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Abstract

Sleep apnea (SA) is a common disorder involving the cessation of breathing during sleep. It

can cause daytime hypersomnia, accidents, and, if allowed to progress, serious, chronic

conditions. Continuous positive airway pressure is an effective SA treatment. However, long

waitlists impede timely diagnosis; overnight sleep studies involve trained technicians scor-

ing a polysomnograph, which comprises multiple physiological signals including multi-chan-

nel electroencephalography (EEG). Therefore, it is important to develop simplified and

automated approaches to detect SA. In the present study, we have developed an explain-

able convolutional neural network (CNN) to detect SA events from single-channel EEG

recordings which generalizes across subjects. The network architecture consisted of three

convolutional layers. We tuned hyperparameters using the Hyperband algorithm, optimized

parameters using Adam, and quantified network performance with subjectwise 10-fold

cross-validation. Our CNN performed with an accuracy of 69.9%, and a Matthews correla-

tion coefficient (MCC) of 0.38. To explain the mechanisms of our trained network, we used

critical-band masking (CBM): after training, we added bandlimited noise to test recordings;

we parametrically varied the noise band center frequency and noise intensity, quantifying

the deleterious effect on performance. We reconciled the effects of CBM with lesioning,

wherein we zeroed the trained network’s 1st-layer filter kernels in turn, quantifying the dele-

terious effect on performance. These analyses indicated that the network learned fre-

quency-band information consistent with known SA biomarkers, specifically, delta and beta

band activity. Our results indicate single-channel EEG may have clinical potential for SA

diagnosis.

Introduction

Sleep apnea (SA) is a progressive disease which involves repeated episodes of apnea and/or

hypopnea during sleep. It afflicts between 2% and 7% of the general population [1, 2] and
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causes fragmented sleep. Sufferers often experience daytime hypersomnia, cognitive dysfunc-

tion that accompanies sleepiness, and an increased risk of workplace and motor vehicle acci-

dents [3]. If allowed to progress, SA is associated with a range of serious, chronic conditions,

including cardiovascular and cerebrovascular disease, and diabetes [1, 2, 4, 5]. Continuous

positive airway pressure (CPAP)—the gold standard SA treatment—is highly effective [4].

However, there are barriers to SA detection, diagnosis, and treatment. The primary clinical

tool for SA detection and diagnosis is overnight polysomnography (PSG), which involves sleep

studies and manual scoring of recorded physiological signals by trained healthcare profession-

als [6]. PSG is instrumentation-intensive—it typically involves monitoring nasal or oral air-

flow; thoracic and/or abdominal movement; snoring; oxygen saturation; multi-channel

electroencephalogram (EEG); electrooculogram (EOG); electrocardiogram (ECG); and, elec-

tromyogram (EMG)—and therefore, may interfere with standard patterns of sleep [7]. Over-

night PSG is typically followed by manually titrated CPAP therapy [1].

Demand for overnight PSG exceeds supply; wait times for those requiring screening and

diagnosis can range from 2 to 60 months in selected developed countries [8], and it is esti-

mated that a large proportion of SA sufferers remain undiagnosed [9]. Tools to aid detection,

diagnosis, and treatment of SA are therefore a worthy pursuit, especially those involving sim-

plified instrumentation and automation, with potential for use in the home as well as the clinic

[10–12]. Automated systems making use of explainable machine learning [13] could, poten-

tially, be used to expedite and augment diagnostic and treatment decisions; in general, explain-

able systems are those wherein mechanisms of detection and/or classification are made

available to clinicians. Automated detection systems have been explored [14] using various

modalities such as ECG [15, 16], oxygen saturation [17], or airflow [18–20]. EEG contains a

rich variety of physiological signals enabling objective measurement of sleep stage, as well as

various sleep disorders (e.g., narcolepsy [21]). Hence EEG-based detection may have far-reach-

ing applications in simplified at-home sleep tests and may offer a constructive perspective to

present sleep monitoring modalities. It is also noteworthy that substantial progress has been

made to improve the instrumentation and applicability of EEG for wearable devices [12] and

the production of consumer level products [22] in pursuit of better health monitoring and

sleep assessment.

The traditional approach to SA detection from EEG involves computation of features (e.g.,

energy and energy variance [23]) within predefined frequency bands [23, 24]. Features are

concatenated to form a high-dimensional feature vector for use in classification. Convolutional

neural networks (CNNs) are a form of artificial neural network, loosely inspired by hierarchi-

cal, computational models of visual processing in the cerebral cortex (review by LeCun et al.

[25]). CNNs use convolution as a form of shift-invariant feature extraction, and learn, through

training, to extract salient features from time series signals (or images) that are useful for classi-

fication. Recently, CNNs have demonstrated proficiency for the classification of images [26]

and signals across a range of domains, including multi-channel EEG [27]. In contrast to tradi-

tional approaches, the CNN we develop here requires no postulation of features and frequency

bands at the outset, meaning that features not traditionally associated with SA could be learned

during the training procedure. Beside CNNs, there are several other state-of-the-art machine

learning algorithms such as residual neural networks [20], and transformer architectures [28].

Although such architectures may offer superior performance in some domains compared to

CNNs, it can come with the cost of explainability; explainability is a requirement for healthcare

applications [29]. Furthermore, our CNN uses single-channel EEG; we are interested in the

feasibility of a wearable sleep assessment device, analogous to recent single-lead electrocar-

diographic adhesive patches for detecting cardiac arrhythmia [30].
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We hypothesized, first, that there is information in single-channel EEG enabling reliable

subjectwise detection of SA by a CNN; by “subjectwise”, we mean a CNN trained using data

collected from a cohort of subjects, 1 through N, should generalize to detect SA in a previously

unseen subject, N+1. Second, we hypothesized that knowledge of sleep stage (e.g., rapid-eye-

movement sleep) should improve this SA detection. This hypothesis is reasonable because

both SA as well as sleep stage are accompanied by characteristic alterations of EEG, and SA is

associated with sleep stage (a point we elaborate in the Discussion). Third, we hypothesized

that the network features enabling SA detection should be consistent with known SA biomark-

ers. To test these hypotheses, we trained a CNN to detect SA using single-channel EEG. To

explain the trained CNN’s mechanisms, we used two visualization techniques—critical-band

masking [31, 32] (wherein band-limited noise was added to signals used to test the trained net-

work) and filter lesioning [33] (wherein 1st-layer filter kernels comprising the trained network

were zeroed in turn, and the effect on performance was quantified).

Materials and methods

Datasets

We used three datasets. Our CNN was trained and tested using data drawn from Sleep Health

Heart Study (SHHS) Visit 2, which contains overnight EEG recordings from 2,650 patients

sampled at either 125 Hz or 128 Hz [34, 35]. This dataset is publicly available via the National

Sleep Research Resource which provides access to large collections of de-identified physiologi-

cal signals for research purposes (https://sleepdata.org) [34]. We performed further testing of

our trained CNN using data from the St. Vincent’s University Hospital / University College

Dublin Sleep Apnea Database [36], consisting of recordings from 25 participants sampled at

128 Hz, and the MIT-BIH Polysomnographic Database [36, 37], consisting of usable record-

ings from 16 patients sampled at 250 Hz. These latter two datasets are publicly available via

PhysioNet which provides access to a collection of de-identified physiological signals for

research purposes (https://www.physionet.org) [36]. The University of Auckland Human Par-

ticipants Ethics Committee waived the requirement for any further approval to use these data-

sets in this study.

Sleep apnea annotation procedures differed considerably between datasets. These differ-

ences presumably hindered our ability to develop a single CNN using the SHHS data set which

generalised to both the UCD and MIT data sets (see Discussion). The SHHS dataset scored

sleep apneas using internally developed rules [35], and the scoring procedure involved multi-

ple stages of both manual and computer-automated annotation. Few details regarding the

UCD and MIT scoring were available. Furthermore, MIT data were pre-segmented (30-second

segments) and pre-labelled, whereas SHHS and UCD data were annotated at finer temporal

resolution.

The same duration criterion (i.e., 10 seconds) was applied to all SHHS data irrespective of

the apnea type; physiological criteria were used to distinguish the apnea types (Fig 1). Because

the duration criterion for UCD was unknown, we applied the SHHS criterion. Therefore, for

SHHS and UCD data sets, we first divided the data into 30-second segments and then labelled

all segments that contained at least 10 continuous seconds of “obstructive sleep apnea”, “cen-

tral sleep apnea”, “mixed apnea”, or “hypopnea” as, simply, “apnea”. All other segments were

labelled “non-apnea”. For the MIT data set, we used the labels provided. All three data sets

scored sleep stages using the Rechtshaffen and Kales criteria [38], albeit the SHHS dataset used

a modified version of these criteria [35]. Channel C4-A1 [39] was the only channel present

across all three datasets and therefore was used exclusively to ensure consistency.
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Classifier design

Schirrmeister and colleagues [27], evaluated shallow, deep, hybrid and residual convolutional

neural networks, as well as the filter bank common spatial patterns (FBCSP) algorithm. These

algorithms were evaluated across several multi-channel EEG motor-decoding datasets. They

concluded that shallow and deep architectures reached, and sometimes exceeded the perfor-

mance of FBCSP (the de facto standard), in contrast to hybrid and residual neural networks

which fell short of the performance of FBCSP. In light of their findings, we constructed our

CNN network (Fig 2) using three convolutional layers; each convolutional layer involved nor-

malization, exponential linear unit (ELU) activation, and max-pooling. We kept our network

architecture simple with a relatively low number of convolutional layers, as we anticipated that

it would better facilitate explainability (i.e., mechanistic analysis of the trained network’s per-

formance, described below). We used batch normalisation (after each convolution layer) and

dropout (after each pooling layer) [40] to improve network stability and safeguard against

overfitting. As illustrated in Fig 2, the last convolutional layer was followed by a dense layer,

and an output layer with the softmax activation function. We initialized the weights of our

Fig 1. Data processing and subjectwise 10-fold cross-validation. (A) We used recordings from the SHHS dataset [34,

35]. For each subject, we low-pass filtered, downsampled, normalised, segmented, labelled, and undersampled

recordings as indicated. (B) On each fold of our 10-fold cross-validation procedure, any subject’s recordings appeared

only in the training set (white) or the testing set (gray). For example, subjects 1, 2, and 3 contributed to the training sets

of folds 1 to 9, but were excluded from the training set of fold 10, in which subjects 1, 2, and 3 were part of the test set.

Therefore, overall, our assessment of the model’s performance captured its ability to generalize across subjects.

https://doi.org/10.1371/journal.pone.0272167.g001
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CNN by drawing from a truncated normal distribution with zero mean. To train the CNN, we

minimized the cross-entropy loss function through backpropagation. Backpropagation was

optimized using Adam [41] in the standard fashion: alpha coefficient was set at 0.9, and beta

coefficient at 0.999. The learning rate was tuned alongside other hyperparameters (see

Table 1).

Hyperparameter tuning

There are few studies describing how best to optimize network hyperparameters (i.e. network

variables set prior to training) to detect SA in EEG. Therefore we approached hyperparameter

optimization in a semi-automated manner. First, we reviewed literature that reported hyper-

parameter values, and we constructed a hyperparameter search space encompassing the values

we found. Second, we systematically searched this space for optimal hyperparameter combina-

tions. We considered the following search strategies: random-search, as well as Bayesian-based

[43] and Hyperband-based [44] algorithms. In preliminary experiments, we tested all

Fig 2. The architecture of our CNN trained to detect SA, comprising three convolutional layers. Convolutions had

a stride size of one and used zero padding. Each convolutional layer was followed by batch normalisation, ELU

activation, and dropout (these operations are not illustrated). The dense layer was preceded by a flattening operation,

and followed by ELU activation and a dropout layer. The output layer used a softmax classifier [42]. (Symbology after

Schirrmeister and colleagues [27]).

https://doi.org/10.1371/journal.pone.0272167.g002
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approaches, finding that the Hyperband-based approach outperformed the others. The search

space and the selected hyperparameters are listed in Table 1. We adjusted Hyperband such

that the algorithm was repeated five times, with one-third of hyperparameter configurations

kept during each successive halving sub-operation. To make hyperparameter optimization

computationally tractable, some hyperparameters (e.g., number of convolutional layers and

activation function) were selected based on previous work, specifically Schirrmeister and col-

leagues [27].

Evaluation process

For our network, we performed subjectwise 10-fold cross-validation to assess performance.

For each of these 10 folds, subjects were allocated to either the training set (approx. 81%), the

testing set (approx. 10%), or the validation set (approx. 9%). The training and validation sets

were randomly undersampled based on the minority class for each subject’s recording. Under-

sampling was not performed on the testing set (Table 2). We reasoned that training on highly

unbalanced data is undesirable, as the classifier may develop bias towards the majority class

(i.e., the non-apnea class). Network training was performed for 40 epochs (i.e., 40 passes of the

training data through the network) with Python 3.7 and Tensorflow 2.2, on NeSI (New Zea-

land eScience Infrastructure), a high-performance computing platform which uses Tesla P100

GPU cards (NVIDIA, Santa Clara, California, United States). Computation took on average

112 microseconds per input sample for training and 40 microseconds per sample for testing.

Furthermore, to evaluate our CNN’s ability to generalize across datasets, we tested its perfor-

mance (after training it using the SHHS dataset) on the UCD and MIT-BIH datasets described

above.

To quantify performance of our trained CNN, we used accuracy and Matthews correlation

coefficient (MCC). Accuracy is a common metric used to evaluate neural network

Table 1. Optimized hyperparameters, and hyperparameter search spaces. The rightmost column shows optimal hyperparameters evaluated with Hyperband-based

tuning.

Layer Hyperparameter Search space Final

Convolutional layer 1 Kernel length 25,35,50,75,125,175 35

Number of filters 8,16,32,64,128 8

Convolutional layer 2 Kernel length 25,35,50,75,125,175 175

Number of filters 8,16,32,64,128 128

Convolutional layer 3 Kernel length 25,35,50,75,125,175 175

Number of filters 8,16,32,64,128 16

MaxPooling layer Window/stride size 3,5,7,9 7

Dense layer Number of nodes 16,32,64,128,256 64

Convolutional layer dropout Dropout rate 0 to 0.6 0.1

Dense layer dropout Dropout rate 0 to 0.6 0.0

Optimizer Learning rate 0.0001 to 0.1 0.00163

https://doi.org/10.1371/journal.pone.0272167.t001

Table 2. The mean distribution of annotations within the training and testing sets. The validation set has the same proportions as the training set. Each EEG segment

has an apnea annotation (i.e., “apnea” or “non-apnea”) and a sleep-stage annotation (i.e., “wake”, “REM” or “NREM”). Overall there was on average 1,144 segments per

patient before undersampling and 378 segments per patient after resampling.

Number of annotations Apnea Non-apnea Wake REM NREM

Training 407625.6 407625.6 202858.8 174796.6 437595.8

Testing 250424.2 50461.9 118989.6 35089.1 146807.4

https://doi.org/10.1371/journal.pone.0272167.t002
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performance. However, accuracy may be susceptible to biases when data sets are unbalanced

(i.e., data sets containing a preponderance of one or other class labels). Therefore, we also cal-

culated MCC—a robust performance measure suitable for unbalanced testing data sets [45,

46]. Additionally, we developed a shuffle test to conservatively estimate performance baselines

(referred to hereafter as the “conservative baseline”). To estimate baselines, we shuffled the

class labels in the training set and performed training and testing using 10-fold subjectwise

cross-validation; the measured performance provided our baselines. We reasoned that a CNN

trained on these shuffled labels would be incapable of learning salient EEG features for SA

detection, but could nonetheless learn the statistics of data set imbalance, and bias its behav-

iour accordingly. We used a Bayesian t-test, computing 95% highest density intervals (HDIs)

[47], to compare our CNN’s performance to baseline.

Critical-band masking

To explain the mechanisms of our trained networks, we used a critical-band masking (CBM)

technique that was adapted from psychoacoustics [31] and visual psychophysics [32]. Here, we

added bandlimited noise to test segments (but not training segments). We used a noise band-

width of 1.5 Hz and parametrically varied the noise frequency centred from 1.5 Hz to 60 Hz in

increments of 1.5 Hz. A finite-impulse-response (FIR) band-pass filter was applied to white

noise to create this bandlimited noise (length = 825, transitional bandwidth = 0.5 Hz). At each

center frequency, we quantified noise intensity by computing the log of the noise root-mean-

square (RMS) value and signal RMS value to find the signal-to-noise ratio (SNR). For each

band center frequency, we tested the trained network using these noisy test segments, quanti-

fying the deleterious effect of noise by observing changes in MCC scores. This CBM process

was performed for every fold of our subjectwise 10-fold cross-validation (see Evaluation

Process).

Filter lesioning

We adapted a “lesioning” technique from Lawhern et al. [33] to determine the relative impor-

tance of first-layer convolutional kernels to the trained network. On each fold, after having

trained the network, we zeroed all coefficients for one convolutional kernel, and then tested

the network. We therefore quantified the deleterious effect that zeroing (i.e., lesioning) kernels

had on test performance. We did this for each first-layer convolutional kernel on each fold of

our subjectwise 10-fold cross-validation. Thus, on each fold, we were able to rank 1st-layer

convolutional kernels by importance; e.g., the most important kernel, when lesioned, caused

the greatest reduction in network performance. To verify that this lesioning technique was

effective in identifying important convolutional kernels, we computed a correlation coefficient

between all pairs of kernels within and between folds; specifically, we computed Pearson’s cor-

relation coefficient between kernels’ Fourier amplitude spectra. The correlation coefficient was

generally higher between convolutional kernels deemed to be important, both within and

between folds. Finally, we computed the Fourier transform, and calculated the z-scores of the

most important kernels (i.e., those determined important by Filter Lesioning). To do so, we

formed a null distribution of kernel transforms using all trained kernels across all folds.

Results

Our network detected SA with an accuracy equal to 69.9% (the mean across folds of our sub-

jectwise 10-fold cross-validation). The standard deviation (s.t.d.) of this accuracy was 3.0 per-

centage points across folds. Our network performed with an MCC score equal to 0.375 (s.t.d. =

0.017). The MCC performance metric was reliably above the conservative baseline (difference
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in MCC: Bayesian t-test, 0.374, 100% HDI; Methods); baseline MCC was 0.00 (s.t.d. = 0.04).

Baseline accuracy was 49.9% (s.t.d. = 32.4 percentage points). After training with shuffled

labels, the network tended to guess, from one fold to the next, either all apnea or all non-

apnea. This resulted in a bimodal distribution for baseline accuracy, which we therefore did

not use with a Bayesian t-test for statistical inference. In addition to measuring accuracy and

MCC, we also undertook a receiver operating characteristic (ROC) analysis of our network’s

performance (Fig 3). Averaged across folds, the area under the ROC curve (AUC) was equal to

0.804 (s.t.d. = 0.031).

We then tested this trained network using data drawn from other datasets. Our network

predicted the MIT dataset with a MCC equal to 0.216 (s.t.d. = 0.125). These performance met-

rics were reliably above our conservative baseline with a probability of 95.6% (difference in

MCC: Bayesian t-test, 0.201); baseline MCC was -0.03 (s.t.d. = 0.18). Our network predicted

the UCD dataset with a MCC equal to 0.169 (s.t.d. = 0.120). The performance metrics after

testing on the UCD dataset were reliably above our conservative baseline (difference in MCC:

Bayesian t-test, 0.157, 100% HDI; Methods); baseline MCC was 0.025 (s.t.d. = 0.09).

Several previous studies have found that SA is associated with sleep stage (a point we elabo-

rate in Discussion). Therefore, we wondered if our trained SA network, to aid its classification,

was representing sleep stage-associated features (i.e., covertly decoding sleep stage). To exam-

ine this idea, we decomposed the confusion matrix (Fig 4) into three submatrices, each corre-

sponding to one of three sleep stages (Fig 5): wake, rapid-eye-movement (REM), and non-

rapid-eye-movement (NREM). Upon inspection, parts of these submatrices appeared to indi-

cate our SA network behaved in a biassed fashion. For instance, segments recorded during

REM sleep predicted apnea on 93% of all trials. This potentially indicates that our trained SA

network was representing (i.e., covertly decoding) sleep stage and, since SA is associated with

sleep stage, used these representations to aid its performance in SA detection.

To test this hypothesis—that our CNN was representing sleep stage—we adapted our shuf-

fle test (see Evaluation Procedure) to account for sleep stage; training data were split according

to three sleep stages (wake, REM, NREM) and, for each stage, the labels “apnea” and “non-

Fig 3. ROC curves summarizing the performance of our SA network. We represent each fold of our subjectwise

10-fold cross-validation with a separate curve. Across folds, the AUC averaged 0.804 (s.t.d. = 0.031).

https://doi.org/10.1371/journal.pone.0272167.g003
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apnea” were shuffled prior to re-training the network (below, we refer to this procedure as re-

training the network after a “stage-wise shuffle” of the data). We reasoned that, if our SA net-

work was, in fact, representing sleep stage to aid its detection of SA, this stage-wise shuffle

would isolate the effect of this representation on SA detection performance. Specifically, if,

after we re-trained the network using stage-wise shuffled data, network performance was unal-

tered, then that would indicate that the representation of sleep stage was wholly responsible for

SA detection. On the other hand, if, after we re-trained the network using stage-wise shuffled

data, network performance fell to baseline, then that would indicate that the representation of

sleep stage was not being used to aid SA detection. After re-training the network on stage-wise

shuffled data, the network performed with an accuracy equal to 56.7% (the mean across folds

of our subjectwise 10-fold cross-validation; s.t.d. = 4.1 percentage points across folds), and a

MCC score equal to 0.275 (s.t.d. = 0.019). The MCC was reliably below that of the original SA

network (difference MCC: Bayesian t-test, -0.099, 100% HDI; Methods). Therefore, our SA

network appeared to learn a representation of sleep stage to aid its detection of SA, but the net-

work’s learning of this representation only partly accounted for its ability to detect SA.

Fig 4. Confusion matrix, summarizing the performance of our SA network. The area of each square represents the

value of each matrix entry. Values are counts averaged across our subjectwise 10-fold cross-validation. The intervals

(±) associated with each value show s.t.d. across folds. Overall, the network performed with accuracy = 76.8%, as

indicated by the mass along the matrix’s main diagonal.

https://doi.org/10.1371/journal.pone.0272167.g004

Fig 5. Confusion submatrices, each corresponding to one or other of three sleep stages: Wake (left), REM (middle), and NREM

(right). For wake and REM, our SA network appeared to behave in a biased fashion. Graphical conventions are as in Fig 4.

https://doi.org/10.1371/journal.pone.0272167.g005
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To explore further this idea—that our SA network was representing sleep stages—we devel-

oped a second CNN. This second CNN was nearly identical to our original SA network (the

one exception being that the second CNN had five nodes in the final dense layer as opposed to

two); we trained this network to decode sleep stages (wake, REM, and NREM). This sleep-

stage network performed with an accuracy equal to 85.3% (mean across folds of our subject-

wise 10-fold cross-validation; s.t.d. = 0.57 percentage points across folds), and a MCC score

equal to 0.766 (s.t.d. = 0.009 across folds). The MCC was reliably below that of the original SA

network (difference in MCC: Bayesian t-test, 0.766, 100% HDI; Methods); baseline accuracy

for our sleep stage network was 52.0% (s.t.d. = 0.54 percentage points), and baseline MCC was

0.000 (s.t.d. = 0.001). Therefore, a network with architecture nearly identical to that of our SA

network can be trained, explicitly, to decode sleep stage. This adds further support to our idea

that our SA network learnt to represent (i.e., covertly decode) sleep stage, and it used this

representation to aid in the detection of SA.

We wondered what EEG features were used by our SA network in performing SA detection.

Therefore, we used critical-band masking (CBM), adding bandlimited noise to the signals

used to test our SA network (Methods). The effects of CBM were graded; for the addition of

low-intensity noise (SNR = 20; Methods), masking had little effect on network performance,

regardless of the noise band’s center frequency. When we increased the intensity of noise, net-

work performance deteriorated (i.e., MCC decreased). Deterioration was pronounced for

noise in some frequency bands but not others. Overall, the effects of CBM were primarily lim-

ited to three regions (Fig 6A): frequencies less than 4 Hz (the delta band); 30 to 45 Hz (the

gamma band); and frequencies running from approximately 10 to 20 Hz, encompassing alpha

(8 to 13 Hz), sleep spindles (11 to 16 Hz), and the lower beta band (14 to 30 Hz). Notably,

when high-intensity (SNR = 0) noise was added to the delta band, MCC for SA detection was

reduced from approximately 0.38 to 0.14. When high-intensity noise was added to the band

associated with sleep spindles (11 to 16 Hz), MCC for SA detection was reduced from approxi-

mately 0.38 to 0.16. When high-intensity noise was added to the gamma band, MCC for SA

detection was reduced from approximately 0.38 to a minimum of 0.22.

For comparison, we also applied CBM to the network that we re-trained using stage-wise

shuffled data (see above). We reasoned that the different effects of CBM on those two networks

(our original SA network, and the network re-trained on stage-wise shuffled data) would help

determine which frequency bands were important to SA detection per se, which were impor-

tant to sleep stage decoding (which appears to play a role in SA detection), and which were

important to both. A key outcome of this experiment involved the delta band (Fig 6B); while

noise in the delta band caused deterioration in the performance of our original SA network, it

had relatively little effect on the network re-trained on stage-wise shuffled data. This difference

indicated that, while other frequency bands may have contributed to the network’s representa-

tion of sleep stage (e.g., sleep spindles, 11 to 16 Hz), delta band activity was specifically impor-

tant to SA detection. This result is consistent with several studies that have observed an

association between SA events during sleep and delta-band activity [27, 34] (a point elaborated

in Discussion).

Critical band masking indicated that specific frequency bands were important for SA detec-

tion, especially the delta band. We therefore wondered whether filters in the first convolutional

layer of our trained SA network responded selectively to EEG signals in these bands. To

answer this question, we lesioned first-layer filters comprising the trained SA network (Meth-

ods). We found that, when lesioned, some filters substantially reduced the performance of our

SA network (i.e., these filters appeared important to the network). The lesioning of other fil-

ters, by comparison, caused negligible deleterious effects (i.e., apparently unimportant filters).

We sorted 1st-layer filters based on importance. These sorted filters were then used to generate

PLOS ONE Detection of sleep apnea from single-channel EEG using an explainable convolutional neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0272167 September 13, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0272167


an “importance matrix” (Fig 7). In light of that importance matrix we asked, “Do important fil-

ters have similar characteristics?” To answer this question, we computed each 1st-layer filter’s

amplitude spectrum using the Fourier transform, and we averaged spectra within importance

and across folds (i.e., after Fourier transformation, we averaged amplitude spectra within

rows, across columns, of Fig 7). When we compared the amplitude spectra of relatively impor-

tant filters to the ensemble (i.e., all filters comprising Fig 7), we found the following (Fig 8):

important 1st-layer filters tended to attenuate the delta band, and amplify the beta and gamma

bands. This pattern is consistent with the result of our critical-band masking.

Discussion

We have developed a CNN that detects SA from single-channel EEG (accuracy = 69.9%; base-

line = 49.9%). Our CNN’s performance, when measured using MCC (MCC = 0.38; base-

line = 0.03), showed a “weak-moderate positive correlation” [48] (conventionally, MCC is

Fig 6. (A) Effect of critical-band masking on our SA network’s performance. We used high-, medium-, and low-

intensity noise: SNR = 5, 10, and 20, respectively (Methods). Overall, high-intensity noise decreased performance more

than low-intensity noise. The deleterious effect of noise was pronounced in some frequency bands but not others. E.g.,

adding bandlimited noise to test signals in the delta band (< 4 Hz) caused MCC to decrease from 0.38 to 0.14. The

lower, horizontal solid line (performance = 0.0 MCC) indicates the performance baseline (Methods), and the upper,

horizontal solid line indicates network performance in the absence of noise (MCC = 0.38). The error bars (shown only

for high-intensity noise) are 95% confidence intervals computed across folds of our subjectwise 10-fold cross-

validation. The Greek letters (top) mark traditional frequency bands; sigma marks the band associated with sleep

spindles. (B) Effect of critical-band masking on our re-trained SA network; we re-trained the network after data were

stage-wise shuffled. Adding bandlimited noise to test signals in the delta and alpha (8 to 13 Hz) bands, here, had little

effect on network performance. By contrast, noise in the lower beta band and gamma band heavily reduced

performance. Other graphical conventions are as in (A). Upper horizontal line marks the stage-wise shuffled no-noise

response (MCC = 0.275).

https://doi.org/10.1371/journal.pone.0272167.g006
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interpreted in a similar fashion to Pearson’s correlation coefficient [48]). Furthermore, our

network’s performance was robust when measured using ROC analysis (across folds, average

AUC = 0.804). To explain the mechanisms of our CNN, we used two techniques—critical-

band masking (wherein band-limited noise was added to signals used to test the trained net-

work) and filter lesioning (wherein 1st-layer filter kernels were zeroed in turn). To our

Fig 7. Importance matrix, showing 1st-layer filters comprising our trained SA network. Matrix columns correspond to folds

from our subjectwise 10-fold cross-validation; rows correspond to importance (i.e., the most important filter on each fold is

shown in row 1). To illustrate by example, on the first fold of cross-validation, the filter kernel illustrated at column 1, row 1

(top-left), was determined to be the most important; lesioning this filter reduced the trained SA network’s performance more

significantly than any other filter on this fold.

https://doi.org/10.1371/journal.pone.0272167.g007

Fig 8. Amplitude spectra of 1st-layer filters important to the SA network’s performance. We show spectra for the

1st-, 2nd-, and 3rd-most important filters (“Rank 1, 2, and 3”, respectively). Important filters appeared to attenuate the

delta band, and amplify the beta and gamma bands. The shaded rectangle marks a 95%-confidence interval (i.e.,

-1.96< z-score< 1.96), wherein the spectral amplitude of rank 1, 2, and 3 filters is not appreciably different from that

of all other 1st-layer filters comprising the ensemble.

https://doi.org/10.1371/journal.pone.0272167.g008
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knowledge, the use of critical band masking is a novel approach to analysing a trained CNN.

Our results indicate all three of our hypotheses, which we outlined in the Introduction, were

confirmed: there is information in single-channel EEG enabling reliable subjectwise detection

of SA by an explainable CNN; knowledge of sleep stage appeared to improve SA detection;

and, our CNN used information contained in single-channel EEG that is consistent with

known SA biomarkers, specifically the delta and beta bands.

Previous work has demonstrated that SA is accompanied by characteristic alterations of

EEG [49, 50]. Likewise, the sleep stages—wake, REM, and the three NREM stages (N1, N2,

N3)—all also are accompanied by systematic changes in EEG [51, 52]. Azim and colleagues

[50] studied the normalized Welch power spectral density of electrode C4-A1 from the UCD

database [36]. They found that during SA events, power in the beta band (i.e., frequencies

between 14 and 30 Hz) decreased (compared to pre-apnea events), before rising again after SA

event termination. During different stages of sleep, the EEG features associated with SA can

change. For example, apneas occurring during NREM sleep are associated with a gradual

increase in delta-band activity (i.e., at frequencies < 4 Hz), followed by a decrease within that

band concomitant with patient arousal and/or wakefulness [49, 50]. In contrast, apneas occur-

ring during REM sleep are associated with transient increases in delta-band activity [49, 50].

REM SA events are also generally associated with small increases to beta band activities. Physi-

ological differences between sleep stages can also impact SA. REM sleep causes the relaxation

of muscle tone which is conducive to SA events [53]. Therefore, EEG—a signal which contains

characteristics for both SA and sleep stage—should in theory be useful for detecting SA.

Our use of critical-band masking and filter lesioning, taken together, indicated that our SA

network learned to rely on known SA as well as sleep stage biomarkers. Critical-band masking

indicated that delta-band activity was important to the detection of SA; that beta- and gamma-

band activity was important to the decoding of sleep stage; and that alpha-band activity may

have played a role in both SA detection and sleep stage decoding. We made these inferences by

adding noise, first, to signals used to test our trained SA network, and, second, to signals used

to test the network after re-training with stage-wise shuffled data. Our masking results were in

broad agreement with our lesioning results. The trained SA network’s most important 1st-

layer filters selectively attenuated delta-band activity, and selectively amplified activity between

14 and 30 Hz (i.e., the beta band). Taken together, our findings are broadly consistent with

existing work; it has been previously shown using spectral analysis of multi-channel EEG

recorded from SA sufferers that delta-band activity is associated with SA events [49, 50]. Fur-

thermore, REM and NREM sleep are associated with the reduction of power in beta- and

gamma bands [54].

The present study is subject to two main limitations, the first of which concerns the general-

isation of our CNN across datasets. We trained our CNN using the SHHS dataset; subjectwise

10-fold cross-validation using test data from SHHS (ie., within-dataset testing) showed good

performance (see Results). However, when we tested our SHHS-trained CNN using data from

the UCD or MIT-BIH datasets (ie., across-dataset testing), its performance was somewhat

sobering (see Results). This performance reduction is possibly attributable to low inter-rater

reliability (IRR). For the SHHS dataset, the three main SA scorers were in only moderate

agreement (scorers 914 and 915, Cohen’s kappa = 0.7; scorers 914 and 916, 0.73; scorers 915

and 916, 0.76) [55]. Estimates of IRR between datasets (e.g., between SHHS and UCD) is pres-

ently unavailable, however it stands to reason that it is significantly lower than 0.7 because SA

annotation procedures differed considerably between datasets (see Methods). The precise rela-

tionship between IRR and the theoretical maximum performance of our CNN, and the way in

which changes to IRR in turn affect CNN performance, is a subject of our ongoing research.

The second limitation of our study concerns labelling; we labelled segments used in the
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training, testing, and validation of our CNN as either “apnea” or “non-apnea” despite the fact

that there are several clinical SA subtypes, including obstructive, central, and mixed SA, and

hypopnea [56]. We grouped these subtypes for two reasons. First, there were relatively few

instances of central SA in these datasets; had we attempted to balance our training set, for each

subject, with regard to subtype, there would have been too few data to train a reliable CNN.

Second, IRR is low as regards discriminating obstructive from mixed SA; in the SHHS dataset,

these subtypes are grouped under the label “obstructive SA”. The development of an architec-

ture capable of discriminating between SA subtypes is a subject of our ongoing research.

To our knowledge, Jiang and colleagues [57] is the only other group to develop a CNN for

SA classification using single-channel EEG. We have extended their work in several ways,

albeit comparison between their results and ours, for reasons outlined below, is not straightfor-

ward. First, Jiang et al. used a small dataset (the MIT-BIH Polysomnographic Database [37]),

comprising recordings from only 16 participants. By contrast, our study integrated recordings

from three databases, comprising over 2600 participants. Second, Jiang et al. appear to have

used an unbalanced data set to train and test their network (specifically, their dataset appears

to have overrepresented apnea, as opposed to non-apnea, EEG recordings); in general, the use

of unbalanced data sets may bias estimates of a classifier’s performance. By contrast, we were

careful to balance data before training our CNN, and we developed a shuffle test to ensure that

our estimates of baseline performance were conservative. Third, Jiang et al. performed pooled

(not subjectwise) cross-validation. By “pooled”, we mean that on each fold of their cross-vali-

dation procedure, recordings from all subjects were contained in both training and testing

sets. Because they pooled data, it is unclear whether their results can generalize in a clinical set-

ting (i.e., it would be clinically useful if a CNN, trained using data recorded from a normative

cohort of subjects 1 through N, could be used to detect SA in recordings from a previously

unseen subject N+1). By contrast, we used subjectwise cross-validation, which indicates that

our results will generalize to unseen participants, and therefore may have clinical potential for

diagnosis. Fourth, the network of Jiang et al. was, by contrast to ours, rather complex, and

therefore ill-suited for explanation; the network employed a hybrid architecture with 4 parallel,

computational branches: two shallow branches (each of which comprised three convolutional

layers), and two deep branches (comprising 6 and 9 convolutional layers, respectively). By con-

trast, our network was simple, and this simplicity enabled an explanation of its function. It is

therefore our expectation that our explainable CNN has clinical potential for the improved

detection, diagnosis, and treatment of SA.

Conclusion

EEG offers an alternative way to detect SA, and detection appears to benefit from sleep stage

information contained in EEG. Single-channel EEG is low-instrumentation, making it poten-

tially suitable for in-home sleep and SA monitoring. Here, we have developed a CNN that reli-

ably detects SA from single-channel EEG. Our visualization techniques indicated that the

classifier learned frequency-band information consistent with known SA biomarkers. It is a

priority for future work to quantify our algorithm on consumer-grade EEG equipment.
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