. The diagonal gray line represents perfect calibration. A 
smoothed line is fit to the curve, and points are drawn to represent the averages in ten discretized bins. The rug 
under the plot illustrates the distribution of predictions. (d) All 25 features used by the compact model.
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Our work has several clinical applications. For instance, it can help select individuals at high-risk for BSI, 
for whom hospitalization in the ICU, treatment with broad-spectrum antibiotics, or effective early-stage rapid 
microbiological identification should be considered.

The benefit of early microbiological identification for patient outcomes has been well described in the medi-
cal  literature5,32 and the time-to-administration of appropriate antibiotics to treat BSI is an important predictor 
of  outcomes33. The current study therefore paves the route for future randomized control trials to further study 
the effectiveness of implementing a model for early prediction of BSI outcomes, possible preventive interven-
tions, and more efficient selection of patients for advanced microbiological diagnostic testing, thus reducing the 
time-to-administration of appropriate antibiotics.

Our study has several limitations. First, our prediction model is based on retrospective EMR data, which 
have inherent biases and are influenced by the interaction of the patient with the health  system34. However, these 
biases are partially mitigated in this study, since the data contain information originating from a public hospital 
serving a very large population, and since the outcome of the model is based on information that is accurately 
and comprehensively documented in the EMRs. Another limitation of the study is that we assessed BSI outcomes 
only in patients who already have a confirmed BSI (having a positive blood culture). This makes it more difficult 
to generalize to other patient cohorts. Moreover, the models presented in the current study were designed for the 
purpose of alerting the clinical staff about a patient’s potential risk from BSI. To perform this at an early stage, we 
relied on data available up to the blood culture collection and did not consider the final microbiological results 
or treatment effects. As these factors also effect the patients’ clinical outcome, they should also be incorporated 
into future studies to complete the picture. Finally, the predictor was trained and validated on EMRs from Tel 

Figure 5.  A summary plot of the SHAP values for each feature of the compact model. From top to bottom, 
features are ordered by their overall influence on the final prediction (sum of SHAP values). In each feature 
(line), each point represents a specific case (individual), with colors ranging from red (high values of the 
predictor) to blue (low values of the predictor). Gray points signal missing values. A point’s location on the 
X-axis represents the SHAP value—the effect the variable had on the prediction in a given individual. The points 
further to the right indicate that for the given individual, the covariate contributed to increasing the risk. Points 
to the left indicate that the covariate contributed to decreasing the risk. The vertical line in the middle represents 
no change in risk. Values for the feature ‘Sex’ are 0 for female, and 1 for male.
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Aviv Sourasky Medical Center (TASMC), composed of patients from and around Tel Aviv, Israel. Nonetheless, 
TASMC is a public hospital, and the medical system in Israel is accessible to the entire population.

The applicability of the model to other hospital populations needs to be shown. However, the large size of the 
data, and the comprehensive validation process and its result, namely, validation of the utility of established risk 
factors for a poor BSI outcome, all support the model’s generalizability to other hospitals. Given the additional 
complexities introduced by the machine learning algorithms, we sought to ensure that sufficient information 
would be provided to enable our model to undergo external  validation35,36. This drove us to develop the compact 
model, which is based on the features with the greatest influence on the overall prediction, and that are easily 
accessible in EMR datasets from other hospitals. This compact model achieved only a slightly reduced auROC of 
0.81. We made the compact model available in our GitHub repository (see code availability) and we encourage 
researchers with similar data from other hospitals to test it.

In conclusion, our work demonstrates that accurate and calibrated predictions of BSI outcomes early in a 
hospital admission can be achieved. Earlier and better characterization of patients with BSI could potentially 
reduce the development of BSI and its associated adverse health outcomes and complications. Our predictive 
model could become the basis of selective, rapid microbiological identification, and contribute to various deci-
sions such as ICU hospitalization and administration of broad-spectrum antibiotics. Future prospective studies, 
as well as those on populations from other hospitals, are needed to evaluate the clinical impact of the model.

Methods
Study design, population, and definition of outcome. The study was designed as a retrospective 
cohort study for the development and validation of a clinical prediction model. The study was performed at the 
TASMC, a 1500-bed public tertiary care center, and the only general hospital serving the population of Tel-Aviv, 
the most populous city in Israel, of all socioeconomic backgrounds. Data processing, model training and analy-
ses were performed at the TASMC Data Science Department and the Faculty of Medicine at Tel Aviv University.

The study included EMRs of adults hospitalized with a positive blood culture (bacterial only) in the period 
between January 2014 and January 2020. The year 2014 was determined as the starting point since frequent 
changes in variable identifiers occurred in the preceding years. Patients’ EMRs included demographics, laboratory 
test results, previous diagnoses recorded at TASMC, recorded medical history, and initial gram-stain morphology 
of positive blood cultures that are reported by phone.

The models were developed according to features extracted from various modalities available in EMRs of 
patients hospitalized with a positive blood culture at the TASMC, and predicted a composite poor outcome, 
defined as at least one of the following:

• Short term in-hospital mortality within 10 days of a culture.
• Mechanical ventilation in the 10 days after the culture.
• Prolonged length of stay (> 6 weeks).

The study flow chart is presented in Fig. 1. Exclusion criteria were: the absence of laboratory data of medical 
history information, age younger than 18 years or older than 100 years, and patients’ explicit objection to the 
use of their medical data for research purposes. Before initiating any analysis, the study population was divided 
into a training-validation set from years 2014–2018 (included 6434 admissions, of whom 2203 had a composite 
poor outcome) and a test set of admissions from 2019 and the first month of 2020 (included 1455 admissions, 
of whom 387 had a composite poor outcome). The training-validation set was further divided to training and 
validation sets at a ratio of 4:1. The model was also tested on two subsets of the test set, which comprised only 
patients from ICUs or only patients from the emergency room. Both these subsets posed a high challenge to the 
model regarding its generalization. The prospective test cross-sections were performed to emulate the model’s 
use in practice and in real world situations.

Variable and feature selection. To evaluate whether EMR-derived information might accurately predict 
outcomes of patients with BSI, we compiled a set of 606 features. All these features were available at the time a 
blood sample was sent for culture, except for the gram-stain information (used only in the inclusive model). 
With all these features, we trained a gradient-boosting model, the inclusive model, to predict the probability that 
each held-out sample (patients not included in the training set) would have a poor outcome. Distributions of 
the various modalities of the features used are depicted in Fig. 1b. In addition, we trained and tested a compact 
model, comprising 25 features, for application on EMRs from other hospitals.

Each of the 606 features was assigned a category. For more comprehensive representation, some features 
within a category were combined, such that all the features could be represented using 96 variables. These vari-
ables were used to create the pie chart in Fig. 1.b. The following list describes the mechanism for generating the 
features, and for grouping them:

Demographics (238 features, 14 variables when grouped)
• Contains features such as age, sex, and number of children. A total of 228 categorical features, which 

included birth country and nationality, were grouped to five variables.
History (108 features, 14 when grouped)
• Contains medical history that is not documented as diagnosis history. This includes unit information 

(ICU, emergency room, etc.), surgery information, and chest pain. A total of 97 categorical features were 
grouped to three variables.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20101  | https://doi.org/10.1038/s41598-021-99105-2

www.nature.com/scientificreports/

Medications (five features)
• Contains binary information about five medications: general diabetes drugs, insulin, anti-coagulants, 

anti-aggregants, and coumadin on admission.
Laboratory (33 features, 30 when grouped)
• Contains laboratory test results. Four categorical features, describing gram staining results, were combined 

into one variable. All other features in this category had continuous numeric values.
Diagnoses (222 features, 33 when grouped)
• Diagnoses history is recorded in TASMC as ICD-9 codes. The ICD-9 code hierarchy was used to group 

these features into 33 variables represented by ICD-9 codes of higher hierarchy.

Analysis platform. All computational analyses were performed on a secure compute cluster environment 
located at TASMC. Python 3, with numpy, pandas, and scikit-learn formed the backbone of the data-processing 
pipeline.

Development of the models. Predictions were generated using a gradient-boosting machine model built 
with decision-tree base-learners37. Such models have demonstrated efficacy in prediction, using tabular  data38, 
and have been incorporated in several successful algorithms in the field of machine  learning39. We implemented 
the gradient-boosting predictor trained with the  LightGBM40 Python package. LightGBM has shown effective-
ness on clinical and patient tabular data in particular, and was adopted by many recently published  models41–46. 
Missing values were inherently handled by the LightGBM  predictor40,47,48. The validation set was used for early 
 stopping49, with auROC as the performance measure. Hyperparameters were chosen after a cross-validated grid 

Figure 6.  Calibration plots of the observed outcome against the predicted probabilities. The diagonal gray line 
represents perfect calibration. A smoothed line is fit to the curve, and points are drawn to represent the mean 
values in ten discretized bins. Blue, orange, and green lines correspond to the original uncalibrated model, the 
model after sigmoid calibration, and after isotonic calibration, respectively.
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search while training the inclusive model, and were also used to train the compact model. Hyperparameters 
are available at our GitHub repository. Two LightGBM classifiers with differing complexity were developed: the 
inclusive and compact models. The compact model is available at our GitHub repository (see Code Availability).

The mechanistic basis of the models. To identify the principal features driving model prediction, 
SHAP  values50 were calculated. These values are suited for complex models such as artificial neural networks and 
gradient-boosting  machines51. Originating in game theory, SHAP values partition the prediction result of every 
sample into the contribution of each constituent feature value. This is done by estimating differences between 
models with subsets of the feature space. By averaging across samples, SHAP values estimate the contribution 
of each feature to overall model predictions. A higher value indicates that a feature has a larger impact on the 
model, which indicates that the feature is more important.

Calibration of the models. We analyzed the calibration (observed risk versus raw prediction score) of 
our proposed inclusive and compact models. The raw prediction scores produced by the machine learning 
model (LightGBM) were calibrated and evaluated on the test-set. We used isotonic regression, which fits a rank-
preserving transformation between the original scores and transformed scores; and minimizes the deviation 
between the target label and the prediction score. We used the scikit-learn library (version 0.20.0) for fitting the 
isotonic regression model. Ten prediction score bins were used, with regular spacing between the minimum/
maximum prediction score produced by a model. We noticed that the raw scores were already well-calibrated. 
Curves for isotonic and sigmoid calibrations, as well as for the raw model are presented in Fig. 6.

Evaluation of the models. The models were scored on the test set using the auROC. In addition, plots of 
positive predictive value (PPV) against sensitivity (precision-recall curve) were drawn across different thresh-
olds. For all the thresholds from all the ROC curves, metrics were calculated, including sensitivity, specificity, 
PPV, negative predictive value, false positive rate, false negative rate, false discovery rate, and overall accuracy 
(Supplementary Dataset 1). Confidence intervals for the various performance measures were derived through 
resampling, using the bootstrap percentile  method52 with 1000 repetitions.

Ethics declarations. This study (TLV-0684-18) was approved by the TASMC Institutional Review Board 
(IRB). All methods were performed in accordance with the IRB policy, guidelines, and regulations. As this is 
retrospective study, informed consent was waived by the Tel Aviv Sourasky Medical Center IRB, as all identifying 
details of the participants were removed before any computational analysis.

Data availability
The data that support the findings of this study are from TASMC. Access restrictions apply to these data and 
they are therefore not publicly available. Due to these restrictions, these data can be accessed only by request to 
TASMC or the authors.

Code availability
Hyperparameters for the models and the analytic code of the compact model are available at: https:// github. 
com/ nshom ron/ infec pred.

Received: 7 March 2021; Accepted: 20 September 2021

References
 1. Goto, M. & Al-Hasan, M. N. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America 

and Europe. Clin. Microbiol. Infect. 19, 501–509. https:// doi. org/ 10. 1111/ 1469- 0691. 12195 (2013).
 2. Pittet, D., Tarara, D. & Wenzel, R. P. Nosocomial bloodstream infection in critically III patients: Excess length of stay, extra costs, 

and attributable mortality. JAMA 271, 1598–1601. https:// doi. org/ 10. 1001/ jama. 1994. 03510 44005 8033 (1994).
 3. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of 

Disease Study. The Lancet 395, 200–211. https:// doi. org/ 10. 1016/ S0140- 6736(19) 32989-7 (2020).
 4. Angus, D. C. et al. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. 

Crit. Care Med. 29, 1303–1310 (2001).
 5. Seymour, C. W. et al. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 376, 2235–2244. 

https:// doi. org/ 10. 1056/ NEJMo a1703 058 (2017).
 6. MacVane, S. H. & Nolte, F. S. Benefits of adding a rapid PCR-based blood culture identification panel to an established antimicrobial 

stewardship program. J. Clin. Microbiol. 54, 2455–2463. https:// doi. org/ 10. 1128/ JCM. 00996- 16 (2016).
 7. Gyawali, B., Ramakrishna, K. & Dhamoon, A. S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE 

Open Med. https:// doi. org/ 10. 1177/ 20503 12119 835043 (2019).
 8. Taylor, R. A. et al. Prediction of In-hospital mortality in emergency department patients with sepsis: A local big data-driven, 

machine learning approach. Acad. Emerg. Med. 23, 269–278. https:// doi. org/ 10. 1111/ acem. 12876 (2016).
 9. Gultepe, E. et al. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision 

support system. J. Am. Med. Inform. Assoc. 21, 315–325. https:// doi. org/ 10. 1136/ amiaj nl- 2013- 001815 (2014).
 10. Nemati, S. et al. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit. Care Med. 46, 547–553. 

https:// doi. org/ 10. 1097/ CCM. 00000 00000 002936 (2018).
 11. Islam, Md. M. et al. Prediction of sepsis patients using machine learning approach: A meta-analysis. Comput. Methods Programs 

Biomed. 170, 1–9. https:// doi. org/ 10. 1016/j. cmpb. 2018. 12. 027 (2019).
 12. Delahanty, R. J. et al. Development and evaluation of a machine learning model for the early identification of patients at risk for 

sepsis. Ann. Emerg. Med. 73, 334–344. https:// doi. org/ 10. 1016/j. annem ergmed. 2018. 11. 036 (2019).

https://github.com/nshomron/infecpred
https://github.com/nshomron/infecpred
https://doi.org/10.1111/1469-0691.12195
https://doi.org/10.1001/jama.1994.03510440058033
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1056/NEJMoa1703058
https://doi.org/10.1128/JCM.00996-16
https://doi.org/10.1177/2050312119835043
https://doi.org/10.1111/acem.12876
https://doi.org/10.1136/amiajnl-2013-001815
https://doi.org/10.1097/CCM.0000000000002936
https://doi.org/10.1016/j.cmpb.2018.12.027
https://doi.org/10.1016/j.annemergmed.2018.11.036


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20101  | https://doi.org/10.1038/s41598-021-99105-2

www.nature.com/scientificreports/

 13. Desautels, T. et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning 
approach. JMIR Med. Inform. 4, e5909. https:// doi. org/ 10. 2196/ medin form. 5909 (2016).

 14. Thottakkara, P. et al. Application of machine learning techniques to high-dimensional clinical data to forecast postoperative 
complications. PLoS ONE 11, e0155705. https:// doi. org/ 10. 1371/ journ al. pone. 01557 05 (2016).

 15. Fleuren, L. M. et al. Machine learning for the prediction of sepsis: A systematic review and meta-analysis of diagnostic test accuracy. 
Intensive Care Med. 46, 383–400. https:// doi. org/ 10. 1007/ s00134- 019- 05872-y (2020).

 16. Caliendo, A. M. et al. Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 57(Suppl 3), S139-170. 
https:// doi. org/ 10. 1093/ cid/ cit578 (2013).

 17. Yoo, J.-W. et al. Red cell distribution width/albumin ratio is associated with 60-day mortality in patients with acute respiratory 
distress syndrome. Infect. Dis. 52, 266–270. https:// doi. org/ 10. 1080/ 23744 235. 2020. 17175 99 (2020).

 18. Zhang, Z., Xu, X., Ni, H. & Deng, H. Red cell distribution width is associated with hospital mortality in unselected critically ill 
patients. J. Thorac. Dis. 5, 730–736. https:// doi. org/ 10. 3978/j. issn. 2072- 1439. 2013. 11. 14 (2013).

 19. Patel, K. V. et al. Red blood cell distribution width and the risk of death in middle-aged and older adults. Arch. Intern. Med 169, 
515. https:// doi. org/ 10. 1001/ archi ntern med. 2009. 11 (2009).

 20. Chen, L., Lu, X. Y. & Zhu, C. Q. Prognostic value of albumin-red cell distribution width score in patients with severe community-
acquired pneumonia. Ann. Palliat. Med. 9, 75965–75765. https:// doi. org/ 10. 21037/ apm. 2020. 04. 22 (2020).

 21. Lee, J. H. et al. Red cell distribution width as a prognostic marker in patients with community-acquired pneumonia. Am. J. Emerg. 
Med. 31, 72–79. https:// doi. org/ 10. 1016/j. ajem. 2012. 06. 004 (2013).

 22. Hannan, J. L., Radwany, S. M. & Albanese, T. In-hospital mortality in patients older than 60 years with very low albumin levels. J. 
Pain Symptom Manage. 43, 631–637. https:// doi. org/ 10. 1016/j. jpain symman. 2011. 04. 009 (2012).

 23. Akirov, A., Masri-Iraqi, H., Atamna, A. & Shimon, I. Low albumin levels are associated with mortality risk in hospitalized patients. 
Am. J. Med. 130, 1465.e11-1465.e19. https:// doi. org/ 10. 1016/j. amjmed. 2017. 07. 020 (2017).

 24. Goldwasser, P. & Feldman, J. Association of serum albumin and mortality risk. J. Clin. Epidemiol. 50, 693–703. https:// doi. org/ 10. 
1016/ s0895- 4356(97) 00015-2 (1997).

 25. Bannay, A. et al. The best use of the Charlson Comorbidity Index with electronic health care database to predict mortality. Med. 
Care 54, 188. https:// doi. org/ 10. 1097/ MLR. 00000 00000 000471 (2016).

 26. Huang, Y. et al. Charlson comorbidity index helps predict the risk of mortality for patients with type 2 diabetic nephropathy. J. 
Zhejiang Univ. Sci. B 15, 58–66. https:// doi. org/ 10. 1631/ jzus. B1300 109 (2014).

 27. Tabaie, A. et al. Predicting presumed serious infection among hospitalized children on central venous lines with machine learning. 
Comput. Biol. Med. 132, 104289. https:// doi. org/ 10. 1016/j. compb iomed. 2021. 104289 (2021).

 28. Roimi, M. et al. Early diagnosis of bloodstream infections in the intensive care unit using machine-learning algorithms. Intensive 
Care Med. 46, 454–462. https:// doi. org/ 10. 1007/ s00134- 019- 05876-8 (2020).

 29. Mahmoud, E. et al. Developing machine-learning prediction algorithm for bacteremia in admitted patients. Infect. Drug Resist. 
14, 757–765. https:// doi. org/ 10. 2147/ IDR. S2934 96 (2021).

 30. Zhang, G. et al. A machine learning approach for mortality prediction only using non-invasive parameters. Med. Biol. Eng. Comput. 
58, 2195–2238. https:// doi. org/ 10. 1007/ s11517- 020- 02174-0 (2020).

 31. Morgan, D. J. et al. Assessment of machine learning vs standard prediction rules for predicting hospital readmissions. JAMA Netw. 
Open 2, e190348. https:// doi. org/ 10. 1001/ jaman etwor kopen. 2019. 0348 (2019).

 32. Bernhard, M., Lichtenstern, C., Eckmann, C. & Weigand, M. A. The early antibiotic therapy in septic patients: Milestone or sticking 
point?. Crit. Care 18, 671. https:// doi. org/ 10. 1186/ s13054- 014- 0671-1 (2014).

 33. Falcone, M. et al. Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused 
by KPC-producing Klebsiella pneumoniae. Crit. Care 24, 29. https:// doi. org/ 10. 1186/ s13054- 020- 2742-9 (2020).

 34. Phelan, M., Bhavsar, N. A. & Goldstein, B. A. Illustrating informed presence bias in electronic health records data: How patient 
interactions with a health system can impact inference. EGEMS https:// doi. org/ 10. 5334/ egems. 243 (2017).

 35. Dagan, N., Cohen-Stavi, C., Leventer-Roberts, M. & Balicer, R. D. External validation and comparison of three prediction tools 
for risk of osteoporotic fractures using data from population based electronic health records: retrospective cohort study. BMJ 356, 
i6755. https:// doi. org/ 10. 1136/ bmj. i6755 (2017).

 36. Vollmer, S. et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, 
replicability, ethics, and effectiveness. BMJ 368, l6927. https:// doi. org/ 10. 1136/ bmj. l6927 (2020).

 37. Hastie, T., Tibshirani, R. & Friedman, J. Boosting and additive trees. In The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction (eds Hastie, T. et al.) 337–387 (Springer, 2009).

 38. Fernández-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do we need hundreds of classifiers to solve real world classification 
problems?. J. Mach. Learn. Res. 15, 3133–3181 (2014).

 39. Omar, K. B. A. XGBoost and LGBM for Porto Seguro’s Kaggle challenge : A comparison Semester Project (2018).
 40. Ke, G. et al. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 

30 (eds Guyon, I., Luxburg, U. V., Bengio, S. et al.) 3146–3154 (Curran Associates Inc, 2017).
 41. Wang, T., Liu, G. & Lin, H. A machine learning approach to predict intravenous immunoglobulin resistance in Kawasaki disease 

patients: A study based on a Southeast China population. PLoS ONE 15, e0237321. https:// doi. org/ 10. 1371/ journ al. pone. 02373 21 
(2020).

 42. Zoabi, Y., Deri-Rozov, S. & Shomron, N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj 
Digit. Med. 4, 1–5. https:// doi. org/ 10. 1038/ s41746- 020- 00372-6 (2021).

 43. Artzi, N. S. et al. Prediction of gestational diabetes based on nationwide electronic health records. Nat. Med. 26, 71–76. https:// 
doi. org/ 10. 1038/ s41591- 019- 0724-8 (2020).

 44. Kopitar, L. et al. Early detection of type 2 diabetes mellitus using machine learning-based prediction models. Sci. Rep. 10, 11981. 
https:// doi. org/ 10. 1038/ s41598- 020- 68771-z (2020).

 45. Shin, Y. et al. Emergency department return prediction system using blood samples with LightGBM for smart health care services. 
IEEE Consum. Electron. Mag. https:// doi. org/ 10. 1109/ MCE. 2020. 30154 39 (2020).

 46. Razavian, N. et al. A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients. npj Digit. 
Med. 3, 1–13. https:// doi. org/ 10. 1038/ s41746- 020- 00343-x (2020).

 47. Josse, J., Prost, N., Scornet, E. & Varoquaux, G. On the consistency of supervised learning with missing values. arXiv: 19020 6931 [cs, 
math, stat] (2019).

 48. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. Association for Computing Machinery 785–794 (2016).

 49. Raskutti, G., Wainwright, M. J. & Yu, B. Early stopping for non-parametric regression: An optimal data-dependent stopping rule. 
In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) 1318–1325 (2011).

 50. Lundberg, S. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv: 17050 7874 [cs, stat] (2017).
 51. Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. 

Eng. 2, 749–760. https:// doi. org/ 10. 1038/ s41551- 018- 0304-0 (2018).
 52. Efron, B. & Tibshirani, R. J. An Introduction to the bootstrap (CRC Press, 1994).

https://doi.org/10.2196/medinform.5909
https://doi.org/10.1371/journal.pone.0155705
https://doi.org/10.1007/s00134-019-05872-y
https://doi.org/10.1093/cid/cit578
https://doi.org/10.1080/23744235.2020.1717599
https://doi.org/10.3978/j.issn.2072-1439.2013.11.14
https://doi.org/10.1001/archinternmed.2009.11
https://doi.org/10.21037/apm.2020.04.22
https://doi.org/10.1016/j.ajem.2012.06.004
https://doi.org/10.1016/j.jpainsymman.2011.04.009
https://doi.org/10.1016/j.amjmed.2017.07.020
https://doi.org/10.1016/s0895-4356(97)00015-2
https://doi.org/10.1016/s0895-4356(97)00015-2
https://doi.org/10.1097/MLR.0000000000000471
https://doi.org/10.1631/jzus.B1300109
https://doi.org/10.1016/j.compbiomed.2021.104289
https://doi.org/10.1007/s00134-019-05876-8
https://doi.org/10.2147/IDR.S293496
https://doi.org/10.1007/s11517-020-02174-0
https://doi.org/10.1001/jamanetworkopen.2019.0348
https://doi.org/10.1186/s13054-014-0671-1
https://doi.org/10.1186/s13054-020-2742-9
https://doi.org/10.5334/egems.243
https://doi.org/10.1136/bmj.i6755
https://doi.org/10.1136/bmj.l6927
https://doi.org/10.1371/journal.pone.0237321
https://doi.org/10.1038/s41746-020-00372-6
https://doi.org/10.1038/s41591-019-0724-8
https://doi.org/10.1038/s41591-019-0724-8
https://doi.org/10.1038/s41598-020-68771-z
https://doi.org/10.1109/MCE.2020.3015439
https://doi.org/10.1038/s41746-020-00343-x
http://arxiv.org/abs/190206931
http://arxiv.org/abs/170507874
https://doi.org/10.1038/s41551-018-0304-0


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20101  | https://doi.org/10.1038/s41598-021-99105-2

www.nature.com/scientificreports/

Acknowledgements
Y.Z. and D.L. are partially supported by the Edmond J. Safra Center for Bioinformatics at Tel-Aviv University. 
The Shomron lab is partially supported by the Adelis Foundation.

Author contributions
Y.Z., O.K., A.W.M., A.A., N.S. designed the study and wrote the paper. Y.Z. developed the models. O.K. collected 
the data. Y.Z. and O.K. did the statistical analysis. Y.Z. and D.L. contributed to the development of the compact 
model.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 99105-2.

Correspondence and requests for materials should be addressed to A.W.-M., A.A. or N.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-99105-2
https://doi.org/10.1038/s41598-021-99105-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Predicting bloodstream infection outcome using machine learning
	Results
	The inclusive model. 
	The compact model. 

	Discussion
	Methods
	Study design, population, and definition of outcome. 
	Variable and feature selection. 
	Analysis platform. 
	Development of the models. 
	The mechanistic basis of the models. 
	Calibration of the models. 
	Evaluation of the models. 
	Ethics declarations. 

	References
	Acknowledgements


