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Introduction

Breast cancer is the most commonly occurring cancer 
and leading cause of cancer-related death for females  
worldwide (1). Although population-based mammography 
screening has led to earlier detection of newly diagnosed 
breast cancers and an increasing chance of cure (2,3), there 
is still a huge unmet need for novel therapeutics against 
breast cancer to improve outcomes for patients. One recent 
change in the treatment of breast cancer has been the 

incorporation of immunotherapy. 
Immunotherapy has become a major pillar of cancer 

therapy and has been successfully implemented in many 
types of solid and liquid tumors. They can range from 
technologies like vaccines and oncolytic viruses, which 
are relevant in antigen presentation and cancer immune 
activation (2,3), to monoclonal and bispecific antibodies 
that modulate inhibitory and stimulatory immune 
check points (4,5), to gene or cell therapies that involve 
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customization of chimeric antigen receptor (CAR) T cells 
or ex-vivo expansion of desired immune cell products 
(adoptive T cells) or molecules (e.g., cytokines) relevant 
in anticancer activity (6-8). However, the most used type 
of immunotherapy for solid tumor treatment are immune 
checkpoint inhibitors (ICIs), humanized monoclonal 
antibodies that target various cellular immune checkpoints 
and their ligands at the tumor-immune interface. Cells 
acquire cancerous properties through genetic and epigenetic 
modifications that allow them to proliferate uncontrollably 
and invade surrounding tissues (9,10). The term cancer 
immunosurveillance refers to the coordinated response 
of innate and adaptive immunity against cancer. Immune 
checkpoints are a potential rate-limiting step in enabling 
T cell infiltration and tumor cell kill. Under physiologic 
conditions, the immune system maintains an equilibrium 
between its ability to clear foreign pathogens and its 
capacity for immune regulation. For example, programmed 
cell death 1 (PD-1), which is expressed on the surface of 
many immune cells, acts as a molecular “brake” to prevent 
T cells from destroying healthy cells (11,12). When T 
cells infiltrate the tumor microenvironment, tumor cells 
evade “detection” by these infiltrating lymphocytes by 
overexpressing inhibitory checkpoint ligands like PD-L1, 
which when bound to its receptor PD-1, sends inhibitory 
signals to PD-1 expressing cells (e.g., CD8+ T cells) and 
prevent an anti-tumor response (9-13). Other clinically 
approved ICIs target cytotoxic T lymphocyte antigen 4 
(CTLA-4), which is important earlier on in the adaptive 
immune cascade when the requisite antigen-mediated 
lymphocyte activation occurs prior to CD4+ helper and 
CD8+ T cell clonal expansion and migration (14,15). The 
currently approved agents aim to wake up the immune 
system by blocking the interaction between PD-L1, PD-1 
and anti-CTLA-4 with their ligand or receptors (9,11,16). 

For breast cancer, ICIs are only approved for the 
treatment of triple negative breast cancer (TNBC). TNBCs 
comprise approximately 15% of newly diagnosed breast 
cancers (17-21). Pembrolizumab has been approved in the 
neoadjuvant setting when it is given in combination with 
chemotherapy for ≥ cT2 and/or ≥ cN1 (stage I–III except 
pT1pN0) TNBC. It has also been approved for first-line 
treatment of metastatic TNBC in those with a PD-L1 score 
≥10% (22-24). 

While ICIs can be effective, response rates only range 
from 15% to 30% in most solid tumors (25-28). A recent 
meta-analysis of immunotherapy in metastatic breast cancer 
(mBC) found an overall response rate (ORR) of 19% to 

ICIs (29). Therefore, considering the costs of treatment-
related toxicity and financial toxicity, an important avenue 
of research is the role of biomarkers, including the tumor- 
and host-related factors that predict the chance of patient 
response to ICIs. This continues to be an avenue of 
exploration to maximize clinical benefit for the patient 
population while sparing unnecessary toxicity (25,30,31). 

Beyond PD-L1 expression score as a predictive 
biomarker of response in metastatic TNBC (32-35), other 
biomarkers such as tumor-infiltrating lymphocytes (TILs) 
and T cell receptor (TCR) diversity have also been explored 
as predictors of ICI efficacy in breast cancer (18,36-39). 
However, the accuracy and reliability of these biomarkers 
have been inconsistent in practice, limiting their clinical 
utility (24-26). Thus, more research is needed to identify 
practical tumor- and patient-specific biomarkers.

Patient factors including the diversity of the gut 
microbiome can influence responses to ICI therapy (40,41). 
The gut microbiota consists of the various microorganisms 
found within the digestive tract, including bacteria, viruses, 
fungi and protozoa. Technically, the gut microbiome 
refers to the metagenome of these organisms, but is often 
used interchangeably with microbiota as it is referring 
to the taxonomic classification of microbial species and 
overall composition (38). Gut microbiota have been 
linked directly to many humans diseases, including cancer  
(42-45). Importantly, it can influence cancer development 
and progression, and it can also influence response to 
cancer treatment (46-48). For example, gut microbiota 
can stimulate antitumor immune responses through 
the regulation of CD8+ T cells and tumor-associated 
myeloid cells (49-51). Additionally, reduction of gut 
microbiota diversity through the use of antibiotics has 
been shown to reduce response to cancer immunotherapy 
(52-54). Correlations between the gut microbiome and 
efficacy of immunotherapy have been studied in various 
cancer types, including lung cancer, prostate cancer and  
melanoma (55-57). 

In breast cancer, gut microbiota have been shown 
to influence response to systemic therapies including 
chemotherapy and anti-human epidermal growth factor 
receptor 2 (HER2)-targeted therapies (49,58-60). For 
example, increased alpha diversity, which is a measure of 
microbiota diversity in an individual sample, has been shown 
to predict responsiveness to the anti-HER2 monoclonal 
antibody trastuzumab in HER2+ breast cancer (61,62). 
Additionally, patients who did not respond to trastuzumab 
showed lower alpha diversity and higher abundance of 
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certain species of Bacteroides (62,63). Another study by Li et 
al. also showed higher alpha diversity being associated with 
response to neoadjuvant breast cancer chemotherapy (64). 
Other studies have shown that the relative abundance of 
specific gut microbiota taxa or consortia is also associated 
with chemotherapy response in breast cancer (64,65). 
The role of gut microbiota in modulating the efficacy of 
immunotherapy, specifically, ICIs, in breast cancer, however, 
is less well characterized. 

Given the increased recognition of the role that the 
gut microbiome plays in ICI response, our objective is to 
summarize current data on the link between gut microbiota 
and ICI efficacy in breast cancer. Specifically, we discuss the 
role of gut microbiota signatures and dysbiosis in predicting 
ICI response and the use of novel microbiota-modulating 
treatments to enhance response to ICI therapy in breast 
cancer. We present this article in accordance with the 
Narrative Review reporting checklist (available at https://
tbcr.amegroups.org/article/view/10.21037/tbcr-24-14/rc). 

Methods

We used EMBASE, MEDLINE, and CENTRAL databases 
to conduct a search using the following terms: immunity 
(innate and adaptive), immune checkpoint inhibitors, 
immunotherapy, breast neoplasms, gastrointestinal 

microbiome/microbiota, fecal microbiota transplantation, 
pre- and probiotics and antibiotics. We reviewed all 
studies published until June 4, 2024. The search strategy 
is summarized in Table 1 and the full search strategy is 
available in Appendix 1. 

Our initial search strategy of the relevant databases 
yielded 311 citations. However, after a subsequent 
expansion of our search strategy, an additional 1,644 
publications were found. These articles were screened 
by two reviewers (G.H., J.L.), using title and abstract, 
according to the criteria defined in Table 1. Studies that 
did not meet inclusion criteria were excluded, including 
duplicate articles. This resulted in 137 articles eligible for 
full text screening conducted by two reviewers (G.H., J.L.). 
Review articles, ongoing clinical trials without published 
results and studies not including immunotherapy were 
removed. However, the reference lists of review articles 
were searched for potentially relevant studies. In total, there 
were 16 abstracts and articles that met all inclusion criteria. 
These were critically appraised, and data were extracted by 
a single reviewer (G.H.). 

Results

Based on our systematic search strategy, two-stage citation 
screening, and after an updated manual search of the 

Table 1 Search strategy summary

Items Specification

Date of search June 4, 2024 

Databases and other sources searched EMBASE, MEDLINE, CENTRAL 

Search terms used Innate immunity, adaptive immunity, monocytes, macrophages, myeloid-derived suppressor 
cells, T-lymphocytes, immune checkpoint inhibitors, immunotherapy, breast neoplasms, 
gastrointestinal microbiome/microbiota, fecal microbiota transplantation, probiotics, prebiotics, 
antibacterial agents, proton pump inhibitors, hydrocortisone 

Timeframe Inception to June 4, 2024

Inclusion criteria Population: clinical studies with adult males or females with confirmed breast cancer of any 
stage, animal models of breast cancer and/or in vitro models of breast cancer treated with 
immunotherapy 

Concept: the relationship between gut microbiota compositions and response to 
immunotherapy and/or overall outcomes 

Context: original articles and abstracts in English language, any country of origin

Exclusion criteria Studies with <5 patients excluded

Selection process Dual reviewer selection based on title and abstract and full text screening; single reviewer full 
text analysis 

https://tbcr.amegroups.org/article/view/10.21037/tbcr-24-14/rc
https://tbcr.amegroups.org/article/view/10.21037/tbcr-24-14/rc
https://cdn.amegroups.cn/static/public/TBCR-24-14-Supplementary.pdf
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literature on July 6, 2024, a total of 16 abstracts and articles 
met the inclusion criteria—13 studies were available as 
published conference abstracts only and 3 studies were 
available as full-text peer-reviewed manuscripts. Some of 
these abstracts were presenting updated data to an ongoing 
study. In total, there were 13 unique clinical and pre-clinical 
studies that were included in our review. These studies 
were published between 2020–2024, and originated from 
research groups in the United States, United Kingdom, 
Italy, China and the Republic of Korea. 

Of the 13 eligible studies, 5 (38%) were clinical trials 
(n=202), of which 4 studies reported microbiome-related 
outcomes as a post-hoc exploratory endpoint and one trial 
had pre-planned sample collection, but the analysis was 
also done retrospectively (Table 2). Stool samples were not 
routinely collected in all study participants and the breast 
cancer subtypes enrolled in those trials were heterogeneous. 
To summarize, two clinical trials (n=70) included estrogen-
receptor positive (ER+) breast cancer only, one trial (n=10) 
included TNBC only and two trials included a mix of 
TNBC and ER+ breast cancer (n=88). The remaining 8 
(62%) studies were conducted in the pre-clinical setting 
and were predominantly based on mouse models of breast 
cancer (Table 3). Four studies used TNBC mouse models 
(n=40), one study looked at ER+ breast cancer and the two 
remaining studies examined HER2+ breast cancer (n=15) 
and an ER+, PR+ breast cancer mouse model (n=39), 
respectively. In terms of scope, two of the studies addressed 
the impact of dysbiosis on immunotherapy efficacy in breast 
cancer mouse models, four studies assessed the use of novel 
microbiota agents to increase immunotherapy efficacy  
in vitro and in a mouse model, and two studies explored 
the role of diet and obesity in immunotherapy efficacy in a 
mouse model. 

Discussion

Given that the incorporation of immunotherapy into 
the treatment of breast cancer is relatively new, there is 
a limited understanding as to which biomarkers predict 
response outside of PD-L1. Several studies in other disease 
sites such as melanoma lung, liver, gastric and prostate, have 
identified the potential use of gut microbiome signatures to 
predict patient response to immunotherapy (57,81-89). We 
sought to better characterize the role of gut microbiome 
signatures for immunotherapy in breast cancer. 

Gut microbiome signatures as predictors of immunotherapy 
response in ER+, HER2− breast cancer

Three studies addressed the relation of gut microbiome 
signatures and response to immunotherapy in ER+, HER2− 
mBC. 

Barroso de Sousa et al., reported on the gut microbiome 
correlates of a previously completed randomized phase 
II trial (NCT03051659) of eribulin monotherapy (E) vs. 
eribulin plus PD-L1 inhibitor pembrolizumab (E+P) in pre-
treated ER+ mBC (66). A subset (eribulin: n=11; eribulin 
plus pembrolizumab: n=12) of these patients had fecal 
samples collected at baseline (BL), post two cycles (C2), 
and at end of treatment (EOT). Among the 23 patients 
(23 BL, 22 C2, 5 EOT), subjects with progression-free 
survival (PFS) and overall survival (OS) below the median 
had comparable alpha-diversity at baseline to those above 
the median in both treatment groups. In this initial analysis, 
which used 16S(v3-4) RNA, the findings were limited by 
a small sample size and limited depth of strain evaluation. 
Nonetheless, they descriptively reported an increase in 
Faecalibacterium from baseline amongst patients who had 
a partial response (PR) to eribulin while levels remained 
unchanged in those who had stable disease (SD). The gut 
microbiome composition within this small subgroup with 
available fecal samples was possibly prognostic for a patient’s 
survival outcomes but did not seem predictive of response 
to eribulin or pembrolizumab. The authors subsequently 
performed metagenomic shotgun sequencing on baseline 
fecal samples that were collected from 26 patients prior to 
randomization for more in-depth microbiome coverage 
and strain elucidation. With this, they found that higher 
alpha diversity was associated with longer OS across all 
patients and in the E+P subgroup. This was not the case 
in the eribulin monotherapy arm (67). At the taxonomic 
level, longer OS was associated with baseline lower relative 
abundance of Blautia wexlerea and higher relative abundance 
of Odoribacter splanchnicus, a common short-chain fatty 
acid producing gut bacterium, even after controlling for 
age, ECOG status and prior lines of therapy. Overall, this 
suggests that the gut microbiome could be of prognostic 
value whereas the predictive value in relation to treatment-
specific response and outcomes require further study (66,67). 

The single-arm phase II KELLY trial (NCT03222856) 
similarly tested the safety and efficacy of eribulin plus 
pembrolizumab in patients with ER+, HER2− unresectable 
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BC or mBC (68). In the subsequent CALADRIO sub study, 
Teng et al. analyzed both fecal and saliva samples collected 
from 44 of these patients at baseline, post three cycles of 
treatment, and at EOT. They found that treatment with 
eribulin plus pembrolizumab did not cause significant oral 
or gut microbiota changes from baseline. However, clinical 
benefit was associated with an abundance of gut-associated 
Bacteriodes fragilis and oral Streptococcus and increased gut 
microbiota richness at baseline (68). 

Preliminary results from 16SRNA analysis of fecal 
samples collected from 10 ER+, HER2− mBC patients 
during a phase I/II clinical trial testing the safety and 
efficacy of the combination of letrozole, palbociclib and 
pembrolizumab (NCT02778685) found that patients with 
PR to treatment had ‘healthy’ gut signatures dominated 
by Bacteroides and short chain fatty acid-producing 
Firmicutes (69). In a subsequent analysis of samples from 
the same clinical trial, metagenomic sequencing was 
performed on fecal samples from 11 patients collected at 
baseline and during treatment, and found that a higher 
relative abundance of Gemmiger formicillis was associated 
with response to therapy whereas an increase in relative 
abundance of Bacteroides vulgatus was associated with 
resistance to therapy (69).

Gut microbiome signatures as predictors of ICI response in 
metastatic TNBC

Currently, TNBC is the only subtype of breast cancer with 
approved indications (neoadjuvant chemo-immunotherapy 
for stage II/III TNBC and first-line unresectable/metastatic 
TNBC) for using ICI as part of standard care treatment. 
There are two clinical studies that explored gut microbiome 
signatures and response to immunotherapy.

Chun et al., performed a correlative analysis of gut 
microbiome on patients with metastatic TNBC with baseline 
stool sample and tissue biopsy collected (n=10) prior to 
starting olaparib monotherapy for a 28-day cycle, followed 
by on-treatment stool collection and on-treatment tissue 
biopsy (paired pre-treatment and on-treatment; n=8) before 
adding in durvalumab in cycle 2 (NCT03801369) (71). Using 
16S RNA analysis, they reported that the average baseline 
alpha diversity did not vary with treatment response. 
However, the average alpha diversity on-treatment after 
one cycle of olaparib monotherapy was higher in patients 
who subsequently derived clinical benefit (PR/SD) from 
the olaparib and durvalumab combination. This suggests 
that fecal microbiome alpha diversity prior to starting 

durvalumab, a PD-L1 inhibitor, may predict likelihood of 
response to the combination. On-treatment microbiome 
alpha diversity was inversely related with tumor PD-L1 
expression (P=NS) and was positively associated with high 
TILs in the paired on-treatment biopsy. However, there 
was no association between alpha diversity and immune cell 
density by multiplex IHC, inflammatory signature, IFN 
gene signature, or MutSig3 score (71). 

In an exploratory analysis, gut microbiome diversity was 
assessed in patients with androgen receptor positive (AR+) 
metastatic TNBC who were treated with pembrolizumab 
and a selective androgen receptor modulator, Enobosarm 
in a phase II clinical trial (70). They found that patients 
who had disease progression had dysbiotic gut microbiomes 
and displayed a relative abundance of Prevotella copri, an 
organism associated with inflammation. Patients who had 
PR to treatment had relatively healthy gut microbiota 
dominated by Bacteroides, Faecalibacterium prausnitzii and 
other short chain fatty acid producers (70). 

Taken together, these studies show the potential of 
using gut microbiome signatures to predict response to ICI 
therapy in TNBC. Positive responses to immunotherapy 
appear to be associated with increased alpha-diversity of 
the gut microbiome prior to starting immunotherapy. 
Additionally, abundance of certain microbiota, such as 
Bacteroides, may be associated with improved survival in 
patients, while microbiota such as Prevotella could be 
associated with early disease progression and should be 
further explored. 

Metabolic and dietary factors related to gut dysbiosis and 
ICI efficacy 

Gut dysbiosis, characterized by a disruption to the 
microbiome relative to that found in a healthy individual 
and resulting in changes in their functional composition 
and metabolic activities, has been shown to influence 
response to immunotherapy in patients with cancer (46,90). 
Gut dysbiosis can be induced or influenced by extrinsic 
interventions like antibiotics, medications, and diet but also 
intrinsic, patient-specific factors like body composition and 
systemic metabolism (91,92). Five pre-clinical studies and 
one clinical study investigated the impact of gut dysbiosis 
on breast cancer immunotherapy. 

Rosean  et al. previously showed that meloxicam 
combined with PD-L1 blockade was effective in an 
endocrine-resistant ER+ breast tumor model by targeting 
prostaglandin E2 (PGE2) production via  COX-2 
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inhibition (93). This mechanism is important since PGE2 
is a mediator of systemic immune suppression in mBC. 
However, this therapeutic combination was ineffective in 
mice with antibiotic-induced gut dysbiosis. They found 
that mice with commensal dysbiosis had more recruitment 
of suppressive myeloid populations and irreversible T cell 
dysfunction (73). Importantly, breast glands from dysbiotic 
mice showed enhanced COX-1 activity, and since COX-
1 also regulates PGE2 synthesis, this suggests a secondary 
mechanism for PGE2 synthesis and resistance to meloxicam 
therapy. Supporting this hypothesis, targeting COX-
1 mediated PGE2 synthesis resulted in decreased tumor 
burden only in dysbiotic mice. These findings support that 
dysbiosis-induced COX-1 mediated tissue inflammation 
is sufficient to drive immune suppression and treatment 
resistance (73,93). 

Obesity is another known factor that modifies the gut 
microbiome and induces gut dysbiosis (94,95). Obesity has 
also been associated with increased risk of early recurrence 
in patients with ER+ disease (96). Pingili et al. investigated 
the role obesity plays in ICI response in a syngeneic TNBC 
mouse model using E0771 cells (74). They found that high-
fat diet induced obesity led to greater immunosuppression 
and tumor growth. However, anti-PD-1 therapy was able 
to induce tumor regression not only in lean mice but also 
in obese mice by downregulating immune suppression 
and upregulating antitumor immunity. In obese mice, the 
presence of breast tumor was associated with decreased 
relative abundance of Ruminococcus and an increased relative 
abundance of Bacteriodales whereas treatment with anti-PD1 
reduced the abundance of Enterobacteriaceae and Bacteriodales 
while it led to an increase in Akkermansia, Bifidobacterium, 
Lactobacillus, Aidercreutzia, Odoribacter, Mogibacteriaceae, and 
Ruminococcus (74). 

In addition, Bohm et al. investigated the role of 
bariatric surgery in modulating the gut microbiome and its 
impact on anti-PD-1 immunotherapy in a TNBC mouse  
model (75). The commensal microbiota of study mice 
were ablated with broad spectrum antibiotics prior to fecal 
microbial transplant (FMT) using cecal contents from obese 
mice on high fat diet or from formerly obese mice following 
surgical weight loss. Results showed that FMT from weight 
loss donor mice was associated with reduced tumor burden 
and improved anti-PD-1 immunotherapy response. FMT 
from weight loss donors resulted in elevated infiltration 
of CD8+ T cells into the tumor microenvironment. 
Additionally, microbes from mice with weight loss surgery 
combined with anti-PD-1 treatment decreased circulating 

levels of lithocholic acid, a secondary bile acid that drives 
immunosuppression (75). Thus, gut microbiota can improve 
response to anti-PD-1 therapy in breast cancer after 
bariatric surgery. 

Diet is another factor known to be important in 
microbiome modulation. Clear et al. investigated the 
role of diet in potentiating immunotherapy response 
in a syngeneic mouse model using EMT-6 and EO771 
(TNBC) bearing mice (76). They found that both mice fed 
with either a high-fat Western diet or Mediterranean diet 
experienced a significant reduction in tumor volume and 
weight when treated with PD-L1 inhibitor compared to 
mice fed with a low-fat control diet. Additionally, Western 
and Mediterranean-fed mice displayed a 25–45% increase 
in proportional abundance of gut Akkermensia muciniphila, 
which degrades mucin to produce short-chain fatty acid 
metabolites. Furthermore, fecal microbiota transplant 
enriched with Akkermensia muciniphila, when given in 
conjunction with PD-L1 therapy, enhanced responsiveness 
to PD-L1 blockade. In a later study, Clear et al. investigated 
if Akkermensia muciniphila or mucin short-chain fatty acid 
supplementation could directly enhance ICI therapy in 
EO771 tumor-bearing mice (77). Results showed that mice 
supplemented with Akkermensia muciniphila demonstrated a 
significant reduction in tumor volume and increased levels 
of immune cell populations in the tumor microenvironment. 
Supplementation with short-chain fatty acids and anti-PD-1 
with chemotherapy also showed enhanced response to 
treatment. These results suggested that relative abundance 
of Akkermensia muciniphila could potentially predict, or even 
enhance ICI efficacy in breast cancer, as has been associated 
with anti-PD-1 response in other cancer models (88). 
Overall, the results of these studies indicate that dysbiosis, 
which can be induced through multiple factors including 
antibiotics, diet and metabolic processes such as obesity, can 
influence the efficacy of immunotherapy in breast cancer. 

Antibiotics can also play a role in inducing gut dysbiosis 
and have been shown to impact ICI efficacy in cancer 
treatment (97-100). Kulkarni et al. investigated the impact 
of antibiotic exposure on residual cancer burden in HER-
negative early-stage breast cancer patients treated with 
pembrolizumab as part of the I-SPY2 trial (72). Overall, the 
results showed that antibiotic use during immunotherapy 
treatment was associated with higher mean residual cancer 
burden and lower pathologic complete response rates. 
This data suggests that antibiotic treatment may negatively 
impact ICI treatment outcomes in early-stage breast cancer, 
possibly by changing gut microbiome composition (72).
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Use of microbiota agents to increase ICI efficacy 

Given the known interplay between the microbiome and 
systemic treatment response, there has been an interest 
in identifying microbial interventions that could enhance 
this treatment effect. One particular agent of interest has 
been the use of probiotics (101,102). Ferrari et al. tested 
two proprietary microbial derivatives on murine and 
human primary immortalized cells lines, including those 
from breast cancer, and found that in vitro treatment with 
microbial derivatives led to human leukocyte antigen (HLA) 
upregulation (78). Concordantly, this led to microbial 
derivative-dependent increase in cytotoxic T-lymphocyte 
(CTL) tumor cell recognition. In 4T1 (TNBC)-bearing 
Balb/c mice, intraperitoneally injected microbial derivatives 
in combination with anti-PD-1 significantly reduced tumor 
growth when compared to anti-PD-1 given with vehicle 
control. Microbial derivative-treated mice expressed higher 
levels of MHC class I compared to mice treated with vehicle 
control. This study suggests that microbial derivatives could 
be used in combination with ICIs to enhance anti-cancer 
immune responses (78). 

Kim et al. investigated the effects of oral supplementation 
of Bifidobacterium longum RAPO on anti-PD-1 therapy in a 
4T1 mouse model of TNBC (79). They found that tumor 
volume was significantly inhibited in the anti-PD-1 plus 
RAPO group when compared with the control, RAPO 
only, and anti-PD-1 only groups. Treatment with anti-
PD-1 + RAPO was also associated with increased levels 
of spleen NKT cells and tumor NK cells. Treatment with 
anti-PD-1 + RAPO decreased the proportion of pro-
tumor M2 macrophages and reduced mRNA expression 
of M2 markers IL10 and Arg1, while increasing anti-
tumor cytokines IFNγ and TNFα compared with anti-
PD-1 treatment alone. Additionally, the relative abundance 
of genus Bifidobacterium, Akkermansia and Lachnospiraceae 
was enriched in the anti-PD-1 + RAPO group compared 
with other groups. Additionally, Kim et al. analyzed tissue 
samples from RAPO and anti-PD-1-treated mice using 
qRT-PCR to determine if RAPO could reduce the risk 
of immune-related adverse events associated with anti-
PD-1 treatment by altering the expression of pro- and anti-
inflammatory cytokines (103). Functional analysis showed 
that expression of pro-inflammatory cytokines IL1β, IL6 
and TNFα was significantly decreased, while the expression 
of anti-inflammatory cytokine IL10 was increased in lung, 
liver and kidney tissues in the anti-PD-1+RAPO group 
compared to the anti-PD-1 group. Similarly, TNFα 

expression was decreased in heart and colonic tissue, 
while IL10 was increased in the anti-PD-1+RAPO group 
compared to the PD-1 group. Finally, anti-PD-1+RAPO 
was associated with decreased levels of pro-inflammatory 
enzyme, myeloperoxidase, in the liver. This data suggests 
that combination therapy of B. longum RAPO with 
anti-PD-1 therapy could be used to improve anti-PD-1 
immunotherapy response in TNBC (79). Additionally, 
this data suggests that RAPO could even reduce the risk 
of immune-related adverse events related to anti-PD-1 
treatment by reducing pro-inflammatory cytokines and 
increasing anti-inflammatory cytokines in crucial organs, 
such as the heart, lung, kidney, liver and colon (103). 
Thus, specific microbiota agents, such as Bifidobacterium 
longum RAPO, could be used as adjuvants to enhance 
immunotherapy efficacy and reduce immunotherapy-
associated side effects in breast cancer. 

Li et al. investigated the role of dietary supplement, 
fucoidan, and its impact on the efficacy of anti-PD-1 
therapy in a TNBC mouse model (80). Fucoidan is a 
polysaccharide isolated from brown algae and marine 
invertebrates (104). As a dietary supplement, fucoidan has 
been reported to exert anti-tumor and immunomodulatory 
effects and enhance response to chemotherapeutic agents 
(105,106). Additionally, fucoidan is a potential prebiotic that 
can increase the diversity of gut microbiota and increase 
short-chain fatty acid production (107-109). The study 
showed that fucoidan enhanced the anti-tumor effect of 
anti-PD-1 blockade by decreasing tumor size, weight and 
growth. Correlating to this observed anti-tumor effect, 16S 
sequencing of the gut microbiota showed that fucoidan, 
when combined with anti-PD-1 antibody, increased the 
abundance of Firmicutes, Bifidobacterium and Faecalibaculum, 
which are believed to be beneficial for anti-PD-1 therapy, 
and decreased the abundance of Bacteroidetes, which is not 
favorable for ICI therapy. These changes were associated 
with an increase in short-chain fatty acid content in the 
cecum. In addition, intervention with fucoidan and anti-
PD-1 antibody increased abundance of Lactobacillus, which 
has been shown to increase efficacy of immunotherapy 
in pre-clinical and clinical trials (110,111). Additionally, 
treatment with antibiotics prior to fucoidan and anti-
PD-1 antibody treatment impaired the antitumor effects 
of fucoidan and anti-PD-1 immunotherapy. Thus, the gut 
microbiota is likely necessary to support the antitumor 
effect of fucoidan. Thus, the oral administration of fucoidan 
has the potential to sensitize breast cancer to anti-PD-1 
immunotherapy in the clinic (80). 
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Future directions

Many clinical studies have investigated the association 
between patient gut microbiome and response to cancer 
therapy. However, our understanding of the exact roles 
and mechanisms of the microbiome in relation to breast 
cancer immunotherapy remains limited. In this review, 
we summarized some of the key available data regarding 
gut microbiome as a prognostic and predictive marker 
of immunotherapy response in patients, and in pre-
clinical models, the role of gut dysbiosis and ICI efficacy, 
as well as proof-of-concept that microbiome-modulating 
interventions have the potential to improve immunotherapy 
response in breast cancer.

The exploratory clinical data presented indicates a 
potential role for using gut microbiome signatures to 
predict ICI benefit in breast cancer, as summarized in 
Table 4. In particular, increased baseline alpha diversity 
seemed to correlate with improved response to PD-1/PD-
L1 immune checkpoint blockade (67-71). Due to the small 
sample size of patients with stool correlatives available and 
due to variation in gut microbiome sequencing technology 
(16S RNA and metagenomic sequencing) and bioinformatic 
approaches, most of the reported findings are purely 
exploratory and hypothesis generating. 

Additionally, a number of pre-clinical studies identified 
that dysbiosis induced alterations in the immune system had 
context-dependent importance in regulating breast cancer 
growth (73-77,112). Modifiable drivers of gut dysbiosis, 
such as diet, weight management and antibiotic use, could 
be used to predict and potentially alter tumor response to 
immunotherapy (72-77). Prospective clinical studies are 
required to elucidate the practical application of dietary and 
weight management interventions. The use of microbial 
derivatives, probiotics, and fecal transplantation in pre-
clinical breast cancer models (76-80,103) highlight that 
microbiome-modulating interventional trials in humans 
may be on the horizon. 

 The understanding of the interaction between the gut 
microbiome and tumor-related immunity and control in 
breast cancer remains in its infancy. As a result, one of 
the limitations of this review is the scarcity of published 
studies regarding this topic. Much of the data included in 
this review consisted of preliminary data from published 
abstracts only, which do not have complete information and 
thus present a higher risk of bias. All the studies included in 
this review explored the use of immunotherapy in advanced 
ER+ breast cancer and advanced TNBC, but not HER2+ 

breast cancer (22,24,113), reflecting the current landscape 
of immunotherapy development in breast cancer. Clinical 
data from human therapeutic trials were limited by small 
sample size and sometimes incomplete correlative sample 
sets, and the samples were analyzed retrospectively. The 
real-world applicability of gut microbiome signatures or gut 
microbiome directed interventions will need to be validated 
using randomized prospectively validated studies. 

In terms of future directions, the interrelationship 
between gut microbiota and host immunity is evidently 
complex. As the technology and cost of metagenomic and 
metabolomic sequencing and bioinformatics continue 
to improve, it is hopeful that we may understand the 
mechanistic underpinnings and functional consequences of 
the gut microbiome on cancer immunity at the population 
and individual level. It is unknown yet whether the gut 
microbiome is the most direct resource to predict cancer 
response or if some downstream immune-metabolomic 
factor is more direct and important. It is also yet unknown 
if the correlation between gut microbiome species/signature 
and immunotherapy response is dependent on the cancer 
type and other host factors. 

Future studies of the gut microbiome and cancer 
immunity should also address the role of age-related gut 
microbial and immune system changes. For example, low-
grade inflammation and immunosenescence are hallmarks 
of aging in the elderly (114-116). As the gut microbiome 
has an important role in cancer initiation, progression, and 
metastases, and because there is a general trend towards 
increased gut dysbiosis in advanced stage disease compared to 
early-stage disease, we need to account for cancer stage when 
interpreting the results of gut microbiome studies (117,118). 
It is most likely that immunotherapy responses modulated by 
gut microbiota are going to be heterogeneous across cancer 
subtypes, and therefore promising gut microbial species or 
consortia with potential therapeutic or prognostic relevance 
need to be validated individually across different cancers.

Conclusions

The data presented in this review highlights the importance 
and potential of the gut microbiome in predicting and 
influencing the efficacy of ICI therapy in breast cancer. 
There is preliminary evidence to suggest that the 
microbiome composition can be used to predict response 
to immunotherapy, and that microbiome dysbiosis resulting 
from factors such as antibiotics, diet, obesity, and probiotics, 
modulates these responses. Preliminary data also support 
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the development of microbial-based therapeutics (e.g., 
probiotics) as an adjunct to cancer therapy. While this is a 
promising field, this topic in breast cancer remains in its 
infancy. Larger prospective studies are required to better 
understand these relationships before incorporating them 
into clinical practice. 
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