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Abstract 

Obesity is a prevalent health risk by inducing chronic, low-grade inflammation and insulin resistance, in part from adipose tissue 
inflammation perpetuated by activated B cells and other resident immune cells. However, regulatory mechanisms controlling 
B-cell actions in adipose tissue remain poorly understood, limiting therapeutic innovations. MicroRNAs are potent regulators of 
immune cell dynamics through fine-tuning a network of downstream genes in multiple signaling pathways. In particular, miR-150 
is crucial to B-cell development and suppresses obesity-associated inflammation via regulating adipose tissue B-cell function. 
Herein, we review the effect of microRNAs on B-cell development, activation, and function and highlight miR-150-regulated B-cell 
actions during obesity which modulate systemic inflammation and insulin resistance. In this way, we hope to promote translational 
discoveries that mitigate obesity-induced health risks by targeting microRNA-regulated B-cell actions.
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1. Introduction
Obesity is a risk factor for an expanding set of chronic comor-
bidities, increasing global rates of disability, and mortality [1–3]. 
White visceral adipose tissue (VAT) dysfunction plays a central 
role, bolstering local and systemic inflammation and insulin 
resistance [4]. Studies demonstrate anti-inflammatory treatments 
in obese individuals decrease the risk of cardiovascular disease 
and other comorbidities [5–8]; however, targeted approaches to 
decrease inflammation are necessary to limit deleterious effects.

During obesity, the VATs immune cell compartment expands, 
with B cells becoming the second most abundant immune lineage 
behind macrophages [9–15]. B-cell depletion ameliorates obesity-as-
sociated metabolic dysfunction; however, limited understanding 
of molecular mechanisms regulating B-cell actions under obesity 
stress has hampered the translational potential of targeting B-cell–
mediated inflammation to reduce obesity-associated disease risk. 
The epigenetic factor miR-150 presents a potent regulator of B-cell 
differentiation, activation, and function [12,16–18]; its expression can 
modulate obesity-induced inflammation and insulin resistance in a 
B-cell–dependent manner [12]. Thus, in this review, we detail current 
knowledge on B-cell actions regulated by microRNAs and integrate 
the impact of microRNA-regulated B cells actions in obesity, can-
cer, and autoimmunity. In this way, we demonstrate the potential 
of microRNAs as specific, targetable mediators of obesity-induced 
health risk, with an emphasis on miR-150 in adipose tissue B cells.

2. MicroRNAs are crucial regulators of B cell biology 
and B-cell–mediated diseases

2.1 General introduction to microRNAs

MicroRNAs are small, non-coding RNAs that provide import-
ant epigenetic regulation of cell development, activation, and 

function [19]. Functional microRNAs are part of a cytoplas-
mic RNA-induced silencing complex (RISC), where the sin-
gle-stranded microRNA binds complementary mRNA targets 
and inhibits translation [20]. For a comprehensive review of 
microRNA biogenesis, see Mehta and Baltimore [19] and Ha and 
Kim [21]. A note on nomenclature, pre-microRNAs are encoded 
as hair-pin loop structured RNAs that are processed to select for 
one functional strand (mature microRNAs), denoted as the 5p 
or 3p strand [22]. Typically, one of the strands is dominant in a 
cell lineage. For miR-150, the -5p strand is dominant compared 
to its -3p complement [23]. In addition, microRNAs of distinct 
sequences can be encoded in the genome as clusters under the 
same promoters as a polycistronic transcript, like the miR-17~92 
cluster [24]. Furthermore, identical microRNA sequences can be 
transcribed in different locations in the genome and are denoted 
by the suffix -1/2/3/, etc (eg, miR-let-7a-1 and miR-let-7a-2), 
while microRNAs with slightly different sequences or lengths, 
known as isomiRs, are denoted with the same number but with 
the suffix of a/b/c/, etc (eg, miR-let-7a and miR-let-7d) [25].

MicroRNA targeting specificity is dictated by their first 7–8 
nucleotides on the 5ʹ end of the microRNA, known as the 
“seed” nucleotides [26]. Every microRNA targets numerous 
mRNAs and over 60% of all proteins are predicted to be under 
microRNA regulation [27,28]. Several algorithms are available to 
predict microRNA-regulated genes including TargetScan [29], 
miRDB [30], PicTar [31], RNA22 [28], and microT-CDS [32], and 
others that adopt various algorithms with different weights of 
miRNA-target interaction factors. Consideration to the level of 
complementary of the target site within the mRNA is central to 
predicting the efficiency of microRNA-mediated mRNA repres-
sion [33]. In addition, the region targeted is important, with sites 
in the 3ʹ untranslated region (UTR) yielding the greatest repres-
sion [33]. Furthermore, microRNAs are highly conserved across 
species, thus target regions with conservation are considered 
more relevant for microRNA-mediated repression [33]. However, 
microRNA-mediated mRNA repression should be validated in 
all species of interest; thus, in this review, the species a study uti-
lized is indicated using typical naming conventions. Predicted 
targets can also be cell-specific as both microRNA and targets 
must be expressed to be biologically relevant.

These considerations underpin the importance of validating 
predicted targets in the cell and species of interest through 
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functional analyses. First, microRNA and target expression 
patterns can be determined to establish a relationship. Ideally, 
the microRNA-mediated repression of translation is validated; 
many scientists make use of luciferase reporter constructs con-
taining the mRNAs targeted region and transfected microRNA. 
Additionally, the targeted regions can be mutated to limit 
microRNA repression to observe the effect of microRNA reg-
ulation of a single target on a process of interest.

2.2 MicroRNAs important to B cells

Since the discovery of microRNAs in regulating hematopoiesis and 
immune cell function, a set of microRNAs have been identified as 
key regulators for B-cell formation and function. Herein, we detail 
important microRNA networks across B-cell stages and actions 
(Table 1). The potency of these networks is exemplified in disease 
contexts, as genetic- or epigenetic-altered microRNA expression 
can drive B-cell malignancies, autoimmunity, and sub-optimal 
immune responses. One of the earliest studies of microRNAs in B 
cells investigated the deletion at chromosome 13q14 that occurs 
in over half of all B-cell chronic lymphocytic leukemia (B-CLL), 
mantle cell lymphoma, and other non–B-cell cancers [34,35]. MiR-15 
and miR-16 are encoded in this large region and both genes are 
deleted or down-regulated in the majority of CLL cases [35]. Both 
miR-15a and miR-16-1 target apoptosis regulator Bcl2 (BCL2) to 
promote cell death, acting as tumor suppressors [36]. This discov-
ery demonstrates a causal role in altered expression of this and 
other microRNAs [36,37] for cell transformation. Following this, 
microRNA expression patterns have been leveraged as prognostic 
factors for survival outcomes or response to treatment [35,38–40].

2.3 MicroRNAs in hematopoiesis and B-cell development

Adult B cells predominantly arise from hematopoietic stem cells 
(HSCs) within the bone marrow, known as B2 or follicular B 
cells [59]. In addition, mice have an identifiable self-replenishing, 
rapid-responding B cells subpopulation, termed B1 cells, derived 
from the fetal liver; mouse B1 cells are enriched in body cavities 
and contribute to rapid, poly-specific antibodies, reviewed else-
where [59]. While functional human counterparts exist, the origins 
of these B-cell populations in humans and other species remain 
less defined [55]. Differential expression of the microRNA let-7 
family contributes to the differential affinity of fetal and hema-
topoietic progenitor cells to yield B2 versus B1 phenotypes [60,61].

Hematopoiesis is a continuum of maturation regulated by a 
network of transcription factors. Transcription factor levels are 

tightly regulated to initiate and intensify lineage commitment. 
MicroRNAs can establish a threshold for transcription factor 
mRNA expression necessary to drive a cell down a particular 
lineage differentiation cascade [19]. HSCs within bone marrow 
differentiate into several lineages of blood cells, including imma-
ture B cells. From the common lymphoid progenitor stage into 
B-cell lineage commitment, cells first rearrange and assemble 
a productive immunoglobulin heavy chain, termed the pro-B 
phase [62,63]. Signaling of successful heavy chain assembly initiates 
proliferation (known as the large pre-B phase) and subsequent 
recombination of the light chain (small pre-B) [64]. Light chains 
are paired with rearranged heavy chains to form the B-cell recep-
tor (BCR) [65,66]. Small pre-B cells display BCRs on the cell surface 
to interact with self-antigens and, provided the signal strength, 
will either (a) undergo positive selection, (b) receive insufficient 
signal and continue light chain rearrangement, (c) ligate self-anti-
gens forcing receptor editing or apoptosis [67]. For further review 
of B-cell hematopoiesis, see Hardy and Hayakawa [67].

The first study to implicate microRNAs in hematopoiesis 
identified that miR-181a, miR-142, and miR-223 are differen-
tially expressed in hematopoietic tissue and across lineages [68]. 
Expression of miR-181a is highest in the thymus and the B-cell 
lineage of the bone marrow. Overexpression of miR-181a in 
HSCs increased the proportion of B cells generated [68]. Later 
studies demonstrated miR-181a expression is necessary for devel-
opment to the pro-B stage of B-cell commitment and decreases 
in subsequent B-cell lineage stages while increasing in T cells 
[16]. In opposition, miR-150 increases starting at the pro-B stage, 
with the highest expression in mature naive B cells [16]. MiR-150 
overexpression in HSCs decreases the proportion of circulating B 
cells [16], while miR-150 knock-out likewise reduced the propor-
tion of B2 cells compared to B1s [41]. Although miR-150 overex-
pression generates regular pro-B numbers, subsequent pre-B and 
later stages exhibit increased rates of apoptosis [16].

MiR-150 has several targets validated by similar workflows in 
both humans and rodents. MiR-150 repression of Transcriptional 
activator Myb (MYB) [16,41] is most relevant in B-cell differen-
tiation. In addition, MYB, transcription factor forkhead box 
protein P1 (FOXP1) [17,18], GRB2-associated-binding protein 1 
(GAB1) [18], ETS domain-containing protein Elk-1 (Elk1) [12], 
and Eukaryotic peptide chain release factor subunit 1 (Etf1) [12] 
are part of the miR-150 network that regulates mature B-cell 
actions (Figure 1A). MiR-150 is highly specific to hematopoietic 
cells [23,69]. In addition to B-cells, miR-150 regulation is import-
ant to megakaryocyte-erythrocyte progenitor differentiation 
[70], Natural Killer cell generation and function [71,72], and T-cell 
development [16,73]. Additional miR-150 networks in immune 
cells include miR-150 repression of E3 ubiquitin-protein 

Table 1

Select microRNAs networks important to B-cell function and appreciated in B-cell–mediated diseases.

microRNA Impact on B cells Validated Targets Disease contexts References 

miR-150 Pro- to pre-B-cell transition MYB Obesity, cancer,  
autoimmunity

[12,16–18,41–44]

Negative regulator of BCR signaling MYB, FOXP1, GAB1, Etf1, Elk1
miR-15 Negative regulator of B-cell proliferation; important for Germinal center response Bcl2 Cancer [35,36]

miR-16
miR-34a Pro- to pre-B-cell transition FOXP1 Cancer [45]

miR-146a Negative regulator of B-cell proliferation; important for central tolerance Fas Autoimmunity [46,47]

miR-148a Negative regulator of B-cell apoptosis; important for central tolerance PTEN, Gadd45α, Bim Autoimmunity [39]

miR-17 Negative regulator of pro-inflammatory signaling in Leukemic B cells TNFA, TLR7 Cancer [48,49]

miR-19a
miR-155 Negative regulator of affinity maturation and isotype switch AID, PU.1, SHIP-1, HGAL,  

C/EBPb, SMAD5
Cancer, autoimmunity [50–58]

BCR, B-cell receptor.
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ligase CBL (CBL) and E3 SUMO-protein ligase EGR2 (EGR2) 
mRNAs-induced apoptosis in mixed-lineage leukemia cells [74] 
and repression of C-C chemokine receptor type 6 (CCR6) to 
limit cutaneous T-cell lymphoma invasion/metastasis [75].

As stated, miR-150 targets MYB and FOXP1, essential tran-
scription factors in human and mouse B cells [18,41]. MiR-150 
expression is inversely correlated with MYB in B-cell develop-
ment and MYB deletion leads to a severe block of B-cell devel-
opment at the pro- to pre-B transition [76], suggesting miR-150 
regulation of MYB is important for B-cell development. MiR-
150 is considered to buffer MYB expression to a small range for 
sufficient MYB protein expression for B-cell development while 
preventing excessive expression leading to dysregulated expan-
sion and leukemia [19] (Figure 1B). In opposition, Foxp1 expres-
sion is higher in pre-B compared to pro-B in mice; however, 
goes down in mature B cells [45], suggesting miR-150 regulation 
of Foxp1 may be more relevant in mature B cells. MiR-34a also 
targets Foxp1 in mice and decreases in pre-B, and constitutive 
expression decreases pre-B-cell numbers [45]. MiR-150 and miR-
34a may cooperate to repress Foxp1 and present an interesting 
network of B-cell development regulation. Additional microR-
NAs have been implicated at all stages of hematopoiesis includ-
ing myeloid versus lymphoid divergence and B-cell versus T-cell 
lineage commitment; for review of microRNA regulation of 
hematopoiesis, see Havelange and Garzon [77].

2.4 MicroRNA-regulated B-cell tolerance and autoimmune 
disease

B cells displaying auto-reactive BCRs are deleted or inhib-
ited through central and peripheral tolerance. Elimination of 
auto-reactive B cells in the bone marrow is termed central toler-
ance [78]. Upon leaving the bone marrow niche, immature B cells 
undergo peripheral tolerance to inhibit auto-reactive B cells and 
mature into functional B cells. Peripheral tolerance can result 
from similar exposure to auto-antigens; however, B cells may 
undergo anergy, antigen receptor desensitization, or tolerance 
to antigen through engagement of inhibitory receptors. Escape 
from tolerance mechanisms is implicated in mature B-cell 
malignancies and autoimmune and rheumatological diseases 

such as systemic lupus erythematosus (SLE) and rheumatoid 
arthritis. For further review of B-cell tolerance, see Nemazee [78].

In particular, miR-146a is a major negative regulator of inflam-
matory responses in immune cells and is significantly down-reg-
ulated in SLE [79]. The importance of miR-146a to the immune 
response was first demonstrated in myeloid cells, where miR-
146a imposes tolerance to pro-inflammatory cytokines and 
danger-associated molecular patterns by targeting key cyto-
kine-receptor and TLR adaptor molecules interleukin 1 recep-
tor-associated kinase 1 (IRAK1) and TNF receptor-associated 
factor 6 (TRAF6) [80]. In B cells, miR-146a was found to target 
tumor necrosis factor receptor superfamily member 6 (Fas) [46]. 
Overexpression of miR-146a limits B-cell apoptosis, promoting 
symptoms of the autoimmune lymphoproliferative syndrome 
[46]. Furthermore, the SLE risk allele rs2431697 resides in the 
regulatory element for miR-146a and impairs miR-146a expres-
sion in a cell-lineage-dependent manner [79].

Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and 
dual-specificity protein phosphatase (PTEN) is another criti-
cal signaling molecule in B cells that is hypo-responsive in SLE 
B cells [81]. MiR-148a targets PTEN and is commonly upregu-
lated in patients with SLE and Lupus-prone mice [39]. miR-148a 
also targets Growth arrest and DNA damage-inducible protein 
GADD45 alpha (Gadd45α), and Bcl-2-like protein 11 (Bim), 
blocking B-cell apoptosis and allowing auto-reactive B cells to 
escape central tolerance [39]. MiR-150 has been suggested to estab-
lish a threshold for BCR signaling [18], an important part of central 
tolerance. Further, miR-150 expression patterns have been linked 
to myasthenia gravis [42,43] and autoimmune hemolytic anemia [44].

2.5 MicroRNA-regulated mature B-cell functions

B cells play central roles in tissue homeostasis in response to 
exogenous and endogenous stimuli. Mature B cells present anti-
gen to CD4+ T cells, contribute to lymphoid tissue homeostasis 
and immune response regulation through cytokine production, 
and are solely responsible for antibody secretion [82]. Their 
actions under chronic or acute conditions can be drastically dif-
ferent concerning the speed of initiation, signaling intensity, and 

Figure 1. MiR-150 targets B-cell transcription to permit B-cell development and establish a threshold to mature B-cell BCR signaling. (A) Representation of mature 
miR-150 within RISC targeting mRNA targets relevant to B cells including MYB, FOXP1, GAB1, Elk1, and Etf11. (B) Representation of miR-150 buffering MYB 
protein expression to achieve an optimal range to regulate functions. Created with BioRender.com. BCR, B-cell receptor; RISC, RNA-induced silencing complex.
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immune outputs. For example, B-cell dysfunction can develop 
under chronic conditions such as elderly, obese, or in immu-
nocompromised individuals, leading to impaired biodefense 
and severe infections [82,83]. Alternatively, B cells can be overac-
tive, contributing to asthmatic and autoimmune conditions [82]. 
MicroRNA expression is crucial to fine-tune these responses 
and permit productive immune activation.

Upon BCR ligation, mature B cells upregulate antigen process-
ing and presentation on major histocompatibility complex II 
(MHCII) [84]. Antigen-presenting B cells provide MHCII + anti-
gen and co-stimulatory signals to cognate CD4+ T cells to permit 
both B-cell development and T-cell activation. Few studies have 
investigated microRNA regulation in the antigen presentation 
network, for example [85,86], and none have used B-cell-antigen 
presentation.

B-cell cytokine production is vital for immunomodulatory 
effects of B cells within tissues during an immune response 
[87]. Functional B-cell subsets are defined by major cytokines 
produced, including regulatory B cells (Bregs) which maintain 
high expression of anti-inflammatory interleukin-10 (IL-10) 
[87]. Effector B cells are denoted by expression of pro-inflam-
matory cytokines that promote T-cell and macrophage acti-
vation, including tumor necrosis factor-alpha (TNFα) [87]. The 
microRNA polycistronic miR-17~92 cluster is often amplified 
and overexpressed in diffuse large B-cell lymphomas and other 
cancers [48]. In B-CLL cells, miR-17 and miR-19a of the miR-
17~92 cluster can both independently target TNFA and toll-like 
receptor 7 (TLR7), reducing TLR7-induced proliferation [49]. 
The importance of this cluster in normal B-cell cytokine pro-
duction has yet to be established.

Following activation, B cells can undergo differentiation to 
plasma cells to secrete abundant antibodies. To generate highly 
antigen-specific antibodies, B cells must first differentiate into 
germinal center B cells (GCBs). Following B cell–T cell inter-
actions, in which B cells receive additional activating signaling 
(CD40 ligation and IL-4/IL-21 cytokines), B cells may differen-
tiate into GCBs where they undergo proliferation, class-switch 
recombination (CSR), somatic hypermutation (SHM), and 
clonal selection. These actions of GCBs are coordinated by a 
network of transcription factors under the regulation of multi-
ple microRNAs including miR-155, miR-181b [88], miR-30 [89], 
miR-9 [89], let-7 family members [39,89], and miR-125b [90]. MiR-
150 expression decreases in GCBs compared to naive and mem-
ory B cells, inversely correlating with the expression of MYB [91]. 
Functional implications of this trend have not been explored.

Of note, miR-155 is a common immune regulator across 
myeloid and lymphoid cells [92] and deficiency leads to fewer 
extra follicular germinal centers and reduced high-affinity anti-
body selection [50]. MiR-155 has several validated targets in B 
cells important to GCB reactions including activation-induced 
cytidine deaminase (AID) [51,52], a potent DNA mutation cru-
cial to both CSR and SHM [93], and transcription factor PU.1 
(SPI1) [53], an important regulator of plasma cell differentiation 
through control of paired box protein Pax-5 (PAX5). MiR-155 
regulation has been explored across many diseases in various 
immune cells; for further information, see Vigorito et al [94].

2.6 MicroRNA-regulated adipose tissue B-cell function in 
obesity

The B cell population in adipose tissue expands during obesity 
in both mice and humans [15]. However, knowledge of their func-
tions and regulatory mechanisms are less defined. The Engleman 

lab in 2011 was the first to implicate B cell actions in driving obe-
sity-associated health risks [10]. In models of diet-induced obesity 
(DIO), B-cell deficient mice (either through germline mutation or 
antibody-mediated depletion) have improved measures of glu-
cose tolerance and insulin resistance [10]. B-cell deficiency limited 
pro-inflammatory macrophage expansion in obese VAT, likely 
through cytokine actions, and was dependent on B-cell ability 
to present antigen to T cells [10]. Furthermore, a unique antibody 
profile is observed in obese plasma that independently worsened 
metabolic health upon transfer to obese B cell deficient mice [10]. 
However, the contributions of varying B-cell actions and immu-
noglobulin classes in obesity are needed; indeed, IgA-producing 
B cells in the intestines are important for barrier maintenance 
and can impact glucose homeostasis [13]. Furthermore, anti-lipid 
immunoglobulins are an important mechanism for clearing ath-
erogenic oxidized lipids [95]. Interestingly, auto-reactive anti-in-
sulin immunoglobulins are present in humans despite normal 
glucose levels and actually contribute to glucose homeostasis 
by both eliminating and protecting insulin depending on the 
immunoglobulin class [96]. Thus, greater understanding into 
crucial regulatory mechanisms driving obesity-associated B-cell 
cytokine production and unique antibody profile is needed to 
innovate targeted therapeutic approaches.

To explore regulatory mechanisms of B cell actions in obesity, 
our laboratory utilized miR-150 knock-out (miR-150KO) mice 
[41], which have normal physiology and altered plasma anti-
body profiles [12]. During DIO, miR-150KO mice exhibit more 
severe inflammation and glucose intolerance [12]. Adoptive 
transfer of lean miR-150KO B cells to WT obese mice exacer-
bated metabolic dysfunction, demonstrating that miR-150 reg-
ulated B-cell actions are important in this context [12]. Transfer 
of miR-150KO plasma antibodies was not sufficient to repli-
cate worsened metabolic parameters; however, miR-150KO B 
cells were found to undergo increased T-dependent activation 
and induce increased activation of macrophages and T cells 
in co-culture experiments [12]. Together, these results implicate 
miR-150 regulated B-cell immune modulation in obesity-in-
duced health risk. We further implicated miR-150 in BCR sig-
naling, revealing increased BCR signaling components present 
at a steady state [12]. This increase was mediated through miR-
150 targeting Myb, Elk1, and Etf1 [12]. Additionally, miR-150 
regulation of FOXP1 and GAB1 has been demonstrated to 
limit BCR signaling [18]. The importance of miR-150s impact 
on BCR signaling in adipose tissue B cells to obesity-in-
duced health risk has yet to be established. Thus, miR-150 is 
a potent regulator of B-cell development and activation, and 
miR-150-regulated B-cell actions are important for obesity-in-
duced systemic inflammation and insulin resistance. However, 
key questions remain about the regulatory mechanisms of 
miR-150 in adipose tissue B cells during obesity and subse-
quent obesity-induced health risk.

3. Perspective
The global incidence of obesity comorbidity and mortality con-
tinues to rise, necessitating targeted therapeutic strategies to 
limit obesity-induced inflammation and insulin resistance. B cells 
are important drivers of obesity-induced health risk; however, 
the heterogeneous actions of B cells require targeted approaches 
to translate this knowledge into therapy. Thus, the molecular 
mechanisms underpinning B-cell actions driving obesity-associ-
ated disease risk should be investigated. MicroRNAs are potent 
regulators of the immune response and provide a potential tar-
get to alter specific cell actions. In particular, miR-150 is a cru-
cial regulator of B cells and miR-150 regulation is important 
to B-cell actions in obesity. Nuanced microRNA regulation of 
adipose tissue B cells and other immune cells during obesity, 



5

Matz et al • 2022 (4):3 Immunometabolism

particularly by miR-150, demands exploration to both uncover 
important networks and generate novel therapeutic targets.
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