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Abstract
Rationale Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which
is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive.
Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental
BPD.
Methods and results First, transcriptomic analysis with in silico cellular deconvolution identified a lung-
intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed
by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A,
Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription
3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as
well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced
myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung
function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted
alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly
via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII
proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential
biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover,
macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs.
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Conclusion We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in
immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung
growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological
target to enable lung growth in severe neonatal chronic lung disease.

Introduction
Premature infants often require respiratory support, including mechanical ventilation and/or supplemental
oxygen. However, these life-saving treatments when applied to the immature lung can impair lung growth,
leading to neonatal chronic lung disease, initially described as bronchopulmonary dysplasia (BPD) [1].
Lungs of infants afflicted with BPD are typically characterised by reduced formation of alveoli and
perturbed matrix remodelling, yielding structural changes that may persist beyond adolescence [2, 3].
Despite significant advances in neonatal management over the past decades, the incidence of BPD remains
high, with a lack of effective preventive or therapeutic strategies. Thus, identifying new molecular
pathways that impair alveolar growth and regeneration after injury of the immature lung may lead to
potential novel therapeutics.

Alveolar epithelial type I (ATI) and type II (ATII) cells lining the alveoli are injured when exposed to
hyperoxia and this likely contributes to the pathogenesis of BPD [4, 5]. Alveolar regeneration is primarily
directed by ATII, which have the capacity for self-renewal and give rise to ATI after lung injury [6].
Disruption of ATII homeostasis is involved in the pathogenesis of various chronic lung diseases, including
BPD [7, 8]. Hyperoxia reduces survival and induces epithelial mesenchymal transition in ATII [9, 10].
Growth factors and cytokines can modulate ATII homeostasis, reducing alveolar formation and
regeneration [10, 11]. Thus, changes in the pulmonary microenvironment after hyperoxia may complicate
the course of BPD by decreasing ATII survival and alveolar growth.

The pathogenesis of BPD also includes changes in immune cell proportions, but the mechanisms and the
role of distinct immune cells in BPD pathogenesis are not yet known [12, 13]. Recent studies demonstrated
that resident and non-resident macrophages are key constituents of the inflammatory lung environment in
response to injury, orchestrating it through secretion of various cytokines, including interleukin 6 (IL-6), a
regulator of cell homeostasis, matrix remodelling, immune response and tissue regeneration [14]. On the
other hand, macrophages also contribute to a regenerative niche, essential for repair after lung injury [15].
Anti-inflammatory approaches attenuate impaired alveolarisation induced by hyperoxia [16, 17]. However,
the impact of oxygen on the regulation of the inflammatory lung microenvironment as well as its impact
on ATII homeostasis and alveolar formation remain elusive.

In this study, we present evidence that prolonged oxygen exposure recapitulates severe neonatal chronic
lung disease, activates macrophages, favouring M1-like polarisation, and increases IL-6 activity in newborn
lungs. Of note, we demonstrate that specific blockade of IL-6 trans-signalling preserves ATII survival and
enables lung growth after hyperoxia. Mechanistically, we show that the secretome of hyperoxia-exposed
macrophages inhibits ATII survival, and we identify a possible novel role for the transcription factor
Krüppel-like factor 4 (Klf4) in accentuating the macrophage response after hyperoxia. In human cell
culture studies, we demonstrate that hyperoxia-activated pro-inflammatory M1-like macrophages have an
additive effect on hyperoxia-reduced survival of human alveolar epithelial cells (hAECs). Finally, we
confirm that the macrophage-driven inflammatory IL-6/ signal transducer and activator of transcription 3
(STAT3) response is present in lungs or in the serum of infants with BPD.

Material and methods
Extended descriptions of the materials and methods are provided in the supplementary material.

Animal experiments
Animals studies were divided into four groups: 1) exposure of male and female newborn mice on a
C57Bl6 background to hyperoxia (80% O2) for 14 days for transcriptomic analysis of whole lungs, and to
40% or 85% O2 for 3, 7 or 28 days for subsequent assessment of IL-6 signalling; 2) exposure of newborn
C57BL6 mice as well as 3) newborn B6.129S2-Il6tm1Kopf/J (Il6−/−) and their respective wildtype (WT)
control to hyperoxia (85% O2) for 28 days to determine long-term effects of hyperoxia. Finally,
4) newborn mice were treated intraperitoneally with soluble gp130Fc or IL-6 mAb at postnatal days (P) 2,
P7, P14, and 21. See details and descriptions of pulmonary function tests in the supplementary material.

Tissue assays
RNA extraction, mRNA measurement
RNA extraction and quantitative real-time PCR were performed as previously described [18].
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Transcriptomic analysis using RNA sequencing, bioinformatics analyses and in silico cellular
deconvolution
All statistical analyses were obtained with the R statistical framework. Pathway analysis was performed on
Mus musculus pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and StringDB
databases [19]. In silico cellular deconvolution was performed using the immunoStates method [20].

Protein extraction and immunoblots
Protein extraction, protein measurements and immunoblots were performed as described previously [18].
Antibodies are listed in the supplementary material.

Postmortem processing of lungs for quantitative histology immunostaining
Septal thickness, mean linear intercept, radial alveolar count, surface of a single alveolus, insoluble lung
elastin and microvessels were assessed as described previously [21] and in detail in the supplementary
material. Lungs were stained for CD68 (macrophages), α-smooth muscle actin (αSMA+) (myofibroblasts),
pro-surfactant protein C (SFTPC) (ATII) and cell death (terminal deoxynucleotidyl transferase dUTP nick
end labelling (TUNEL)). Positive stained cells were counted as detailed in the supplementary material.

Cell culture studies
Cell lines, reagents and assays
Murine lung epithelial cells (MLE12; American Type Culture Collection), macrophages ( J774A.1;
American Type Culture Collection), primary murine macrophages (peritoneal) from WT mice, human
monocyte-derived macrophages from donors and hAECs (CellBiologics; PELOBiotech, Germany) were
studied. For ethical consent and detailed information, please see the supplementary material. MLE12 and
hAECs were exposed to mouse or human IL-6 (Sigma-Aldrich, Germany)+mouse or human IL-6Ra
(IL-6Ra protein, R&D Systems, USA) (IL-6/soluble IL-6 receptor (sIL-6R)). Proliferation was assessed
using MTT assay (ATCC; No. 30-1010K). IL-6 was measured using ELISA (IL-6 ELISA, Invitrogen,
USA). Klf4 was silenced in macrophages ( J774.A1) with small interfering klf4 (Dharmacon, Cat. No.
SO-2589106G, USA) using Endo-Porter (GeneTools LLC, Philomath, USA).

Precision-cut lung slices (PCLS)
Murine lungs were isolated from the 14-day-old mice after intratracheal instillation of agarose. PCLS were
treated with IL-6 (Sigma-Aldrich, Germany)+20 ng IL-6Ra (IL-6Ra Protein, R&D Systems, USA) (IL-6/
sIL-6R) under normoxia (21% O2) or hyperoxia (85% O2) for 48 h. Subsequently, PCLS were fixed with
4% paraformaldehyde and paraffin-embedded for immunofluorescence staining for SFTPC and TUNEL
detection (in situ Cell Death Detection Kit, Roche, Germany).

Human lung tissue
BPD and control (non-diseased) lung tissues were obtained through the National Heart, Lung, and Blood
Institute LungMAP Consortium Human Tissue Core Biorepository. The biorepository is approved by the
University of Rochester Research Subjects Review Board (RSRB00056775). Consent for research use has
been provided for each sample. Clinical metadata and histopathology are listed in table 1.

Immunostaining of human lungs
BPD and control lungs were stained for pSTAT3 (1:200; Cell Signaling, no. 9145), CD45 (1:200;
Invitrogen, 14-9457-82), cadherin 1 (1:200, BD Biosciences, 610181), CD68 (1:200, eBioscience,
14-0688-82) and SFTPC (1:100, LSBio, LS-B10952).

In situ hybridisation of human lungs
Fluorescent in situ hybridisation for Il6 was conducted using the Advanced Cell Diagnostics RNAscope
Fluorescent Multiplex Assay.

Clinical studies
55 infants born at <32 weeks gestation were enrolled into a longitudinal cohort of patients at Lucile
Packard Children’s Hospital. Stanford University’s Institutional Review Board approved the study.
Informed parental consent was granted for each infant enrolled in the study. Infants were followed up to
36 weeks post-menstrual age. Plasma samples were assayed for cytokine profiling by 63-plex bead assay.
Clinical data are summarised in supplementary table S2.

Statistical analysis
All continuous measurements are expressed as mean±standard error of the mean and p<0.05 denoted
significant differences. For in vivo murine studies, Two-way ANOVA or one-way ANOVA followed by a
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Dunn’s or Bonferroni’s post-test, respectively, Mann–Whitney test and t-test were used to test for statistical
significance. For cell culture studies, we applied (repeated measures) one-way ANOVA followed by a
Bonferroni’s post-test or paired t-test. For human studies, we used Mann–Whitney test, t-test, a
non-parametric fitted curve and a mixed linear model.

Results
Transcriptomic analysis identifies chemokine signalling as the most regulated pathway in murine
lungs after hyperoxia
RNA sequencing transcriptomic profiling was performed as depicted in figure 1a. Genes with average
log-fold change greater than two and a false discovery rate-corrected p-value <0.01 were considered as
differentially expressed genes (DEGs) (figure 1b, c). Pathway analysis on the KEGG pathway database
identified a number of relevant pathways. Of these, the most notable were the cytokine-cytokine receptor
interaction and chemokine-mediated signalling pathway (figure 1d). To identify putative functional
networks, we used DEGs in the ten most up- and down-regulated KEGG pathways as input for StringDB
(figure 1e–h). First, we identified the ten most significant biological processes (figure 1e) and molecular
functions (figure 1f) using gene ontology analysis. Secondly, based on DEGs in the ten most regulated
KEGG pathways, we generated a functional network (figure 1h), which highlighted the centrality of DEGs.
Each DEG in the functional network has a colour-code, which allows the individual assignment to the
biological processes shown in figure 1e. We next defined a ranking for the centrality of each DEG and
identified the top ten hubs. Of these hubs, nine are chemokines related to macrophage function (figure 1g).

In silico cellular deconvolution identifies inflammatory immune cell dysregulation in neonatal lungs
after hyperoxia
We next applied the immunoStates method to the gene expression data to assess if any immune cell type
showed different proportions in hyperoxia compared to normoxia. Myeloid dendritic cells, naïve B cells,
and plasma cells were increased; whereas CD4+, CD56+ and mast cells were significantly reduced.
Consistent with our hypothesis, pro-inflammatory M1-like macrophages proportions were higher in the
hyperoxia group. In contrast, activated, anti-inflammatory M2-like macrophages proportions were lower
(figure 2a, b). We confirmed these findings using quantitative real-time PCR to determine the expression
of key macrophage-regulating markers (Ccl7, Cxcl5 and Ccl2) (figure 2c). Furthermore, hyperoxia

TABLE 1 Clinical data of lungs of infants with and without bronchopulmonary dysplasia (BPD)

Healthy human sample

Donor ID Calculated age
(months)

Sex Race ClinPathDx: control

D075 4.00 Male White Normal growth and development
D031 7.64 Male White Normal growth and structure
D090 14.70 Female NR Normal growth and structure
D046 36.5 Male White Normal growth and development
D139 47.67 Female One race Normal lung growth and structure
D056 68.21 Male White Normal growth and development

BPD human sample

Donor ID Calculated age
(months)

Sex Race ClinPathDx: BPD/CLD

D029 3.55 Male White 23 weeks at birth, histology: CLD/BPD with lobular
remodelling; mild medial hypertrophy of small arteries

D086 8.94 Male White 25 weeks at birth, probable BPD with respiratory failure
D141 13.40 Male White 25 weeks at birth, BPD; moderate deficient alveolarisation,

chronic inflammation, airway muscle hyperplasia, medial
hypertrophy of small arteries

D039 39.13 Female NR 23 weeks at birth, “new” BPD
D053 37.87 Male White 24 weeks at birth, BPD, mild-moderate bronchiolitis
D055 59.96 Male White 32 weeks at birth, possible mild BPD, asthma, moderate

bronchopneumonia

NR: not reported; CLD: chronic lung disease; ClinPathDx: clinical pathology diagnostic.
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increased additional targets in lungs of newborn mice that are genes observed in M1-like polarisation
encoding Il6, Il17A and Mmp12 (figure 2d). In contrast, M2-like markers, e.g. Il4, Il13 and Arg1, were not
significantly different between the two groups (figure 2e). To assess gene expression and the effect of
oxygen concentration at earlier developmental time points, we performed quantitative real-time PCR on
M1- and M2-like markers at P3 and P7 in lungs of mice exposed either to 40% or 85% O2. The gene
expression analyses revealed a marked lung-intrinsic increase in Il6 and Mmp12 (M1-like markers),
whereas the M2-like markers (Il4 and Arg1) were reduced at P3 and P7 after 85% O2 (supplementary
figure S1a–d).

IL-6/STAT3 signalling in neonatal mouse lungs after hyperoxia is related to loss of epithelial cells and
increased mesenchymal markers
Since Il6 mRNA was almost 20-fold upregulated in lungs of newborn mice exposed to prolonged
hyperoxia (85% O2), we assessed lung IL-6/STAT3 signalling early after birth (P3, P7) and at P28. The
significant increase of IL-6 mRNA at P3 and P7 was related to a marked activation of its downstream
effector, STAT3, and expression of its target gene Socs3 at P7. Exposure to lower concentrations of
oxygen (40% O2) induced phosphorylation of STAT3 (p=0.0556) and a significant expression of Socs3 at
P3 (supplementary figure S2). In order to investigate severe chronic lung injury after oxygen, we continued
the experiments with 85% O2. At P28, we found fivefold increased IL-6 protein, a significant activation of
its downstream effector, STAT3, and a higher expression of suppressor of cytokine signalling 3 (SOCS3)
after hyperoxia when compared to normoxia (figure 2f–h and supplementary figure S3). These pro-
inflammatory findings were related to an almost fivefold increased expression of αsma, also known as
Acta2, a mesenchymal marker expressed by smooth muscle cells and myofibroblasts (figure 2i), and a lower
protein abundance of SFTPC and aquaporin 5 (AQP5), ATII and ATI markers, respectively (figure 2j, k).

Loss of IL-6 preserves alveolar formation in newborn mice after hyperoxia
We next tested if loss of Il6 would protect the newborn mice from hyperoxia-induced lung injury and
permit alveolar formation. Although hyperoxia simplified alveoli in the WT mice, as indicated by reduced
radial alveolar count and increased mean linear intercept, these abnormalities were attenuated in the Il6−/−

mice (figure 3a–c). Similarly, Il6 deficiency protected newborn mice from the 50% increase of the alveolar
surface area of single alveoli observed in WT mice, reflecting an ability to develop a greater overall gas
exchange surface area (figure 3d).

Loss of IL-6 preserves elastic fibre assembly and lung compliance after hyperoxia
Hyperoxia disrupted elastin deposition in WT lungs, leading to a loss of elastin at the tips of the secondary
septae and “brush-like” elastic fibres in the primary septae (figure 3e). In contrast, less disorganised elastic
fibres were detected in the lungs of hyperoxia-exposed Il6−/− mice, and the localisation at the tips of the
secondary septae appeared similar to that observed in the normoxia-exposed animals. The absolute elastic
fibre content per defined area (µm2) was unaltered by hyperoxia or IL-6 deficiency. Hyperoxia, however,
significantly increased the relative elastic fibre content in WT but not Il6−/− mice (figure 3f, g). These
changes in elastic fibre localisation may account for the protection of Il6−/− from reduced lung compliance
after hyperoxia (figure 3h). We next analysed elastic fibre components and found an increase in Col1a1,
Fbn1 and Fbln5 mRNA in Il6−/− lungs compared to WT (figure 3i–k). Moreover, deficiency of Il6 was
associated with a decrease in myofibroblasts in both normoxia and hyperoxia (figure 3l, m). Although

FIGURE 1 Transcriptomic analyses of lungs of newborn mice exposed to normoxia (21% O2, NOX) or hyperoxia (80% O2, HYX) for 14 days (a),
heatmap (b) and volcano plot (c). The heatmap contains only genes with an average log-fold change (FC) greater than 2 and false discovery rate
(FDR)-corrected p-value <0.01. Genes with average log-FC greater than 2 and FDR-corrected p-value <0.01 were considered as differentially
expressed (diff. exp.) genes and they are colored red. Labels in the volcano plot indicate top 10 up- and down-regulated genes based on FC; n=6
per group; NOX, normoxia (21% O2); HYX, hyperoxia (80% O2). d) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showing the
top ten pathways dysregulated in lungs of newborn mice exposed to NOX or HYX for 14 days. e–h) Functional enrichment analysis to identify
functional gene sets, including biological processes (e) and molecular functions (f ) using differentially expressed genes identified in the top 10
pathways of the KEGG pathway analysis. Ranking of the DEGs (g) identified as nodes by their interaction in the functional network (h); n=6 per
group. BPD: bronchopulmonary dysplasia; Mmp10: matrix metallopeptidase 10; Ano3: anoctamin 3; Nmrk2: nicotinamide riboside kinase 2; Cxcl5:
C-X-C motif chemokine 5; Ccl20: CC-chemokine ligand 20; IκBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha;
Chodl: chondrolectin; Acta1: actin alpha 1; Ccl2: CC-chemokine ligand 2; Eda2r: ectodysplasin A2 receptor; Crabp1: cellular retinoic acid-binding
protein 1; Glb1l3: galactosidase beta 1 like 3; Zfp663: zinc finger protein 663; Glp1r: glucagon like peptide 1 receptor; Havcr1: hepatitis A virus
cellular receptor 1; Slc26a10: solute carrier family 26 member 10; Adcy8: adenylate cyclase 8; Abca17: ATP-binding cassette, sub-family A (ABC1),
member 17; Cidec: cell death inducing DFFA like effector C; Vsnl1: visinin like 1; IL-17: interleukin-17; GO: Gene Ontology; MAPK: mitogen-activated
protein kinase; CCR: C-C motif chemokine receptor; Cxcr4: C-X-C motif chemokine receptor 4.

https://doi.org/10.1183/13993003.02248-2020 6

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | D. HIRANI ET AL.

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02248-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02248-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02248-2020.figures-only#fig-data-supplementary-materials
http://erj.ersjournals.com/lookup/doi/10.1183/13993003.02248-2020.figures-only#fig-data-supplementary-materials


0.3

*

*

*

*
*

** ** ** ** ** ***? ? ? ? ? Cell ID

01 CD14+ monocyte

CD16+ monocyte

CD4+ monocyte α/β T-cell

CD8+ monocyte α/β T-cell

Mast cell
Basophil cell

Eosinophil cell

Y/δ T-cell
Hemoatopoietic progenitor cell
M0 macrophage
M1 macrophage

M2 macrophage

Memory B cell
Myeloid dendritic cell

Native B cell

Neutrophil cell
Plasma cell
Plasmacytoid dendritic cell

CD56 bright natural killer cell

CD56 dim natural killer cell

02

03
04

05
06
07

08Group

N
H

09
10
11

12
13

14

15
16

17

18
19
20

Cell type

20 40
NOX
HYX2

p=0.07

IL-6

IL
-6

 p
ro

te
in

A
ct

a
2

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

β
-A

ct
in

 p
ro

te
in

β
-A

ct
in

 p
ro

te
in

β
-A

ct
in

 p
ro

te
in

β
-A

ct
in

 p
ro

te
in

A
Q

P
5

 p
ro

te
in

p
S

T
A

T
3

 p
ro

te
in

S
F

T
P

C
 p

ro
te

in

S
O

C
S

3
 p

ro
te

in

S
T

A
T

3
 p

ro
te

in

pSTAT3

SFTPC AQP5

NOX HYX NOX HYX

21 kDa
42 kDa

28 kDa
42 kDa

STAT321 kDa

1

0

4

2

4

2

0

**
1

0

**

****

2

0

1

0

1

0
NOX HYX NOX HYXNOX HYX

NOX HYX NOX HYX NOX HYX

** ** **

42 kDa

86 kDa

86 kDa 26 kDa

42 kDa42 kDa

NOX HYX

NOX HYX

NOX HYX

β-Actin β-Actin

β-Actin β-Actin

β-Actin

SOCS3

n.s.
n.s.

1

0

20

2

n.d.
0

**

****

****

**

*

m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

10

CcI7 II6 II4 II13 Arg1II17A Mmp12CxcI5 CcI2
0

Cell proportions by groupa) b)

c) d) e)

f)

i) j) k)

g) h)

0.2

P
ro

p
o

rt
io

n

0.1

0.0

C
e

ll
 0

1

C
e

ll
 0

2

C
e

ll
 0

3

C
e

ll
 0

4

C
e

ll
 0

5

C
e

ll
 0

6

C
e

ll
 0

7

C
e

ll
 0

8

C
e

ll
 0

9

C
e

ll
 1

0

C
e

ll
 1

1

C
e

ll
 1

2

C
e

ll
 1

3

C
e

ll
 1

4

C
e

ll
 1

5

C
e

ll
 1

6

C
e

ll
 1

7

C
e

ll
 1

8

C
e

ll
 1

9

C
e

ll
 2

0

FIGURE 2 Prolonged hyperoxia activates macrophages and interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling
in neonatal lungs. a) Immune cell type proportions in lungs of newborn mice exposed to normoxia (N; 21% O2) or hyperoxia (H; 80% O2) for
14 days. Cell proportions were estimated by using the immunoStates in silico cell deconvolution (n=6 per group). b) List of identification numbers
for each immune cell type. c–e) Newborn mice were exposed to normoxia (NOX; 21% O2; black bars) or hyperoxia (HYX; 85% O2; grey bars) for
28 days, followed by assessment of gene expression of chemokines identified as central nodes in the functional transcriptomic network and
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hyperoxia induced macrophage influx in both WT and Il6−/− mice, macrophage abundance was
significantly lower in the hyperoxia-exposed Il6−/− mice than in WT (figure 3n, o).

Loss of IL-6 promotes surfactant protein expression and protects ATII after hyperoxia
Hyperoxia reduced Sftpa and Sftpc mRNA by almost 50% in WT mice, an effect that was completely
blocked in the Il6−/− mice (figure 4a, b). In keeping with this finding, the protein abundance of SFTPC
was significantly higher in hyperoxia-exposed Il6−/− mice compared to WT (figure 4c). Using
immunofluorescent staining for SFTPC, we demonstrated that hyperoxia decreased the number of SFTPC+

cells in both groups; however, SFTPC+ cells were significantly higher in hyperoxia-exposed Il6−/− as
compared to WT (figure 4d, e). Finally, using TUNEL staining we found that cell death, including ATII,
was approximately 50% lower in the hyperoxia-exposed Il6−/− mice when compared to WT (figure 4f–h).

Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling
We next treated newborn mice weekly, while exposed to hyperoxia, with injections of either IL-6 mAb
sgp130Fc, or the respective vehicle [22] (figure 5a). While IL-6mAb globally neutralises IL-6, sgp130Fc
only blocks the complex formed by IL-6 and sIL-6R, which is called IL-6 trans-signalling. Hyperoxia
reduced survival of the newborn mice by ∼20%, but treatment with IL-6 mAb or sgp130Fc protected the
mice (figure 5b). Both IL-6 mAb and sgp130Fc preserved alveolarisation in lungs exposed to prolonged
hyperoxia (figure 5c–f ), indicating that IL-6 trans-signalling via the sIL-6R was in part the underlying
mechanism. Moreover, we found that mice treated with IL-6 mAb or sgp130Fc under hyperoxia were
protected from loss of ATII, and had a similar number of ATII when compared to vehicle-treated mice
under normoxia (figure 5g, h).

Hyperoxia activates macrophages via loss of Klf4 and hyperoxia-exposed macrophages reduce cell
survival of ATII
Hyperoxia lowered the gene expression of the epithelial cell markers Sftpc, but not Aqp5 in lung epithelial
cells (MLE12) as indicators of ATII and ATI, respectively. Treatment of MLE12 with IL-6/sIL-6R had an
additive effect on the reduction of Sftpc, but not Aqp5 (figure 6a). To determine whether the secretome of
macrophages ( J774A1) regulates cell survival of MLE12, we exposed MLE12 cells to hyperoxia, followed
by treatment with either standard cell medium (Co), normoxia-conditioned macrophage medium (CMNOX)
or hyperoxia-conditioned macrophage medium (CMHYX). While the effect of CMNOX was similar to Co,
CMHYX reduced proliferation of MLE12 (figure 6b). We next found that exposing macrophages ( J774A.1)
to hyperoxia for 24 and 48 h in vitro significantly increased IL-6 protein in the conditioned medium
(figure 6c). In addition, we studied a possible mechanism by which hyperoxia activates M1-like
polarisation. Prior reports have shown that loss of Klf4 promotes M1-like polarisation [23]. Indeed,
hyperoxia reduced Klf4 protein in cultured macrophages by more than 50% (figure 6d). Furthermore,
silencing of Klf4 in macrophages accentuated the expression of pro-inflammatory (M1-like) cytokines
induced by hyperoxia (figure 6e). We next exposed primary murine macrophages (peritoneal) from WT
mice to hyperoxia and found a significantly increased expression of Mmp12 and Tlr4 (M1-like) and a
marked reduction of Arg1 and Fizz1 (M2-like) (figure 6f). Moreover, CMHYX further decreased cell
proliferation of MLE12 under hyperoxia when compared to CMNOX (figure 6g). Finally, we exposed
PCLS of 14-day-old mice to IL-6/sIL-6R and to normoxia or hyperoxia. IL-6 caused apoptosis in PCLS
and had a significant additive effect on hyperoxia-induced apoptosis of SFTPC+ cells (ATII) (figure 6h).

To translate our data to humans, we used hAECs (supplementary figure S4) and human monocyte-derived
macrophages. Treatment of hAECs with IL-6/sIL-6R significantly reduced proliferation under normoxia

regulating macrophage function using quantitative real-time PCR. c) CC-chemokine ligand 7 (Ccl7), C-X-C motif chemokine 5 (Cxcl5) and Ccl2.
Measurement of mRNA expression of genes characteristic for M1-like polarisation. d) Interleukin 6 (Il6), Il17A and metalloproteinase 12 (Mmp12) and
M2-like polarisation. e) Il4, Il13 and arginase 1 (Arg1) using quantitative real-time PCR (n=6–7 per group). f ) Measurement of IL-6 protein abundance
by immunoblot in lungs of newborn mice exposed to normoxia (NOX; 21% O2, black bars) or hyperoxia (HYX; 85% O2, grey bars) from postnatal
day 1 (P1) to P28 (n=5 per group); β-actin served as loading control; the densitometric analysis is shown below the immunoblot. g, h) Phosphorylated
and total STAT3 (pSTAT3, STAT3; g) as well as SOCS3 protein (h) were assessed by immunoblot; densitometric summary data show pSTAT3 relative to
total STAT3 and SOCS3 relative to β-actin, which served as loading control (n=5 per group). i) Measurement of α smooth muscle actin (αsma, known
as Acta2) mRNA as a mesenchymal marker in lungs at P28 by quantitative real-time PCR (n=10–12 per group); gene expression is shown as fold
induction. j, k) Immunoblots show epithelial cell markers at P28: surfactant protein C (SFTPC) as an indicator of alveolar epithelial type II cells (ATII)
( j) and aquaporin 5 protein (AQP5) as a marker of ATI (k); β-actin served as loading control; the densitometric analysis is shown below the respective
immunblot. Mean±SEM. Mann–Whitney test; *: p<0.05; **: p<0.01; ****: p<0.0001.
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and hyperoxia for 24 h (figure 7a). We next exposed hAECs to standard cell medium (Co), to
normoxia-conditioned human M1-like macrophage medium (hCMNOX) or to hyperoxia-conditioned
medium of human M1-like macrophages (hCMHYX). Similar to the murine studies, we found that
hCMHYX, but not hCMNOX further decreased proliferation of hAEC (figure 7b). Interestingly, CMHYX of
M0-like macrophages did not have an additive effect on hyperoxia-reduced proliferation of hAECs when
compared to CMNOX (supplementary figure S5). Finally, exposure of M1-like differentiated human
monocyte-derived macrophages to hyperoxia for 48 h increased significantly the gene expression of human
IL6 (hIL6), TNFa, TLR4 and IL1b (figure 7c).

Inflammatory serum biomarker profiling in premature infants for oxygen and BPD
Cytokine multiplex assay in plasma of preterm infants determined macrophage-related cytokines (regulated
upon activation, normal T-cell expressed and presumably secreted (RANTES), monocyte-chemotactic
protein 3 (MCP3), monokine-induced by gamma interferon (MIG)) and IL-6 (figure 8a) as potential
biomarkers that identify infants receiving oxygen therapy at risk of developing BPD. By mixed linear
modelling, infants that progressed to BPD demonstrated a longitudinal pattern of changes in plasma
cytokine levels that differed from that seen in infants that did not develop BPD (figure 8b–e). Moreover,
we performed a nonparametric fitted curve, followed by statistical analysis to determine the difference
between BPD versus non-BPD at 32 weeks and 36 weeks (figure 8f). We found at 32 weeks in infants
developing BPD increased concentrations of interleukin-1 receptor antagonist (IL1RA) (p=0.026), and a
trend for increased intercellular adhesion molecule (ICAM) (CD54; p=0.075). These cytokines are either
polarising or secreted by macrophages. At 36 weeks, we only detected a mild but not significant elevation
of interferon gamma (p=0.16) and macrophage inflammatory protein α (CCL3; p=0.15), likely owing to
small sample size. This will need to be verified through larger prospective longitudinal studies.

Immune (CD45+ and CD68+) cell influx with activation of IL-6/STAT3 signalling and reduced epithelial
cells in lungs of infants with BPD
Finally, we analysed six postnatal human BPD lungs and six age-matched control lungs (table 1). CD45
immunofluorescent staining displayed a significant increase of immune cells in BPD lungs. Subsequent
specific staining for CD45 and CD68, a marker of macrophages, showed significantly higher number of
immune cells and macrophages in lungs with BPD when compared to non-BPD (figure 9a, b). In situ
hybridisation of hIL6 revealed higher number of hIL6 mRNA-expressing cells in lungs with BPD when
compared to the age-matched control lungs (figure 9c). The combination of in situ hybridisation of hIL6
and CD68 immunofluorescent staining demonstrated significantly higher expression of hIL6 in
macrophages in lungs with BPD than in non-BPD (figure 9d). Immunofluorescent staining for STAT3 as
downstream of IL-6, and CHD1 (epithelial cell marker) showed an activation of STAT3 and a reduction of
CDH1+ cells only in sex- and age-matched pairs (male), whereas infants matching for age, but not for sex
(male versus female) did not show significant changes, indicating possible sex-specific differences (figure
9e–h). Finally, we stained for SFTPC as a marker of ATII and found an age-related association of number
of ATII with BPD. The age of the infants with BPD significantly correlated with the decrease of ATII
(R2=0.5794; p=0.0062), whereas non-BPD showed a trend of increased ATII with age (figure 9i). In

FIGURE 3 Loss of interleukin 6 (Il6) preserves alveolar as well as elastic fibre formation, and reduces
macrophage invasion in neonatal lungs after hyperoxia. a) Representative images of haematoxylin- and
eosin-stained tissue sections showing alveolarisation in mice at postnatal day 28 (P28). Wildtype (WT) and Il6
knockout mice (Il6−/−) were exposed to hyperoxia (HYX; 85% O2) or normoxia (NOX; 21% O2) from postnatal day
1 (P1) to P28. b–d) Summary data of quantitative histomorphometric analyses: radial alveolar count (b), mean
linear intercept (c), average surface area of one alveolus (d). e) Representative images of Hart’s-stained tissue
sections showing distribution and localisation of elastic fibres in mice at P28. Arrows indicate elastic fibres at
the secondary tips after hyperoxia. f–g) Summary data of quantitative analyses of elastic fibres per defined area
(µm3) (f ) and elastic fibre content relative (rel.) to lung tissue (%) (g). h) Measurement of respiratory (Resp.)
system compliance using whole-body plethysmography in Il6−/− and WT mice at P28. i–k) Assessment of the
expression of genes encoding components of lung matrix, including elastic fibres. i) Collagen 1α1 (Col1a1).
j) Fibrillin 1 (Fbn1). k) Fibulin5 (Fbln5). l–m) Representative immunofluorescent staining of α-smooth muscle
actin (αSMA) as a marker of myofibroblasts. White arrows depict positive stained cells (l); quantification data of
αSMA+ cells relative to all 4′,6-diamidino-2-phenylindole+ (DAPI+) cells (m). n–o) Representative images of
macrophage using CD68 staining, ×100 magnification. Red arrows depict positive stained cells (n). Quantification
data of CD68+ cells per field of view (o). Mean±SEM; n=4–9 per group. Mann–Whitney test: #: p<0.05; ##: p<0.01.
Two-way ANOVA: *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001; n.s.: not significant.
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summary, these data demonstrate that the pathogenesis of BPD is intimately linked to inflammation with
macrophage-derived hIL6, STAT3 activation, and ultimately loss of epithelial cells and ATII over time.

Discussion
This study presents a novel mechanism by which hyperoxia adversely affects ATII homeostasis and elastic fibre
formation via macrophage activation, resulting in enhanced activation of the IL-6 axis by IL-6 trans-signalling
via sIL-6R, and ultimately inhibiting alveolar formation and impairing lung function. The data provide strong
evidence that inhibition of IL-6 trans-signalling offers an innovative pharmacological target to enable lung
growth in premature infants at risk for BPD. This novel inflammatory paradigm in the pathogenesis of BPD is
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FIGURE 4 Loss of interleukin 6 (Il6) protects alveolar epithelial type II cells (ATII) in lungs of newborn mice after exposure to prolonged hyperoxia.
Wildtype (WT) and Il6 knockout mice (Il6−/−) were exposed to hyperoxia (HYX; 85% O2) or normoxia (NOX; 21% O2) from postnatal day 1 (P1) to
P28. a–b) Assessment of expression of genes encoding surfactant proteins (Sftp) in lungs at P28: Sftpa (a) and Sftpc (b). c) Immunoblot showing
surfactant protein C (SFTPC) protein abundance in lungs at P28; SFTPC protein was related to β-actin, which served as loading control;
densitometric data are displayed below the respective immunoblot. d) Representative immunofluorescence staining for surfactant protein C
(SFTPC; red) as an indicator of ATII in lungs at P28; 4′,6-diamidino-2-phenylindole (DAPI) was used for nuclear staining, ×100 magnification. SFTPC+

cells are indicated with white arrows. e) Quantitative data summary of SFTPC+ cells per field of view. f–h) Representative co-immunofluorescence
staining for terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) as an indicator of cell death (green) and SFTPC (red) in lungs at
P28; DAPI was used for nuclear staining, ×100 magnification (f ). Quantitative summary data of the percentage of TUNEL+ cells (g), and TUNEL+ ATII
relative to all ATII (h). Mean±SEM; n=4–9 per group; Mann–Whitney test: ##: p<0.01 or as indicated; two-way ANOVA followed by Dunn’s post test:
*: p<0.05; **: p<0.01; ***: p<0.001.
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c) Representative images of haematoxylin- and eosin-stained tissue sections showing alveolarisation in mice at P28. d–f ) Summary data of the
quantitative histomorphometric analysis: radial alveolar count (d), mean linear intercept (e), and average surface area of one alveolus (f ).
g) Representative immunofluorescence staining for surfactant protein C (SFTPC; red) as an indicator of alveolar epithelial cells type II (ATII) in lungs
at P28; 4′,6-diamidino-2-phenylindole (DAPI) was used for nuclear staining, ×100 magnification. SFTPC+ cells are indicated with white arrows.
h) Quantitative data summary of SFTPC+ cells per field of view in %. Mean±SEM; n=4–6 per group. One-way Anova followed by Bonferroni’s post-test:
*: p<0.05; **: p<0.01; ***: p<0.001.

https://doi.org/10.1183/13993003.02248-2020 12

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | D. HIRANI ET AL.



1

** ***
* *

0

1

1.0

0.5

0.00

Veh

Sft
pc

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

II6
 m

R
N

A
 e

xp
re

ss
io

n

(f
o

ld
 in

d
u

ct
io

n
)

M
m

p1
2 

m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

TI
r4

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

Ar
g1

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

Fi
zz

1 
m

R
N

A
 e

xp
re

ss
io

n

(f
o

ld
 in

d
u

ct
io

n
)

M
m

p1
2 

m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

TI
r4

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

Cc
I7

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

A
b

so
rb

a
n

ce

(5
7

0
 n

m
)

Aq
p5

 m
R

N
A

 e
xp

re
ss

io
n

(f
o

ld
 in

d
u

ct
io

n
)

IL-6/sIL-6R Veh

24 h

a)

c)

f)

h)

g)

d)

e)

b)

48 h

NOX

MLE12

NOX HYX

Macrophages

(J774A.1)

Primary murine

macrophages

(peritoneal)

NOX Co CMNOX

CMNOX CMHYX

CMHYX

NOX HYX

HYX
NOX Co

CMNOX

CMNOX

CMNOX CMHYX

CMHYX

CMHYX

NOX

KIf4

0.6

2

2

200
p=0.076

* *
**

%
 o

f 
T

U
N

E
L

+
 c

e
ll

s

p
e

r 
fi

e
ld

 o
f 

vi
e

w

%
 o

f 
 S

F
T

P
C

+
: T

U
N

E
L

+
 c

e
ll

s

p
e

r 
fi

e
ld

 o
f 

vi
e

w

100

Veh

NOX HYX NOX HYX

VehIL-6/

sIL-6R

IL-6/

sIL-6R

Veh VehIL-6/

sIL-6R

IL-6/

sIL-6R

0

400

200

0

1

0

1

0

1

0

1

0

2 0.4

M1-like Markers in J774A. 1

0.2

1

12

150

HYX

####
#

A
b

so
rb

a
n

ce
 (

%
)

(5
7

0
 n

m
)

100

50

0

8

4

000.0

**
*** ***

1

0

scr

150

100

50

0

p=0.071

**

*

*

*

*

*0.4

IL
-6

 p
ro

te
in

(μ
g

·m
L

–
1
)

K
lf

4
 p

ro
te

in

β
-A

ct
in

 p
ro

te
in

0.2

0.0

24h 48 h

M1-like markers

Primary murine macrophages

M2-like markers

24h 48 h

β-actin

NOXHYX HYX 65 kDa
52 kDa

43 kDa

HYX

NOX

NOX Co CMNOX

VehNOX

SFTPC TUNEL DAPI SFTPC TUNEL DAPI SFTPC TUNEL DAPI SFTPC TUNEL DAPI

VehHYXIL-6/sIL-6RNOX IL-6/sIL-6RHYX

HYX

HYX CMHYX

HYX

NOX HYX NOX HYX NOX HYX NOX

MLE12

NOX Co

HYX

p=0.06

IL-6/sIL-6R

si-KIf4 scr si-KIf4 scr si-Klf4 scr si-Klf4

FIGURE 6 Hyperoxia-conditioned murine macrophages and interleukin 6 (IL-6)/soluble IL-6 receptor (sIL-6R) trigger hyperoxia-induced apoptosis of
alveolar epithelial type II cells (ATII). a) Assessment of gene expression of surfactant protein C (Sftpc) and aquaporin 5 (Aqp5) in murine lung
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based on in vivo studies using genetic modified mice with deletion of Il6, pharmacological treatment targeting
global and IL-6 trans-signalling, and finally human studies using serum and lungs of infants with and without
BPD along with hAEC and monocyte-derived macrophage cell culture studies.

Inflammation is a central mechanism in BPD [13]. Recent studies highlighted that resident alveolar
macrophages are activated by hyperoxia, causing them to contribute to abnormal structural development
of the immature mouse lung [15]. KALYMBETOVA et al. [15] show that hyperoxia causes a loss of
resident alveolar macrophages in lungs of newborn mice, while a novel population of
CD45+CD11c+SiglecF+CD11b+CD68+MHCII+cells emerges. The authors propose that residential alveolar
macrophages transdifferentiate into this new population that contributes to arrested alveolarisation [15]. In

housekeeping gene; mean±SEM; n=4–5 per group. f ) Primary murine macrophages (peritoneal) were isolated and cultured for 24 h in serum-rich
medium. Subsequently, cells were exposed to NOX or HYX for 48 h in serum-reduced medium. Gene expression of M1-like (Mmp12, Tlr4) and M2-like
(arginase 1 (Arg1), resistin-like molecule alpha 1 (Fizz1)) markers were assessed using quantitative real-time PCR; β-actin served as a housekeeping
gene. g) Similar to (b), primary murine macrophages were exposed to NOX or HYX for 48 h; subsequently MLE12 were exposed to HYX and treated
with CMNOX, CMHYX or Veh (untreated medium, Co) of primary murine macrophages; control MLE12 were exposed to NOX. After 24 h, proliferation of
MLE12 was assessed using MTT assay; n=12–30 per group. h) Precision-cut lung slices of 14-day-old mice were treated either with Veh or IL-6/sIL-6R
and exposed to NOX or HYX for 48 h; n=3–4 per group. Representative co-immunofluorescence staining for terminal deoxynucleotidyl transferase
dUTP nick end labelling (TUNEL) as an indicator of apoptosis (green) and surfactant protein C (SFTPC) (ATII, red), ×100 magnification, along with
quantitative summary data of the percentage of TUNEL+ and SFTPC+:TUNEL+ cells relative to all ATII; mean±SEM. Paired t-test: *: p<0.05, **: p<0.01,
***: p<0.001; repeated measures. One-way ANOVA followed by Bonferroni’s post-test: #: p<0.05, ####: p<0.0001. DAPI: 4′,6-diamidino-2-phenylindole.
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the present study, for the first time, we applied a comprehensive bioinformatics approach using in silico
deconvolution of cell proportions from transcriptomic data in an experimental BPD model. We determined
an immune cell proportion with reduction of the T-cell and increase in the B-cell population in lungs of
mice exposed to prolonged hyperoxia. This is similar to a recent report showing a significant depletion of
single positive CD4+ as well as CD8+ T-cells [24], and an increased proportion of naïve B-cells after
hyperoxia [25]. Most striking, our data identified a reduction of M2-like macrophages, and an upregulation
of M1-like macrophages that could possibly emerge from resident alveolar macrophages [15]. To further
test this notion and to define the diverse macrophage phenotypes single-cell RNA sequencing over time
should be performed.

Further analyses verified that chemokines regulating macrophage function are highly upregulated by
hyperoxia, and that cytokine–cytokine receptor interaction and IL-17 signalling are the most affected
pathways. Interestingly, IL-6 directs the immune response toward the Th17 phenotype, and IL-17 increases
after hyperoxia in both alveolar macrophages and in lung epithelial cells [26, 27]. The role of IL-6 in
neonatal lung injury, however, has been controversially discussed. While overexpression of IL-6
aggravated lung injury in newborn mice that were exposed to hyperoxia after birth, IL-6 overexpression
provides protective effects against oxidant-mediated injury when mice are exposed to hyperoxia from day
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three to six of life [28, 29]. In contrast, the present study demonstrates that Il6 null mice exhibit a mild
reduction of alveoli already under normoxia that could be related to reduced number of myofibroblasts and
possibly impaired secondary septation. While this notion is speculative and requires further investigation,
our current findings along with prior studies highlight the importance of the tight regulation of IL-6 during
discrete windows of lung development.

Various experimental models have been used to investigate the pathogenesis of BPD, including exposure
to increased concentrations of oxygen, mechanical ventilation or infection [10, 30, 31]. When interpreting
data, various criteria including sex, age, strain, injurious stimuli and duration of exposure have to be taken
into account [32–34]. Reports demonstrated that the injury and the lung phenotype depend on the injurious
stimuli and on the time of exposure. For example, continuous exposure to 40% O2 from P1 until P4 or P14
adversely impacted alveolar formation and gas exchange surface, but not septal wall thickness as an
indicator of matrix remodelling. On the contrary, only the severe BPD model with exposure of newborn
mouse pups to 85% O2 recapitulated both a marked impact on alveolarisation and on alveolar septal wall
thickness [32, 35, 36]. In the present study, we used 85% O2 for a prolonged period to induce a severe
chronic lung injury with marked inflammation. Future studies, however, should include the impact of
oxygen concentration and time of exposure in combination with mechanical ventilation and/or infection.

IL-6 is a multifunctional pro-inflammatory cytokine that regulates cell survival, differentiation of immune
cells, such as macrophages, neutrophils as well as T-cells, and induces matrix remodelling that favours
fibrosis [37, 38] as seen in chronic lung diseases [39]. Clinical studies showed increased concentrations of
IL-6, sIL-6R and sgp130 in tracheal aspirates of infants evolving BPD [40–42]. ATII–macrophage interaction
has been suggested by prior studies showing that alveolar epithelial IL-6-activated STAT3 signalling mediates
inflammation, likely via macrophages [43]. We provide evidence in vivo and in vitro that hyperoxia disrupts
macrophage–hAEC interaction by increasing various macrophage regulating cytokines, including Il6,
inducing reduced survival of hAECs and promoting M1-like differentiation of macrophages [44, 45]. Since a
previous study showed that the reduction of Klf4 favours M1-like polarisation, our present findings might be
possibly related to a loss of Klf4 after hyperoxia [23]. Collectively, our data highlight the degree to which
hyperoxia dysregulates the alveolar epithelial macrophage niche, but also the key role of IL-6 in orchestrating
this cellular crosstalk. Recent reports suggest that targeting IL-6 signalling prevents emphysema-like disease
[46] and may be a new therapeutic target for pulmonary arterial hypertension [47]. Here, we provide
evidence that loss of IL-6 and pharmacological inhibition of IL-6 classic- and trans-signalling enables
alveolar growth and lung function by protecting ATII survival and preserving distribution of elastic fibres in
lungs of newborn mice after hyperoxia. Recent studies indicated that inhibition of proteolytic activity in
mechanically ventilated newborn mice using the serine elastase inhibitor elafin enabled lung growth and
reduced inflammation [21, 30]. The key role of protease and anti-protease balance in neonatal lung growth
was further supported by the finding that infants evolving BPD have increased serum elastase concentrations
[30]. Interestingly, proteases (e.g., ADAM10 or ADAM17) have been described to act as a sheddase for the
IL-6 receptor and a regulator of IL-6 signalling [48–50]. Thus, blocking of proteolytic activity could have an
anti-inflammatory effect by preventing IL-6 signalling.

Inflammatory response and dysregulation of cytokines is a prominent feature of BPD. Increased number of
immune cells in BPD is associated with decreased septation and fewer alveoli [12, 13, 15]. In the present
study, we determined increased concentrations of plasma cytokines regulating macrophage recruitment and
function, such as RANTES or MCP3, highlighting the systemic inflammatory response in BPD. Similarly,
we found an upregulation of IL1RA and ICAM1, both cytokines regulating macrophage polarisation [51, 52].
Interestingly, serum ICAM level has been recently reported as a potential biomarker for BPD and was
correlated with its severity [53]. Plasma IL-6 concentration was dynamically regulated with an early
postnatal elevation of IL-6 by trend in infants developing BPD when compared to non-BPD. Since plasma
does not necessarily reflect lung-intrinsic IL-6, tracheal aspirates might be more appropriate as shown in
prior studies with increased IL-6 in infants with BPD [42]. However, the time point of measurement in the
infant might not developmentally match our mouse model. The plasma cytokine pattern in infants with
BPD was related to a significant increase of immune cells, specifically macrophages (CD68+), and
increased macrophage-derived Il6 in lungs of infants with BPD, independent of sex and age. We linked
this immune response to an activation of STAT3 signalling and loss of epithelial cells in male infants.

alveolar epithelial type II cells (ATII), red) in BPD and Co lungs. The analysis of linear regression for the amount of SFTPC+ and age is shown in the
graph (BPD, red; Co, blue); r2 and p-value are indicated next to the graph; n=5 per group. Mean±SEM. Mann–Whitney test or t-test: *: p<0.05; **: p<0.01.
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FIGURE 10 Proposed working model illustrating how hyperoxia induces macrophage polarisation. a) The
M1-like-driven inflammatory phenotype leads to the secretion of cytokines, such as interleukin 6 (IL-6) and
IL-17A, as well macrophage elastase, also known was metalloproteinase 12 (MMP12). This inflammatory
alveolar microenvironment reduces survival of alveolar epithelial type II cells (ATII), whereas fibroblasts are
activated and matrix remodelling is promoted. ATI: alveolar epithelial type I cell; Klf4: Krüppel-like factor 4.
b) Polarisation of macrophages following hyperoxia leads to a release of IL-6, which adversely affects the
regenerative epithelial niche. However, IL-6 deficiency protects from these changes by 1) promoting expression
of surfactant proteins and 2) survival of ATII, 3) reducing myofibroblasts, 4) protecting from perturbed elastic
fibre assembly and localisation, and 5) attenuating macrophage influx. These beneficial effects of IL-6
deficiency on the alveolar compartment enables 6) alveolar formation and 7) protects from reduced lung
function, offering a new therapeutic target to treat BPD.
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Interestingly, these effects were not evident in age-matched, but not sex-matched, BPD and non-BPD
infants, suggesting a possible sex-specific IL-6/STAT3 response, which could contribute to sex-dependent
differences in BPD [54]. Finally, we showed a correlation between age and the reduction of ATII in lungs
with BPD, but not in non-BPD. Taken together our studies, in concert with prior studies, suggest that IL-6
as a macrophage-regulating cytokine, might serve as a useful biomarker of lung injury in very premature
infants, and help to define the risk for BPD.

As depicted in our working model (figure 10), inflammation and damage of the regenerative epithelial
niche by loss of ATII impairs alveolar formation and leads to emphysematous lung structure beyond
infancy. The present study demonstrates that hyperoxia disrupts macrophage-ATII interaction by triggering
IL-6/STAT3 signalling in murine and human lungs, but also identifies IL-6 as a potential early onset
biomarker and sgp130Fc as a novel therapeutic strategy for infants at risk for BPD. The specific blockade
of IL-6 trans-signalling predominantly inhibits the pro-inflammatory activities of IL-6 while the protective
and regenerative function is not affected. This innovative therapeutic strategy is already in phase II clinical
trial in patients with autoimmune disease [55] and offers new avenues for the treatment of BPD.
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