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Abstract

Genetic risk factors frequently affect multiple common human diseases, providing insight into 

shared pathophysiological pathways and opportunities for therapeutic development. However, 

systematic identification of genetic profiles of disease risk is limited by the availability of both 

comprehensive clinical data on population-scale cohorts and the lack of suitable statistical 

methodology that can handle the scale of and differential power inherent in multi-phenotype data. 

Here, we develop a disease-agnostic approach to cluster genetic risk profiles for 3,025 genome-

wide independent loci across 19,155 disease classification codes from 320,644 participants in the 

UK Biobank, representing a large and heterogeneous population. We identify 339 distinct disease 

association profiles and use multiple approaches to link clusters to underlying biological 

pathways. We show how clusters can decompose the variance and covariance in risk for disease, 

thereby identifying underlying biological processes and their impact. We demonstrate the use of 

clusters in defining disease relationships and their potential in informing therapeutic strategies.
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Genome-wide association studies (GWAS) of risk for common diseases have revealed 

widespread pleiotropy, such that individual genetic loci are often associated with multiple 

disorders 1–4 and many pairs of traits show substantial genome-wide correlation in effects5,6. 

However, while overlap in genetic risk, such as is seen among the immune-mediated 

diseases (IMDs) 6–9, implies sharing of aetiological mechanism, clinical practice is largely 

organised by the tissues or organs affected, leading to potential inefficiency in treatment and 

challenging drug development 10. Nevertheless, patterns of pleiotropy are complex. For 

example, within IMDs, some variants, such as rs34536443 in TYK2, are consistent in effect 

direction across all associated disorders 11, while others, such as rs1800693 in TNFRSF1A, 

confer risk in some and protection in others 12,13. Moreover, genetic risk scores, which sum 

effects over all associated variants, are typically highly precise for the corresponding 

disorder 9, indicating that the specific constellation of genetic risk factors for a disorder are 

typically not shared.

These observations suggest that systematic characterisation of patterns of pleiotropy can 

lead to better definition of pathways of risk that affect common human diseases 14–16 and 

pave the way towards improved clinical care and effective therapeutic development 10,16–18. 

To date, however, it has not been possible to integrate and interrogate information from the 

full range of clinical phenotypes that are required to achieve this, as GWAS have focused on 

a relatively small number of traits and diseases and have often studied patients with only the 

most clear-cut diagnoses and uniform clinical manifestations. The availability of population-

based cohorts with genome-wide variation data, such as the UK Biobank (UKB) 9,19,20, 

provides a unique opportunity to take a disease-agnostic perspective to investigate cross-trait 

genetic associations. The UKB has collected genetic and routine healthcare data from over 

500,000 participants, including 19,155 diagnostic terms from hospitalization episode 

statistics (HES), recorded using the tree of International Classification of Diseases, Tenth 

Revision (ICD-10) codes. This ontology is not intended to reflect biological processes, 

though nevertheless captures many important relationships between related disorders, 

subtypes and complications.

Previously, we developed a Bayesian approach for mapping genetic risk across disease 

classification codes within a hierarchical ontology, referred to as TreeWAS 9, which uses the 

ontology to shape prior belief about the profile of pleiotropy. The method allows shared 

signal across related codes (for example subtypes of a disease) to be combined effectively, 

but also allows for distinct patterns of risk (or absence of risk) in other parts of the ontology. 

The approach measures the evidence that a variant has any effect on any disease 

classification code, quantified by the tree Bayes Factor, or BFtree, and enables posterior 

decoding to identify affected nodes within the ontology. Here, we have applied the TreeWAS 

method to 654,546 SNPs genotyped in the UKB using the ICD-10 HES data, identifying 

3,025 independent loci with strong evidence for association. We then developed and applied 

a novel clustering method to identify 339 distinct profiles of risk across the ontology and 

used gene ontology enrichment, overlap with the GWAS Catalog 21, and cluster-specific 

genetic risk scores to identify associated biological processes and intermediate traits. We 

show how a cluster-based approach can partition genetic variance and covariance within and 

among traits as well as generating therapeutic hypotheses.
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Results

Genome-wide associations in UKB routine healthcare data

To identify variants that are associated with clinical terms recorded within the ICD-10 HES 

data, we first ran TreeWAS genome-wide across the 320,644 UKB individuals identified as 

having British Isles ancestry, correcting for age, sex, genotyping array and the first seven 

principle components from the genome-wide array data. To enable subsequent comparison 

between variants, we simplified genetic effects into null, risk and protection for each code, 

integrating over a prior on effect size. This results in strong correlation of BFtree with the 

original implementation (Pearson ρ = 0.99; Extended Data Figure 1). Of the 654,546 SNPs, 

we observed associations for 1.78%; and with 7.35% of the ontology terms showing 

evidence of an association with at least one tested variant (posterior probability (PP) ≥ 0.99; 

threshold used throughout) (Fig. 1A). Genome-wide, the strongest evidence of association 

was observed within the major histocompatibility complex (MHC), with the SNP rs532965 

being the most significant (log10 BFtree (lBFtree) = 522.85). This SNP tags the class II alleles 

HLA-DQA1*03:01 (r = 0.95) and HLA-DRB1*04:01 (r = 0.75) and is observed, in line with 

previous findings 22, to be associated with 82 ICD-10 codes, including terms related to 

rheumatoid arthritis, type 1 diabetes and several other IMDs (Fig. 1B). Outside the extended 

MHC, we identified 3,025 independent lead SNPs with a MAF of at least 1%, with a false 

positive rate (FPR) of 1% (Extended Data Figure 2), and where any pair of SNPs within the 

same locus and not in linkage-disequilibrium (LD) had independent phenotype associations 

(see Supplementary Note). Results are available at www.treewas.org.

To assess the power of the UKB data for recovering previously described genetic 

associations we measured association at 25,640 SNPs present in the GWAS Catalog 21 in the 

UKB cohort. We found evidence for association (lBFtree ≥ 0) with 54.2% and strong 

evidence for association (lBFtree ≥ 5) for 10.2% (Fig. 2A), though the fraction varies among 

experimental factor ontology (EFO) groupings and was observed higher for SNPs annotated 

for cardiovascular diseases (21.48%) and lower for SNPs annotated for biological processes 

(3.54%). For each group we identified the node with the strongest evidence of association, 

thus providing a data-driven mapping between terms (Fig. 2A). These results imply that the 

ICD-10 codes within UKB capture a substantial fraction of variants known to impact human 

phenotypes, though we note that variants affecting rarer disorders or quantitative traits with 

no strong disease risk association will be under-represented. In addition, we assessed the 

evidence of association of the 3,025 independent SNPs and the 25,640 GWAS Catalog SNPs 

in the self-reported phenotypes from the verbal questionnaires and found correlated evidence 

of association (Pearson ρ = 0.56 and 0.87, respectively; Extended Data Figure 3)

The ability to capture disease-wide measurement enables discovery of the full clinical 

impact of common variants. For example, the rs4420638 minor allele, which tags the 

APOE*ε4 haplotype, is the strongest genetic determinant for Alzheimer’s disease 23, and is 

also associated with cardiovascular diseases 24 and lipid levels 25. We found the variant to 

confer risk for 53 ICD-10 terms in six clades within the ontology, including those with 

parent nodes G30-G32 “Other degenerative diseases of the nervous system”; Chapter IX 

“Diseases of the circulatory system”; E78 “Disorders of lipoprotein metabolism and other 
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lipidaemias”; and Z95 “Presence of cardiac and vascular implants and grafts” (Fig. 1C). 

Unexpectedly, the same allele also shows evidence (PP = 0.76) for protection against one 

clade whose parent node is K70-K77 “Diseases of the liver”, demonstrating that 

implementing our approach across the HES data set can potentially reveal previously 

unrecognised disease associations for even well-studied pleiotropic risk variants, though we 

note that this specific result has relatively low evidence (logistic regression OR = 0.93, P = 

0.0067) and has yet to be validated in a different cohort.

Cross-trait association patterns also reveal distinctions between genes thought to affect 

similar biological pathways. For example, for rs2289252 in the F11 blood clotting factor 

locus, that is associated with venous thromboembolism 26, we observed a restricted set of 

diseases associations, only including I26.9 “Pulmonary embolism without mention of acute 

cor pulmonale”; I80.2 “Phlebitis and thrombophlebitis of other deep vessels of lower 

extremities”; Z86.7 “Personal history of diseases of the circulatory system”; and Z92.1 

“Personal history of long-term (current) use of anticoagulants”. However, whilst rs6025 

(Arg534Gln, MAF = 3%), known as the Leiden mutation 27 in the F5 blood clotting factor 

gene, has also been reported to affect venous thromboembolism 28,29, we observed a much 

more diverse range of additional associations for this SNP. These include other vascular 

traits, such as I26-I28 “Pulmonary heart disease and diseases of pulmonary circulation”; 

infections (e.g. J18.9 “Pneumonia, unspecified”); and drug allergies (e.g. Z88.8 “Personal 

history of allergy to other drugs, medicaments and biological substances”). Therefore, 

despite both SNPs influencing blood coagulation, their only partially overlapping disease 

association profiles suggest some disparity in the biological mechanisms they impact and 

motivates a quantitative assessment of pleiotropy and the similarities and differences 

between variant effects.

Structure of genetic pleiotropy in the UKB hospital data

To characterise the structure of genetic pleiotropy in the UKB data we determined the 

relationship between the evidence of association for the 3,025 lead SNPs and the number of 

ICD-10 codes associated with it. We find that 96.9% of associated SNPs affect more than 

one diagnostic term, with the top three most pleiotropic variants being well-studied variants 

near LPA 30,31 (Fig. 1D), CDKN2B 32 and APOE 25,33 (Fig. 1C) (rs10455872 with 61 

codes; rs10757274 with 59 codes; and rs4420638 with 53 codes respectively). Overall, we 

observed a positive correlation between the evidence of association and the number of 

affected diagnostic terms (ρ = 0.14, P < 10-16, Fig. 2B). However, we also observed variants 

with very strong evidence of association (lBFtree > 20) that affect only a small number of 

phenotypes (2.5% affect only one or two codes). For example, rs2981575 and rs4784227 

(both lBFtree > 90) localise (on different chromosomes) near FGFR2 and TOX3, 

respectively, and are associated with nearly identical nodes (14 and 17, respectively) in the 

ICD-10 ontology, all related to breast cancer (including C50 “Malignant neoplasm of breast” 

and its child nodes) and procedures such as Z90.1 “Acquired absence of breast”. These 

SNPs have a similar association profile, displaying a strong evidence of association with a 

high precision in the phenotypes affected, which likely reflects a strong similarity in the 

biological pathways they influence. Overall, we found that 82.5% of SNPs were associated 

with at least 2 of the 24 disease coding chapters of ICD-10 (I-XXII), providing evidence that 
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most genetic variants affecting risk to a diagnostic term will often also affect risk to other 

terms distant in the ontology.

Decoding cross-trait associations through SNP clustering

Across independently associated variants we observed several repeated patterns of risk and 

protection, suggestive of distinct genes modulating similar underlying biological processes. 

To test this hypothesis, we calculated, for every pair of variants, a Bayes factor, BFidentical, 

comparing a model in which they share the same profile, to a model in which they are 

independent, thus considering differential uncertainty of individual variant-code associations 

and their ontological relatedness. We then used hierarchical clustering to define relationships 

among variants. We chose a threshold of lBFidentical > -5 to group variants into separate 

clusters, consistent with the threshold chosen for single variant significance (that is, no pair 

of variants shows greater evidence for having distinct profiles than this threshold) (Fig 3A; 

Extended Data Figure 4). For each cluster identified we computed a joint posterior decoding 

to identify associated diagnostic terms.

For the 3,025 independent variants observed, we identified 339 distinct clusters with sizes 

ranging from 1-37 SNPs, with a median of 76 nodes affected, but ranging from one to 755 

(Fig. 3B). Overall, 50% of SNPs occurred in the largest 82 clusters of 13 or more SNPs each 

and 16 clusters were of a single SNP. For example, the low frequency rs11591147 SNP 

(Arg46His; MAF ≃ 2%) in the PCSK9 locus, which is correlated with reduced low-density 

lipoprotein cholesterol levels and coronary artery disease (CAD) risk 34, lies in a cluster of 

16 variants (Cluster 34), many of which are near previously-identified CAD risk loci 

associated with LDL (Fig. 4). The diagnostic code with the greatest number of distinct 

clusters showing association is I25.8 “Other forms of chronic ischaemic heart disease” (48 

clusters), which likely reflects power within UKB (with an I25.8 prevalence of 2.3%). We 

emphasize that the biological impact of variants in the same cluster are not likely to be 

identical, rather their clinical consequences are similar across the UKB hospital data.

Each cluster represents a potentially distinct biological mechanism or pathway conferring 

risk for common diseases, with distinct patterns of potential comorbidity. To investigate the 

potential for identifying pathways, we assessed enrichment of variants within each cluster 

among SNPs reported previously in the GWAS Catalog (at the level of EFO terms) and to 

gene ontology (GO) terms for biological processes. We find 113 (33.3%) clusters that show 

overlap with EFO terms (permutation P < 0.05) and, 66 clusters with evidence for 

enrichment in GO terms (permutation P < 0.05; Fig. 3C). For example, the previously-

mentioned Cluster 34 is associated with 36 ICD-10 codes (Fig. 4A), including metabolic 

traits, e.g., E78.0 “Pure hypercholesterolaemia”, diseases of the circulatory system, e.g., 
I20.9 “Angina pectoris, unspecified”, and complications, such as T82.8 “Other 

complications of cardiac and vascular prosthetic devices, implants and grafts”. SNPs in this 

cluster are enriched for GWAS Catalog SNPs reported for 29 EFO terms (Supplementary 

Table 1), including circulatory system diseases, e.g, atherosclerosis, and metabolic 

measurements, such as HDL and LDL cholesterol measurements. GO terms enriched in the 

cluster include “lipoprotein metabolic process” and “very-low-density lipoprotein particle 

receptor binding” (Supplementary Table 2).
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A cluster-based approach reveals the different pathways that contribute to any single clinical 

endpoint. To illustrate this, we considered the single most common code within the UKB 

HES data, I10 “Essential (primary) hypertension” (for which there are 24.37% of individuals 

with at least one record of this code). We observed 27 distinct clusters (with a median 

number of SNPs of six) with strong association to the code, each affecting between one and 

259 ICD-10 codes. Among these clusters, one affects hypertension only; eight are associated 

with type 2 diabetes (code E11); eight are associated with hypercholesterolaemia (code 

E78); 17 with angina (code I20), myocardial infarction (codes I21 and I22) or ischaemic 

heart disease (codes I24 and I25); four are associated with chronic kidney disease (code 

N18); two are associated with disorders of the gallbladder and bile duct (code K80); and 

three associate with obesity (code E66) (Fig. 5). Importantly, this heterogeneity in risk 

profile among clusters is obscured by genome-wide measures of genetic correlation between 

traits.

To quantify the relationship between clusters in terms of the phenotypes they affect we 

estimated (taking into account uncertainty) two measures of association; the Jaccard index 

(JI) and a metric analogous to the |D’| statistic measure of LD 35 (Extended Data Figure 5 

and Supplementary Note). Combined, these metrics can identify whether clusters affect 

subsets of disorders, disjoint sets, similar profiles or independent profiles. We find that only 

0.138% of all pairs have a subset relationship (|D’| ≥ 0.99 and JI ≥ 0.99), while 12.2% have 

similar profiles (0.5 ≤ |D’| < 0.99), 35.2% are disjoint (JI = 0.0) and 7.11% are effectively 

independent (|D’| < 0.1); the remaining 45.4% being weakly correlated (0.1 ≤ |D’| < 0.5). 

These results imply that biological pathways identified through clusters of variants typically 

impact partially overlapping sets of diseases, with complex and diverse patterns of genetic 

covariance, typified by low phenotypic disequilibrium.

Identifying focal phenotypes

Clusters may associate with multiple phenotypes either because the pathway affects risk for 

a specific disease that, in turn, creates risk for a series of clinical complications and 

comorbidities, or because disruption of the pathway may lead to different diseases in 

different individuals. Inferring causal structures from multiple categorical variables with 

genetic instruments and the potential for hidden (or latent) factors remains an open problem 
36. We therefore adopted a simpler approach to characterise the relationship among clinical 

terms within a cluster, aiming to identify ‘focal phenotypes’ whose variance in risk is most 

(causally) explained by the cluster-specific latent factor (see Methods and Supplementary 

Note). To achieve this, we note that in a simple model in which there is a latent factor (that is 

directly influenced by genetics) and two downstream phenotypes, one of which has a much 

stronger correlation to the latent factor, then the relative impact of genetics on the two 

observed phenotypes is a measure of relative correlation to the latent factor. We therefore 

estimated genetic effects for each variant and associated observed clinical term within a 

cluster and used these to construct cluster-specific genetic risk scores (GRSs) for each 

phenotype. We then estimated the effect size for these GRSs on all other associated 

phenotypes (Extended Data Figure 6). Phenotypes within a cluster are ranked by the median 

effect size of the cross-trait GRS comparisons.
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Across all 339 clusters we find that 257 (75.8%) have at least one phenotype with a median 

GRS of greater than one (which we refer to as a focal phenotype; Fig. 6A and 

Supplementary Table 3). To illustrate the approach, Fig. 6B shows Cluster 34, which 

contains the previously-mentioned PCSK9 variant. We find that code E78.2, “Mixed 

hyperlipidaemia”, consistently has the largest effect size (median relative effect size of 1.72, 

greater than one in 72% of comparisons). In some cases the causal biological process is 

clear. For example, Cluster 110, which includes the Factor 5 variant rs6025, has focal 

phenotypes D68.2 “Hereditary deficiency of other clotting factors” and D68.5 “Primary 

Thrombophilia” (Fig. 6C), while Cluster 184 has the focal phenotype E55.9 “Vitamin D 

deficiency, unspecified” (Fig. 6D). For other clusters, the driver phenotypes identified are 

indirect. For example, Cluster 328 is associated with ICD-10 codes within the C43 and C44 

branches “Malignant melanoma of skin” and “Other malignant neoplasms of skin”, 

respectively, it is enriched for GWAS Catalog SNPs for EFO term melanoma, and it is 

enriched in GO terms melanin_biosynthetic_process, pigmentation, and UV-

damage_excision_repair. However, the focal phenotype identified is W01.6 “Industrial and 

construction area” with parent code W01 “Fall on same level from slipping, tripping and 

stumbling”, which may potentially be a proxy for unprotected exposure to sunlight among 

construction workers (Fig. 6E). However, for 24.2% of the clusters, including 2 out of the 27 

hypertension-associated clusters, there is no focal phenotype, indicating that, at least among 

clinical codes, there are likely distinct manifestations of disruption of the pathway that are 

observed in different individuals (e.g., Cluster 52; Fig. 6F).

Discussion

The genetic dissection of complex disease has been revolutionised by large-scale biobanks, 

which link detailed biological measurement, including genomics, to longitudinal data on 

disease, treatment and response 20,37. However, the statistical analysis of such high 

dimensional data is still very much in its infancy. Here, we have extended the TreeWAS 

methodology 9 to the problem of finding groups of variants that have similar impact across 

diseases. Such clustering has multiple potential benefits. First, by identifying a group of 

variants, rather than a single one, commonalities among loci, for example in terms of the 

nature of nearby genes or overlap with genetic studies of intermediate phenotypes, can be 

used to generate hypotheses about the biological processes modulated. Second, for the same 

reason, the approach at least partially addresses the challenge of pleiotropy in searching for 

causal relationships between phenotypes, because it identifies a biologically homogenous set 

of genetic instruments for applications such as Mendelian randomisation 38. An approach 

similar to the focal phenotype analysis could potentially be used to search for causal 

relationships between quantitative trait measurements and disease clusters. Finally, the 

approach can provide a much more precise definition of the impact of disrupting specific 

targets, by borrowing information across both phenotypes (through the use of the 

hierarchical phenotype structure) and loci.

There are multiple potential applications of the relationships characterised in this study. In 

addition to the well-established use of genetic association data to provide a natural mimic of 

perturbation of specific targets, thus helping to prioritise candidates for therapeutic 

development 18, the partitioning of genetic risk into a limited set of pathways or axes has 
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implications for individual patient risk prediction and potentially diagnosis, prognosis and 

treatment 16. For example, two individuals may have identical genetic risk for hypertension, 

though differ substantially in terms of risk for potential comorbidities such as diabetes, 

kidney disease, heart disease and substance abuse. Indeed, we identified a cluster that 

appears to affect hypertension but no other disorders. However, further work is required to 

develop and test the use of such partitioned risk, and interpretability requires a much 

stronger understanding of the biological basis for each axis of risk.

Finally, we acknowledge that the approach described here has several limitations that need to 

be addressed in future research. Some are technical, including over-estimation of evidence 

resulting from non-genetic associations between traits and an ad hoc approach for analysing 

variants in LD. Some arise because of reliance on a single ontology for diseases, which 

almost certainly fails to capture many of the subtle relationships between disorders and their 

consequences and introduces biases as a result. More generally, in the search for causal 

biological explanations for disease risk, onset and progression, additional sources of 

information, such as molecular and quantitative traits and the longitudinal aspect of multiple 

data sources, should be utilised. Statistical frameworks for the analysis of multiple trait 

sexist, including model-comparison 39–41, Mendelian randomisation 42,43 and longitudinal 

analysis 44. However, typically, these do not scale to the size and complexity of biobank-

style data. The high throughput analysis of complex, heterogeneous and multi-modal 

biomedical data, integrating data on molecular pathways, cellular processes, cell types, 

tissues, organs and physiology, remains a major obstacle to our understanding of complex 

disease.

Online Methods

UK Biobank data

The UK Biobank is a prospective cohort of over 500,000 men and women aged 40 to 69 

years when recruited in 2006–2010. Participants have provided medical history through an 

interview and completion of a questionnaire; biological samples for genotyping; and 

informed consent to long-term medical follow-up through linkage of national health 

registries, including the hospital episode statistics and cancer registry. The UK Biobank has 

obtained ethical approval covering this study from the National Research Ethics Committee 

(REC reference 11/NW/0382).

We use the phenotypic data set available in the UK Biobank participants derived from 

linkage with the hospital episode statistics registry (data fields 41142 and 41078; accessed 

on 25-07-2017). This data set includes 2,779,598 records with 7,719,358 diagnoses, and 

395,978 participants contained at least one record. Clinical diagnoses in this data set are 

described with the ICD-10 list compiled by the World Health Organization which follows a 

hierarchical structure. The ICD-10 contains a total of 19,155 clinical terms, 16,310 of which 

are terms where diagnoses can be made. Each hospitalisation episode in the data set has a 

primary diagnosis associated with the event, and an event maybe annotated with one or more 

secondary diagnoses. Disease outcomes for each individual, as a binary trait, were generated 

for the combined primary and secondary diagnosis annotations. Individuals were considered 

Cortes et al. Page 8

Nat Genet. Author manuscript; available in PMC 2020 June 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



unaffected for any given diagnostic term unless the diagnosis was reported in a 

hospitalization event.

The UK Biobank genetic data used for this study includes 488,377 individuals, 320,644 of 

whom were determined to be of British Isles ancestry (Extended Data Figure 7) and 

included in the analysis. Of the total cohort, 49,949 individuals were genotyped on the 

Affymetrix UK BiLEVE Axiom array as part of a pilot study described elsewhere 45, and the 

remaining 438,414 individuals were genotyped on the Affymetrix UK Biobank Axiom array. 

Quality control of SNP data and whole-genome SNP imputation was performed by the UK 

Biobank analysis team 20. We analysed a total of 654,546 genotyped SNPs. For the GWAS 

Catalog SNPs not present in the genotype calls we extracted the imputed genotype calls 

from the whole-genome imputation files and transformed the probabilistic genotypes into 

allele counts of the minor allele by taking the genotype with the maximum posterior 

probability.

TreeWAS analysis

The previously-described 9 TreeWAS methodology was applied to the UK Biobank data 

with two extensions. First, for a given SNP we infer genetic effects as null, risk or protection 

for each code in the ICD-10, by integrating over a prior on effect size. And second, we allow 

for the inclusion of covariates to control for population structure, sex and age (details 

available in the Supplementary Note).

For a SNP, TreeWAS calculates the evidence of an association with at least one code in the 

tree as a Bayes factor, BFtree. Allele-frequency-specific permutations were carried out to 

assess the distribution of variant BFtree under the null hypothesis of no association, with 

randomisation of observed genotypes carried out at the level of the entire cohort and within 

recruitment centres, to control for geographical variation in clinical coding practice, 

environmental exposure and fine-scale population structure not captured by broad principal 

components, while maintaining the observed phenotypic correlation.

We also analysed 25,641 variants reported within the GWAS Catalog (v. 1.0.1, e87, released 

2017-03-13) that had been directly genotyped or imputed into the UK Biobank data. 

Variants with significant association were grouped into sets of independent signals 

(Supplementary Note). A posterior probability of at least 0.99 was used for level of 

significance.

Genetic risk profile clustering

To identify clusters of independent variants within similar profiles of risk and protection 

across diseases, we calculated, for each pair, a Bayes factor, BFidentical, comparing the 

hypothesis of identical profiles, to the hypothesis of independent profiles. We then used 

hierarchical clustering with complete linkage to identify clusters, with a threshold equal to 

that used for identifying variants with non-zero effects (Supplementary Note). For each 

cluster, we used permutation analyses to estimate the significance of enrichment in GWAS 

Catalog EFO terms and Gene Ontology annotations for nearby genes (Supplementary Note). 

Posterior decoding of associated variants and clusters was carried out as described 
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previously. For clusters, we assume that all variants have the same profile of risk and 

protection.

Focal phenotype analysis

To identify focal phenotypes for each cluster of size N variants we identified the M 
associated (PP ≥ 0.99) ‘selectable’ ICD-10 codes. For each code we estimated the additive 

genetic effects, βmn, using a multivariate logistic regression framework:

logit(ym) ∼ β0 + Σn
N βmnxn + Σc

C βcxc,

where C is the set of covariates (PCs, sex, genotyping chip and age at baseline; effects 

measured relative to the risk allele), xc is the value of the cth covariate, xn is the genotype of 

the nth variant and ym is the probability of observing code m. For each code m and 

individual i, we then constructed a GRS with the inferred genetic effects:

GRSmi = Σn
N βmnxni,

where xni is the genotype of individual i on SNP n. This resulted in the construction of M 
GRSs, each with a set of genetic effects inferred on code m. Then we quantified the effect of 

GRSm on code w (for all w in M), βGRSmw, using a logistic regression framework with the 

same set of covariates:

logit(yw) ∼ β0 + βGRSmwGRSm + Σc
C βcxc .

Additional details of the focal phenotype approach are given in the Supplementary Note.

Extended Data
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Extended Data Fig. 1. Comparison of estimated log10(BFtree) in the two implementations of 
TreeWAS for 25,000 SNPs in the hospital episode statistics data set.
Pearson correlation between the two analysis is noted in text.
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Extended Data Fig. 2. Derivation of an allele frequency-specific log10(BFtree) significance 
threshold to maintain a false positive rate below 1%.
The threshold for each allele frequency bin was set to be at least log10(BFtree) = 5.
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Extended Data Fig. 3. Concordance of TreeWAS analysis results in the two sources of phenotype 
data from the UK Biobank, self-reported (SR) data-field 20002 and hospitalisation in-patient 
records (HES) data-fields 41142 and 41078.
We observed high concordance of the observed evidence of association (log10(BFtree)) for 

3,025 independent SNPs and 25,640 GWAS catalog SNPs, with Pearson’s correlation of 

0.87 and 0.56, respectively.
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Extended Data Fig. 4. Hierarchical clustering of 3,025 SNP risk profiles across the ICD-10 
classification tree in the UK Biobank HES data set.
Y-axis is the distance between pairs. Blue line is at height value 0 and red line at height 

value -5.
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Extended Data Fig. 5. Estimates of relationship between the genetic risk profiles for 339 clusters.
For all pairwise comparisons we computed the |D'| statistic and the Jaccard index (see 

Section Disease ontology analyses in the Supplementary Note).
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Extended Data Fig. 6. Schematic illustration of the model that is used to motivate the focal 
phenotype analysis.
We hypothesize that a set of variants, G, that influences risk for a common set of disease 

phenotypes, Z, can be acting through a single underlying biological process, X. Typically, 

we are unlikely to have direct measurement of this variable, though of those disease codes 

that are mediated by this latent variable, some are likely to be closer to it than others, where 

closer means a larger absolute value for the regression coefficient of the latent variable on 

the observed outcome (See Supplementary Note).
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Extended Data Fig. 7. Principal component analysis of genome-wide genotype data in the UK 
Biobank cohort.
Each plot corresponds to a projection into two dimensions of the principal component 

analysis. Individuals in blue were determined to be of recent and genome-wide British Isles 

ancestry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide evidence for association to the UK Biobank hospital episode statistics 
(HES) phenotype data set.
(A) Manhattan plot depicting evidence of association (log10 BFtree) across the HES data set. 

SNPs labelled with gene names exemplify notable associations to common human diseases 

(see text). (B) Posterior decoding of genetic effect direction and strength of evidence for the 

rs532965 SNP in the MHC class II region. The ICD-10 classification is depicted as a radial 

tree where the first orbit represents the 22 ICD-10 Chapters, followed by an orbit 

representing blocks of categories, and then by two consecutive orbits representing ICD-10 
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categories including the observed annotation codes. To simplify the representation of the 

posterior decoding of the ICD-10 codes (left tree) we only colour ICD-10 codes with a 

posterior probability of association above 0.99 (right tree). Posterior decoding for the SNPs 

rs4420638 (C), rs10455872 (D) and rs505922 (E) in the APOE, LPA and ABO genes, 

respectively.
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Figure 2. ICD-10 ontology within UKB HES data captures a substantial fraction of variants 
known to impact human disease phenotypes in the GWAS Catalog.
(A) Measure of association at GWAS Catalogue SNPs. GWAS Catalog SNPs were grouped 

into 16 experimental factor ontology (EFO) categories based on the individual SNP 

annotation found in the GWAS Catalog. For each category we identified the ICD-10 code 

with the highest evidence of association by taking the product of the posterior of each SNP 

in the category for all ICD-10 codes. (B) Relationship between the evidence of association 

of a SNP and the number of phenotypes associated with the SNP (PP ≥ 0.99).
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Figure 3. Genetic risk profiles across common diseases in the HES data set.
(A) Schematic of the study design from genome-wide TreeWAS analysis to hierarchical 

genetic-risk SNP profile clustering and enrichment analyses. A hierarchical tree was 

constructed using the pairwise distances between the 3,025 lead SNPs. SNP clusters were 

determined by cutting the tree at a threshold (see methods). For each cluster a joint genetic 

risk profile was inferred. (B) Relationship between the number of SNPs and the number of 

associated ICD-10 codes for the 339 identified clusters. (C) Evidence for enrichment of 

Biological Processes Gene Ontology terms in SNP sets assigned to each cluster. For each 

cluster SNP set we calculate enrichment statistics for all GO terms and record the minimal 

P-value observed across all terms. We then, for each cluster, calculate an empirical P-value 

which is the proportion of times the minimal GO term P-value is smaller than those 

observed by randomly generating SNP sets from background of the same size (see 

Methods).
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Figure 4. Posterior decoding for cluster 34 and a selection of individuals variants assigned to this 
cluster.
For each profile ICD-10 codes with PP ≥ 0.99 are shown. Individual SNP profiles for six out 

of the 16 variants assigned to Cluster 34 are shown (figures for all variants can be accessed 

at www.treewas.org.
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Figure 5. Heterogeneity in genetic risk profiles associated with hypertension.
27 risk profiles for clusters associated with the ICD-10 term I10 “Essential (primary) 

hypertension” (PP ≥ 0.99). Colour labels indicate terms mentioned in the text.
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Figure 6. Identification of focal phenotypes within clusters.
(A) Relationship between the median cross-trait GRS effect-size for the driver phenotype in 

each cluster and the fraction of cross-trait GRS effects that are above one. (B)-(F) Individual 

cross-trait GRS effect size heatmaps for five of the 339 clusters, cluster 34, 110, 184, 328 

and 52, respectively. In each heatmap the ICD-10 codes are sorted by the sum of their cross-

trait GRS effect-sizes, with the putative focal phenotype of the left-hand side of the heatmap.
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