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Abstract

We propose an innovative statistical-numerical method to model spatio-

temporal data, observed over a generic two-dimensional Riemanian manifold.

The proposed approach consists of a regression model completed with a regu-

larizing term based on the heat equation. The model is discretized through a

finite element scheme set on the manifold, and solved by resorting to a fixed

point-based iterative algorithm. This choice leads to a procedure which is

highly efficient when compared with a monolithic approach, and which allows

us to deal with massive datasets. After a preliminary assessment on simulation

study cases, we investigate the performance of the new estimation tool in prac-

tical contexts, by dealing with neuroimaging and hemodynamic data.
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1 | INTRODUCTION

This work proposes a statistical-numerical methodology to analyze spatio-temporal data measured on general two-
dimensional Riemanian manifold domains. These kinds of data are very common in diverse contexts, from Engineering
to Applied Sciences. In an Engineering design process, for instance, it is standard to study time- as well as space-varying
quantities of interest observed over the surface of a three-dimensional prototype in order to optimize the design pipeline
(e.g., the aerodynamic forces exerted on the surface of an airfoil when dealing with the design of an airplane). In Environ-
mental Science, it is of paramount importance to accurately model space–time data distributed over regions characterized
by a complex orography, for example, in order to better understand the Earth processes, or to control pollution or global
climate changes, or to optimize the exploitation of natural resources. In this paper, we focus on some applications which
arise from Life Science. Figure 1 refers to one of the analyzed contexts. The panel on the left shows the mesh approximat-
ing the cortical surface of a brain, on which the hemodynamic signal induced by the neuronal activity on the cortical sur-
face, shown in the right panel, has been observed at a certain time. Standard spatio-temporal techniques, that rely on the
Euclidean distance, are not suited, in general, to handle data such as the ones in Figure 1. Due to folded geometry of the
domain, such methods can yield highly inaccurate estimates, by incorrectly identifying as close, data locations that actu-
ally are far apart on the real geometry. Thus, values observed over two distinct gyri could be artificially linked each other,
although, in practice, separated by a sulcus. As a consequence, in order to obtain accurate estimates on complex mani-
folds, it becomes mandatory to appropriately comply with the complex geometry of the domain.
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The diversified demands characterizing a so large number of different application fields justify the strong inter-
est for data analysis over two-dimensional Riemannian manifolds, both in the statistical and in the numerical lit-
erature. Nevertheless, the available methodologies are so far confined to special manifolds, such as spheres or
sphere-like domains (see, e.g.,1–7 and the references therein), or to the spatial dimension only (see, e.g.,8–15). The
challenge tackled in this paper is consequently twofold, since dealing with space–time data over a general two-
dimensional manifold. To this aim, we propose a computational procedure which belongs to, and further strongly
advances, the class of Spatial Regression with PDE regularization methods reviewed in Reference [16]. In particu-
lar, we adopt an estimation functional which combines a least-square data-fidelity criterion with a regularizing
term based on the heat equation. The work is inspired by the regression model for spatial data over manifold
domains considered in Reference [12], as well as to the spatio-temporal model for planar domains proposed in Ref-
erence [17]. In more detail, here we discretize the problem directly on the manifold instead of resorting to a con-
formal flattening of the domain as in Reference [12]. This allows us to avoid the approximation error
characterizing the flattening step. Moreover, we use an iterative fixed point scheme to solve the discrete problem
instead of the monolithic approach adopted in Reference [17]. Such a choice ensures a highly computational effi-
ciency, and makes it possible to handle massive datasets, such as those characterizing the applied problems men-
tioned above.

The paper is organized as follows: Section 2 provides some notation related to the differential operators on Rie-
mannian manifolds and to the associated function spaces. Section 3 introduces the proposed PDE-regularized spatio-
temporal smoothing method. Section 4 details the discretization used to solve the estimation problem, by distinguishing
between the monolithic approach and the new fixed point-based algorithm. Section 5 shows the good performances of
the new method through simulation study cases, whereas Section 6 focuses on two applications in Life Science, by con-
sidering neuroimaging data and the study of cerebral aneurysms. Finally, Section 7 outlines possible directions for a
future research.

2 | PRELIMINARIES AND NOTATION

We denote by M�ℝ3 the two-dimensional Riemannian manifold that constitues the spatial domain of interest, and by
0,T½ � �ℝ the considered time window.

We associate with manifold M the Laplace-Beltrami operator, ΔM, and the gradient, rM, involved in the definition
of the estimation problem and of the corresponding approximation, respectively. In particular, the Laplace-Beltrami
operator generalizes the standard Laplacian to the case of a function defined over a manifold, by providing a simple
measure of the local curvature of such a function. Moreover, operator ΔM is invariant with respect to Euclidean trans-
formations (rotations, translations and reflections) of the spatial coordinates.

FIGURE 1 Neuroimaging signal on a cerebral cortex: triangular mesh modeling the cortical surface (left); fMRI signal associated with

neuronal activity distributed over the cortex at a certain temporal instant (right)
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Concerning the function spaces, we introduce the space C0 Mð Þ of the functions continuous on M (which is meant
associated with the closure of M when M is an open manifold), and the Sobolev space, Hk Mð Þ, of the functions
u :M!ℝ which belong to L2 Mð Þ (i.e., which are square-integrable on M), together with the associated partial deriva-
tives up to the order k.18 Note that L2 Mð Þ coincides with H0 Mð Þ.

Finally, as space–time function setting, we consider the space L2 0,T;Hk Mð Þ
� �

of the functions u defined over (0, T)
and taking values in Hk Mð Þ, such that

R T
0 u tð Þk k2Hk Mð Þdt< þ∞.18

3 | REGRESSION ANALYSIS WITH PDE REGULARIZATION

We consider n data locations, {pi, i = 1, …, n}, on manifold M, and m temporal instants, t1, t2, …, tm, in the time inter-
val [0, T], with 0 = t1 < t2 <…< tm = T. We denote by zij the value of a real-valued random variable of interest, when
observed at the space–time location (pi, tj), for i = 1, …, n and j = 1, …, m. We assume that the random variable coin-
cides with a noisy observation of a smooth function, f :M� 0,T½ �!ℝ, according to the model

zij ¼ f pi, tj
� �

þϵij for i¼ 1,…, n, j¼ 1,…,m, ð1Þ

where ϵij are independent measurement errors characterized by a zero mean and a finite variance. Additionally, we
assume that f is twice continuously differentiable in space and continuously differentiable in time.

Our goal is to estimate the space–time field f in (1) in the presence of an a priori knowledge on the phenomenon of
interest. In particular, as in Reference [17], we assume that the problem under study can be described in terms of a
time-dependent law, represented by a parabolic Partial Differential Equation (PDE). The problem-specific information
may include also the Boundary Conditions (B.C.) when M is an open manifold, and the Initial Condition (I.C.), that
model the behavior of the field f at the boundary, ∂Ω� {0, T}, of the space–time domain of interest.

We propose to estimate f by minimizing the regularized sum of squared function errors

Jλ ϕð Þ¼
X

i¼1,…, n

X
j¼1,…,m

zij�ϕ pi, tj
� �� �2þ λ

Z T

0

Z
M

ΔMϕ� ∂ϕ

∂t

� �2

dpdt, ð2Þ

with ϕ :M� 0,T½ �!ℝ twice continuously differentiable in space and continuously differentiable in time, (p, t) the
generic space–time coordinate varying in M� 0,T½ �, and where λ is a positive smoothing parameter.

Functional Jλ formalizes a trade-off between a data fitting and a model fidelity criterion. On the one hand, the sum
of the squared function errors pushes the solution to the minimization problem, denoted by bf , close to the observed
data zij when evaluated at the space–time locations (pi, tj). On the other hand, the penalizing term controls the regular-
ity, in space and time, of bf . In particular, the employment of the Laplace-Beltrami operator ensures that the smoothness
of bf does not depend on the orientation of the domain or of the coordinate system we adopt. Finally, parameter λ tunes
the trade-off between data fidelity and regularity, so that the higher the parameter λ, the more regular the estimate; vice
versa, the lower the parameter λ, the closer the fit to the observed data.

It can be checked that the estimation problem

find bf such that bf ¼ arg
ϕ

min Jλ ϕð Þ ð3Þ

is well-defined in the space V2
T Mð Þ, with

Vs
T Mð Þ¼ v� L2 0,T;Hs Mð Þ\C0 Mð Þ

� �
:
∂v
∂t

�L2 0,T;L2 Mð Þ
� �

þB:C: and I:C:

� 	
ð4Þ

for s�ℕþ, and where proper boundary and initial conditions have to be included according to the specific problem
at hand.

In this paper, we focus on the proposal of an efficient numerical approximation for the estimation problem (3). It
turns out that the estimator bf minimizing the cost functional Jλ in V2

T Mð Þ satisfies the identity
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X
i¼1,…,n

X
j¼1,…,m

bf pi, tj
� �

q pi, tj
� �

þ λ

ZT
0

Z
M

ΔMbf � ∂bf
∂t

 !
ΔMq� ∂q

∂t

� �
dpdt

¼
X

i¼1,…,n

X
j¼1,…,m

q pi, tj
� �

zij

ð5Þ

for any function q�V2
T Mð Þ. Equation (5) can be rewritten as a system of coupled parabolic problems, by introducing a

suitable auxiliary function g defined on M.12 Thus, we look for the pair bf , g
 �
�V1

T Mð Þ�V 1
T Mð Þ, with V 1

T Mð Þ
defined according to (4), such that,

ZT
0

Z
M

νgdpdtþ
ZT
0

Z
M

rMbf �rMνþ ∂bf
∂t

ν

 !
dpdt¼ 0

P
i¼1,…,n

P
j¼1,…,m

bf pi, tj
� �

q pi, tj
� �

� λ

ZT
0

Z
M

rMg �rMq� ∂g
∂t

q

� �
dpdt

¼
P

i¼1,…, n

P
j¼1,…,m

q pi, tj
� �

zij,

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð6Þ

with ν, qð Þ�V1
T Mð Þ�V1

T Mð Þ. We remark that the first problem in (6) coincides with a standard (forward) parabolic
PDE, whereas the problem associated with g constitutes a backward parabolic PDE, since the time derivative and the
diffusive term are characterized by an opposite sign. As a consequence, the initial condition bf p, 0ð Þ¼ef 0 is added to the
first equation, while the ending condition g p,Tð Þ¼egT completes the second PDE.

Concerning the conditions to be assigned on ∂Ω, we will select the boundary data according to the test case at hand.
In particular, the essential boundary conditions will be explicitly included in the definition of space V1

T Mð Þ.
Formulation (6) turns out to be instrumental in view of the discrete counterpart of problem (3). In particular, the

numerical procedure proposed in Section 4.2 will be characterized by a considerable computational efficiency, thanks
to the introduction of an ad-hoc iterative algorithm. This feature will allow us to handle massive datasets, typical of sev-
eral applicative contexts.

4 | DISCRETIZATION OF THE ESTIMATION PROBLEM

This section represents the methodological core of the paper. We provide an improvement in terms of computational
efficiency of the approach used in Reference [17] to tackle system (6) in the simplified case of data distributed over a
planar domain according to specific sampling designs (e.g., pointwise spatial/interval temporal data, areal spatial/
pointwise temporal data, areal spatial/interval temporal data). The final goal is to finalize a handy and accurate proce-
dure able to efficiently analyze considerable amount of space–time data, observed over general two-dimensional Rie-
mannian manifold domains.

In particular, to approximate the system of parabolic PDEs in (6), we have to define a discretization both in space
and time. To discretize the space, we introduce a conformal triangulation, T h ¼ Kf g, of the manifold M, h being the
characteristic mesh size. To discretize the time dependence, we consider a partition, τ1 = 0< τ2 < � � �< τM = T, of the
time window (0, T] into (M � 1) subintervals, (τk�1, τk], of length Δt, with k = 2, …, M. For simplicity of exposition, we
assume that the vertices of T h exactly coincide with the data locations pi, and that the times when data are collected
identify the time partition, so that M≡m and τj≡ tj for j = 1, …, m. The reader interested to the more general case
where mesh vertices do not necessarily coincide with the data locations is referred, e.g., to References [17,19].

Then, we define the finite element space, Vr
h Mð Þ¼ vh �C0 Mð Þ : vh

� 


K
�Pr Kð Þ, 8K � T hg, associated with the tessel-

lation T h, where Pr Kð Þ denotes the space of the polynomials of degree r defined on K. Notice that the (essential) bound-
ary conditions characterizing space V1

T Mð Þ in (6) are inherited by the discrete space Vr
h Mð Þ.

We consider a Lagrangian basis ℬ¼ ψ1,…,ψNT

� �
of the space Vr

h Mð Þ, associated with the nodes ξ1,…, ξNT of the
triangulation, being dim Vr

h Mð Þ
� �

¼NT (we remind that the nodes are, in general, a super-set of the mesh vertices; only
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for linear finite elements [r = 1], the nodes exactly coincide with the vertices of T h). Thus, each function vh �Vr
h Mð Þ

can be expressed in terms of this basis as vh xð Þ¼
PNT

i¼1vh ξið Þψ i xð Þ¼ vTψ xð Þ, where vector ψ xð Þ¼ ψ1 xð Þ,…,ψNT xð Þ
� �T

collects the NT finite element basis functions at the generic point x�M, while vector v¼ vh ξ1ð Þ,…, vh ξNT

� �� �T �ℝNT

gathers the evaluation of function vh at the NT nodes.
In addition, if we define the vector vn ¼ vh p1ð Þ,…, vh pnð Þ½ �T �ℝn of the evaluations of function vh at the n data loca-

tions, p1, …pn, and the matrix Ψ¼ ψT p1ð Þ,…,ψT pnð Þð Þ�ℝn�NT of the evaluations of the basis functions at the same
points, we can relate vectors v and vn via the equality vn = Ψv. In particular, for r = 1, matrix Ψ reduces to the identity
matrix, I �ℝn�n, and v≡ vn.

By extending the notation above, we denote by

vk ¼ vh ξ1, tkð Þ,…, vh ξNT , tk
� �� �T �ℝNT , vkn ¼ vh p1, tkð Þ,…, vh pn, tkð Þ½ �T �ℝn ð7Þ

the vectors gathering the values taken at time tk by vh at the finite element nodes and at the data locations, respectively,
so that vkn ¼Ψvk, where, for r = 1 it holds vk � vkn with k = 1, …, m, being ξi≡pi.

In the next sections, we introduce two different approximations based on the above space–time discretization. The
former has been recently proposed in the literature in the simpler case of space–time data observed over planar
domains17 and represents the reference context for the numerical assessment of this paper (see Section 4.1); the latter
coincides with the new proposed approach which aims at being computationally highly more effective (see Section 4.2).

4.1 | A monolithic approach

We provide here the space–time discretization scheme proposed in Reference [17]. The authors employ finite elements
of degree r to approximate the space, combined with the θ-method for the time discretization. This leads to discretize
time derivatives through an incremental ratio, whereas the other time-dependent terms are replaced by a convex linear
combination of their values at times tk and tk+1.

20 In particular, in Reference [17], the authors resort to the backward
Euler scheme (θ = 1), so that, for each k = 1, …, m � 1, the following system is solved for bf kþ1

h and gkh, both in Vr
h Mð Þ:

Z
M

ρhg
k
hdpþ

Z
M

rMbf kþ1

h �rMρhdpþ
Z
M

bf kþ1

h �bf kh
Δt

ρhdp¼ 0

φT
n
bf kþ1

n þ λ

Z
M

gkþ1
h � gkh
Δt

φhdp�λ

Z
M

rMgkh �rMφhdp¼φT
nz

kþ1
n

bf 1h ¼ef h,1, gmh ¼egh,m,

8>>>>>>>>><>>>>>>>>>:
ð8Þ

with ρh, φh �Vr
h Mð Þ, where bf jh ¼bf h p, tj

� �
, gjh ¼ gh p, tj

� �
�Vr

h Mð Þ denote the finite element approximation for functionbf and g, respectively at time tj, with j = 1, …, m, ef h,1 and egh,m are suitable approximations in Vr
h Mð Þ of the initial data ef 1

and of the ending data egm, and where we have introduced the vectors bf kþ1

n ¼ bf h p1, tkþ1ð Þ,…,bf h pn, tkþ1ð Þ
h iT

,
zkþ1
n ¼ z1kþ1,…, znkþ1½ �T , φn ¼ φh p1ð Þ,…,φh pnð Þ½ �T �ℝn. Notice that, according to this space–time approximation, the
test functions are only space-dependent, in contrast to formulation (6) (and to the discretization adopted in the next
section).

Following,12,17 in order to provide the algebraic counterpart of system (8), we introduce the matrices of dimension-
ality NT

R0 ¼
Z
M
ψψT dp, R1 ¼

Z
M
rMψT rMψð ÞT dp,

where rMψð ÞT is the transpose of the array rMψ pð Þ¼ rψ1 pð Þ,…,rψNT pð Þ
� �T

collecting the gradient of the NT finite
element basis functions at the generic point p�M, whereas rMψT ¼rMψT pð Þ¼ rψ1ð ÞT pð Þ,…, rψNT

� �T
pð Þ

h iT
. It

follows that, for any uh, wh �Vr
h Mð Þ,
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Z
M
uhwhdp¼uTR0w,

Z
M
rMuh �rMwhdp¼uTR1w,

vectors u¼ uh ξ1ð Þ,…,uh ξNT

� �� �T
, w¼ wh ξ1ð Þ,…,wh ξNT

� �� �T �ℝNT gathering the values taken by functions uh and wh

at the mesh nodes.
From now on, we take r = 1, so that NT ¼ n. Thus, the algebraic counterpart of the space–time discretization in (8)

turns out to be

R0gknþR1
bfkþ1

n þR0

bf kþ1

n �bf kn
Δt

¼ 0

ΨTΨbf kþ1

n þ λR0
gkþ1
n �gkn
Δt

�λR1gkn ¼ΨTzkþ1
n ,

8>>><>>>: ð9Þ

with k = 1, …, m � 1, bf 1n ¼ ef h,1 p1ð Þ,…,ef h,1 pnð Þ
h iT

, gmn ¼ egh,m p1ð Þ,…,egh,m pnð Þ
� �T �ℝn, and where, in accordance with the

notation in (7), bf kn ¼ bf h p1, tkð Þ,…,bf h pn, tkð Þ
h iT

, gjn ¼ gh p1, tj
� �

,…, gh pn, tj
� �� �T �ℝn for j = k, k+ 1.

System (9) is sparse since the Lagrangian basis B is locally supported. Nevertheless, the system is fully coupled due
to the opposite time direction characterizing the equations for bf h and gh. Such a coupling leads to adopt a monolithic
approach17 when solving (9). This means to consider simultaneously all the spatial data locations and all the involved
times, namely to solve a unique system with a dimensionality equal to 2mn (see Figure 2). This feature might represent
an issue from a computational viewpoint, in particular when dealing with large datasets (i.e., for large values of m and
n). As a consequence, complex geometries or long time-series are ruled out by the monolithic method, which, in such
contexts, becomes very time- and memory-consuming. This is the case of the applications tackled in Section 6 which
are out of reach for the monolithic approach when codes are run on a standard laptop* .

All these considerations justify the proposal in the next section of a new procedure, which offers us an alternative to
the monolithic approach.

4.2 | A new fixed point-based algorithm

The procedure here proposed aims at commuting the whole system (9) into smaller problems in order to make afford-
able the management of complex amounts of data.

In particular, to tackle the coupling between the two equations in (9), we resort to a fixed point approach.20 Addi-
tionally, we adopt a space–time discretization alternative to the one characterizing the monolithic approach. In particu-
lar, to be compliant with the weak formulation in (6), where the trial and the test functions depend both on the space
and time, we employ space–time finite elements, continuous in space and time.21,22 Thus, in the generic time interval,

FIGURE 2 Sketch of the dimensionality characterizing the algebraic system associated with the monolithic (left) and with the fixed

point-based (right) algorithm
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(τk�1, τk], a fully discrete function, wh, can be expanded as
Ps

j¼0t
jwh,j pð Þ, that is, as a linear combination of functions,

wh,j, belonging to the finite element space, Vr
h Mð Þ, with coefficients coinciding with suitable powers of the time inde-

pendent variable, t. Throughout the paper, we make the choice r = 1, s = 0 in view of a fair comparison between the
monolithic and the new approach.

We replace the algebraic system (9) with the new one

R0gkþ1
n þR1

bfkþ1

n þR0

bfkþ1

n �bf kn
Δt

¼ 0

ΨTΨbf knþ λR0
gkþ1
n �gkn
Δt

�λR1gkn ¼ΨTzkn,

8>>><>>>: ð10Þ

with k = 1, …, m � 1, where the same notations as in (9) are here adopted. Analogously to a semi-implicit scheme, all
the time-dependent terms in the equation associated with bf are evaluated at time t k+1, whereas the time-dependent
contributions in the equation to be solved for g are considered at time t k.

Now, for each k = 1, …, m, we yield a sequence of approximations bf k,jn , gk,jn


 �n o
for the solution bfkn, gkn
 �

of system
(10) via an iterative fixed point algorithm, j being the fixed point iteration index. Then, a check on the accuracy, com-
bined with a maximum number of iterations, is used to stop the iterative procedure.

To start the algorithm, we have to select the initial guess. In particular:

1. we compute the values bf k,0n , for k = 2, …, m, by referring to the steady case (see Proposition 2 in Reference [12]), that
is, by solving the (m � 1) problems

ΨTΨþλR1R
�1
0 R1

� �bf k,0n ¼ΨTzkn; ð11Þ

2. we compute the values gk,0n , for k = m � 1, …, 1, by solving the (m � 1) problems

ΨTΨbf k,0n þ λR0
gkþ1,0
n �gk,0n

Δt
� λR1gk,0n ¼ΨTzkn ð12Þ

by using the values obtained in (11) for the vectors bf k,0n , for k = 2, …, m, and by setting, for simplicity, gm,0
n ¼ 0

and bf 1,0n ¼bf1n.

FIGURE 3 Geometries for the simulation studies. Geometry 1: a benchmark geometry. Geometry 2: simplification of a patient-specific

inner carotid artery affected by an aneurysm
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Then, at the generic iteration, j (with j ≥ 1), of the fixed point scheme, we update the pair bf k,j�1

n , gk,j�1
n


 �
, for k = 1,

…, m, by computing the new pair bf k,jn , gk,jn


 �
, such that:

i. for k = 1,

bf1,jn ¼bf 1n
λ R1þ

1
Δt

R0

� �
g1,jn ¼ λ

Δt
R0g2,j�1

n þΨT Ψbf 1n�z1n

 �

;

8><>:
ii. for k = 2, …, m � 1,

FIGURE 4 Geometry 1: true function f (first column) generated in the first simulation repetition, at time t = 0[s] (first row), 0.05

[s] (second row), 0.10[s] (third row) and 0.15[s] (last row); noisy data (second column); estimate provided by the proposed fixed point-based

algorithm (third column) and by the spatio-temporal kriging (fourth column)
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R1þ
1
Δt

R0 R0

ΨTΨ �λ R1þ
1
Δt

R0

� �
2664

3775 bf k,jn

gk,jn

" #
¼

1
Δt

R0
bfk�1,j�1

n

ΨTzkn�
λ

Δt
R0gkþ1,j�1

n

264
375; ð13Þ

FIGURE 5 Geometry 2: true function f (first column) generated in the first simulation repetition, at time t = 0[s] (first row), 0.05

[s] (second row), 0.10[s] (third row); noisy data (second column); estimate provided by the proposed fixed point-based algorithm (third

column) and by the spatio-temporal kriging (fourth colum)
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iii. for k = m,

R1þ
1
Δt

R0

� �bfm,j

n ¼ 1
Δt

R0
bfm�1,j�1

n �R0gm,j�1
n

� �
gm,j
n ¼ 0:

8<:
The decoupling effect introduced by the fixed point iterations allows us to carry out all the computations in i–iii

simultaneously, in the spirit of a Jacobi solver. We highlight that, although the evident similarity between systems (9)
and (13), with the new algorithm we are solving, at the same time, m systems of dimension 2n instead of a unique sys-
tem of dimension 2mn as for the monolithic approach (see Figure 2). This difference in terms of dimensionality justifies
the considerable computational gain characterizing the fixed point-based approach when compared with the mono-
lithic formulation, as verified in Section 6 (see Figure 8).

Finally, the fixed point algorithm is stopped by introducing a tolerance, TOL, on the relative variation of the cost
functional Jλ in (2), when evaluated on two consecutive approximations, and after setting a maximum number, NMax,
of iterations.

The two next sections are meant to numerically investigate the reliability and the efficiency of the fixed point-based
algorithm, first when applied to simulation case studies and then by considering a real datasets.

FIGURE 6 Geometry 1: original geometry (left); conformal flattening of the geometry used for the implementation of kriging (right)

FIGURE 7 Geometries 1 and 2: box plots for the Mean Square Error (MSE) associated with the estimates provided by the fixed point-

based method, by the monolithic approach and by kriging, over the 50 simulation repetitions with test functions generated as in (14).
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5 | SIMULATION STUDIES

In this section, we assess the performances of the new algorithm introduced in Section 4.2 when applied to spatio-
temporal data. We compare the proposed method with kriging, the most commonly used technique to analyze spatial
and spatio-temporal data (see, e.g., Reference [23] and the references therein). Kriging does not work on generic mani-
folds. For this reason, to perform the comparison with the new fixed point-based procedure, we combine kriging with a
conformal flattening map approach, as detailed below.

Figure 3 shows the two test domains we considered for comparison purposes. The first domain is a benchmark
geometry, employed, for instance, in Reference [12], here discretized by a mesh with 340 vertices. The second domain
coincides with the geometry of a vessel, obtained after simplifying the patient-specific morphology of an inner carotid
artery affected by an aneurysm, shown in the left panel of Figure 9.24 This geometry is of relevance for the investigation
carried out in Section 6.1. The mesh in the right panel of Figure 3, which discretizes the vessel geometry, is character-
ized by 600 vertices.

To generate data, over each manifold we consider 50 smooth functions defined by

f p, tð Þ¼ a1 cos 2πp 1½ � 1þ t
0:2


 �
 �
þa2 cos 2πp 2½ �

t
0:2


 �
þa3 cos 2πp 3½ �


 �
cos 2π

t
0:2


 �
, ð14Þ

with p = [p[1], p[2], p[3]]
T, and where the coefficients aj, for j = 1, 2, 3, are randomly generated from independent nor-

mal distributions, with mean equal to zero and standard deviation equal to one. Then, these functions are evaluated at
the mesh vertices (so that the data locations, p1, …, pn, coincide with mesh vertices), in correspondence with
31 equispaced times in the time window [0, 0.3]. The collected values are hence corrupted by an additive independent
Gaussian noise, with mean equal to zero and variance equal to 0.5. The noise level ranges approximately from 0% to
60% of the true signal.

The first column in Figures 4 and 5 shows the first smooth function generated according to (14) at different times,
over Geometry 1 and 2, respectively. The second column in the same figures provides the corresponding sampled noisy
data, at the same times.

Now, starting from the noisy data, we resort to the fixed point-based algorithm proposed in Section 4.2 to estimate
the 50 smooth functions generated over the two benchmark geometries. To this aim, for both the test domains and for
each simulation repetition, we select the smoothing parameter λ in (2) via 5-fold cross validation,25 while constraining
the fixed point iterations with parameters TOL = 5e�04 and NMax = 30. The fixed point algorithm converges, on aver-
age, after 5 and 6 iterations for Geometry 1 and 2, respectively. The third columns in Figures 4 and 5 show the
corresponding estimation, at the different times. The matching with the original data is very good, despite the noise
characterizing the sampled data.

For the sake of comparison, we compute now the estimates by kriging.

FIGURE 8 Geometries 1 and 2: box plots for the execution time ([s]) associated with the estimates provided by the fixed point-based

and by the monolithic approach over the 50 simulation repetitions with test functions generated as in (14)
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The bi-dimensional spatial domains kriging is able to handle are planar or spherical. This is not the case of Geome-
tries 1 and 2. As a consequence, to implement kriging, we resort to a conformal flattening procedure according to what
described in Reference [26]. In more detail, following Reference [12], we introduce a continuously differentiable map
which changes the Riemannian manifold M�ℝ3 into a planar domain Ω�ℝ2. As an example, Figure 6 shows the
result of the conformal flattening when applied to Geometry 1. Note that kriging does not employ the flattened mesh.
This simply provides the location of the data on the conformally flattened domain, the data being located at the vertices
of the planar mesh. Kriging is thus implemented over the flattened Geometries 1 and 2, by using the R package gStat.27

In particular, we consider a separable variogram, marginally exponential in space and Gaussian in time, whose parame-
ters, for each simulation replicate, are estimated starting from the values of the empirical variogram, as it is a standard
practice for kriging.

Moreover, spatio-temporal kriging cannot handle too large datasets. This justifies the simplification we have applied
to the original geometry of the patient-specific inner carotid artery (with an associated original mesh of 6017 vertices)
to yield the mesh in Figure 3, right panel, consisting of 600 vertices only. The mesh simplification has been performed
by exploiting the algorithm in Reference [10]. The fourth columns in Figures 4 and 5 provide the spatio-temporal
kriging estimates at the considered times. A qualitative cross comparison among the third and the fourth columns in
the two figures highlights the superior performances of the new algorithm proposed in Section 4.2. Indeed, for both the
geometries, the fixed point-based algorithm succeeds in removing the artifacts introduced by the noise, while kriging
turns out to be less effective on this respect.

We enrich the comparative analysis between the fixed point-based procedure and kriging by including the mono-
lithic method adopted in Reference [17] and summarized in Section 4.1. The monolithic approach yields estimates
which, from a qualitative viewpoint, are fully comparable with the results provided by the fixed point-based algorithm.
Nevertheless, a quantitative investigation highlights that the method proposed in this paper outperforms the monolithic

FIGURE 9 Heamodynamic case study: discretization of the inner carotid artery (left); observed wall shear-stress (middle) and

corresponding estimate provided by the fixed point-based approach (right) at two different temporal instants (top-bottom) during the

heart beat
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formulation in terms of computational efficiency. The quantitative analysis is carried out by computing, for each test
domain and for each simulation repetition, the Mean Square Error,

MSE¼
Pn

i¼1

Pm
j¼1 f pi, tj

� �
�bf pi, tj
� �h i2

nm
,

associated with the corresponding estimate, bf , and the CPU time required by the computational procedure. Figure 7 col-
lects the box plots for the MSE characterizing the three methods here compared, and for both the geometries. The per-
formance of the fixed point-based algorithm and of the monolithic approach in terms of MSE is essentially the same.
Instead, kriging exhibits a significantly higher MSE, with a large dispersion and several outliers associated with very
high MSE values. As expected, the estimates yielded by the new and by the monolithic algorithms turn out to be more
robust, as highlighted by the contained dispersion of the related MSEs.

Figure 8 displays the box plots for the execution time, measured in seconds ([s]), demanded by the fixed point-based
and by the monolithic methods, when run on the two test geometries. This check reveals the evident superiority of the
new algorithm with respect to the monolithic approach in terms of numerical efficiency, with a reduction of the execu-
tion time, on average, of about five times for both the geometries. Kriging has not been included in the figure, due to
the remarkably higher time characterizing such a method (around 4 min for both the geometries instead of few
seconds).

6 | CASE STUDIES

We here illustrate the effectiveness of the fixed point-based method through two applied case studies, after having veri-
fied the reliability and the computational efficiency of such an approach in the previous section.

The first case study concerns the analysis of the shear-stress exerted by the blood-flow over the wall of an inner
carotid artery (see Section 6.1). The second application comes from the neurosciences and deals with the study of the
neuronal activity on the cerebral cortex (see Section 6.2). Standard kriging cannot be used in these real-word applica-
tions (not even disregarding the complex geometry of the domains), due to the high dimensionality of the data.

6.1 | Study of heamodynamic forces on the arterial walls

As a first practical case study, we consider a medical disease whose incidence in the population is very high (around
10 cases per 100,000 people, with mortality or serious health conditions in 60% of cases28). We are referring to the rup-
ture of a cerebral aneurysm, namely, of a large bulge that may modify the standard shape of a vessel wall in the brain.
These deformations are very common in the adult population. In the vast majority of cases, cerebral aneurysms are
totally asymptomatic and innocuous. The rupture of an aneurysm is an infrequent event, but unfortunately character-
ized by a very high mortality.

The origin of this pathology is still largely unknown. The study of the factors causing the development and the pos-
sible rupture of aneurysms has attracted lot of interest in the scientific and medical community (see, e.g., References
[29,30]). It is believed that one of the main features influencing the aneurysm pathogenesis is the shear-stress exerted
by the blood flow on the arterial wall. In particular, a strong variation of the shear-stress in space, and over the time of
the heart-beat, is conjectured to be associated with the aneurysms formation, development and possible rupture; more-
over, very low values of shear-stress are thought to be very dangerous (see Reference [30] and references therein). This
haemodynamic stress is in turn dependent on the complex morphology of the vessel. For this reason, the study of the
spatio-temporal behavior of the shear-stress in patient-specific geometries of arteries affected by cerebral aneurysms, is
of great interest for advancing the knowledge on this pathology.

Figure 9 shows the considered medical configuration. It coincides with a patient-specific inner carotid artery
affected by a large aneurysm. In particular, the wall of the artery has been discretized by a triangular mesh consisting
of 6017 vertices (see Figure 9, left). Actually, we are dealing with the same manifold as in Section 5 (Geometry 2). How-
ever, the computational efficiency of the fixed point-based algorithm allows us to involve here a finer discretization of
such a geometry, with a consequent higher reliability of the associated analysis. Concerning the analyzed data, we refer
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to the AneuRisk project.24 In particular, we consider the modulus of the wall shear-stress obtained from computational
fluid dynamics simulations.31,32 This quantity is available at the mesh vertices, at 100 temporal instants, that cover a full
heart-beat. A first analysis of these data has been carried out in Reference [12], although restricted to a single time-
instant.

Now, we exploit the fixed point-based approach to estimate the spatial wall shear-stress distribution over the inner
carotid artery at two distinct times during the heart beat. For this purpose, we choose the smoothing parameter λ by
5-fold cross validation, while selecting values 1e�04 and 50 for parameters TOL and NMax, respectively. Six fixed point
iterations are demanded, on average, to ensure the convergence at each time, leading to a total elapsed time equal to
16.28 s. Figure 9 compares the raw (middle panels) with the estimated (right panels) wall shear-stress. A visual inspec-
tion does not highlight differences between the observed and the smoothed data. This is due to the fact that these data,
obtained by computational fluid dynamics simulations, are characterized by very low noise, that is, order of magnitude
lower than the data values. For this reason, the proposed algorithm, that correctly identifies the very high signal-to-
noise ratio in the data, only filters out the high-frequency variation in the observations. Of course, a higher value of the
smoothing parameter λ could be used to return a smoother estimate, that highlights only the main patterns of the sig-
nal. The displayed temporal instants are characterized by a significative variation in the shear-stress distribution, in par-
ticular with low values of the shear stress within the aneurysmal sac. Independently of the selected time instants, it can
be checked that in this location the wall shear-stress remains always very low and fluctuating, thus supporting the con-
jecture that low values of this stress play a major role in the aneurysmal pathogenesis.

6.2 | Study of neuronal activity on the cerebral cortex

The cerebral cortex is the outermost part of the brain - a thin layer of neural tissue where most of the neuronal activity
takes place. From a geometric viewpoint, the cerebral cortex coincides with a highly tangled surface. It can be approxi-
mated by a triangular mesh which, unavoidably, turns out to be very complex, as shown in left panel of Figure 1. On
the top of this two-dimensional manifold domain, it can be observed a time-varying hemodynamic signal associated
with the neuronal activity on the cerebral cortex. Figure 1 shows one temporal snapshot of such a hemodynamic signal,
measured during a functional Magnetic Resonance Imaging (fMRI) scan. The propagation of this signal constitutes the
object of our investigation.

The data here analyzed come from the Human Connectome Project, a wide public database of resting-state and
task-based fMRI scans, structural scans, diffusion MRI scans, from a large number of volunteers.33 Currently, there is a
strong effort in the scientific community in setting up methods for the analysis of this kind of data (see, e.g., References
[8,34,35]), with the common goal of advancing the knowledge on cerebral functioning and diseases. Despite this consid-
erable interest, the most part of neuroimaging studies is still carried out either by disregarding the spatial dependence

FIGURE 10 Neuroimaging case study: observed signal at a fixed temporal instant (left) and corresponding estimate provided by the

fixed point-based approach (right)
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in the signal, or by employing basic methods which exploit the standard Euclidean distance. These simplified endeavors
may lead to inaccurate estimates, for instance since functional distinct areas, that are apart over the cortex, result close
in three-dimensional space due to the presence of a sulcus. Actually, it has been proved that the possibility to include
the highly complex brain anatomy in the data analysis turns out to be a necessary step in order to guarantee a reliable
investigation.14,36 The method adopted in this paper offers a spatio-temporal smoothing procedure able to correctly
comply with the cerebral cortex morphology.

To assess the fixed point-based algorithm, we start from the data associated with the triangular mesh in the left
panel of Figure 1, consisting of 32,492 vertices. The data coincide with the fMRI signals induced over a patient-specific
cerebral cortex by the neuronal activity, at 30 temporal instants. The left panel in Figure 10 shows a specific temporal
snapshot of this signal. Starting from these noisy data, we run the algorithm proposed in Section 4.2 to estimate the
underlying smooth spatio-temporal signal on the cerebral cortex. To this aim, we select the smoothing parameter in (2)
by 5-fold cross validation and we set the two parameters, NMax and TOL, characterizing the stopping check to 50 and
1e�04, respectively. The fixed point algorithm converges, on average, within 15 iterations, while the whole estimation
process takes 400.16 s. Figure 10, compares the raw data (left panel) with the smooth estimate provided by fixed point
algorithm (right panel), at the considered temporal instant. A visual comparison between the two panels highlights the
accuracy of the estimate, that is able to efficiently smooth the data, appropriately filtering out the noise without gener-
ating any artifact. In particular, notice that the data values observed over nearby gyri are not artificially linked by the
algorithm.

Finally, we remark that higher values for parameter λ could also be used in order to yield an estimate that only cap-
tures the macroscopic features of the original signal, thus returning the corresponding main pattern.

7 | DISCUSSION AND POSSIBLE ENHANCEMENTS

The proposed fixed point-based approach turns out to be an ideal tool to analyze large amount of spatio-temporal data
over general manifolds in ℝ3. The numerical assessment in Section 5 shows the superiority of such a new method when
compared both with kriging (combined with a conformal flattening of the domain to manage generic manifolds) and
with the monolithic procedure proposed in Reference [17], here adapted to non-planar domains. In particular, the fixed
point-based algorithm is considerably more reliable than kriging (Figures 4, 5, 7). On the other hand, when compared
with the monolithic approach, the new method reveals to be significantly more efficient in terms of computational time
(Figure 8) without waiving the estimate accuracy (Figure 7), and allows us to handle data over general two-dimensional
Riemannian manifolds. The gained effectiveness guarantees the possibility to estimate massive datasets as corroborated
by the applicative settings analyzed in Section 6.

The method introduced in this paper enables several extensions. Among the most interesting ones, we cite the inclu-
sion of space-varying covariates in a semi-parametric setting, analogously to what discussed in References [12,37] for
the simplified case of spatial data only. In the heamodynamic framework, this feature would allow us to include into
the estimation process the space-varying radius and the curvature of the vessel, to study the role played by these geo-
metrical features in cerebral aneurysm pathology. In the application to neuroimaging data, we would take into account
the space-varying cortical thickness, which may have an effect on the hemodynamic signal here considered.

Another interesting generalization concerns the adopted finite element discretization which could be replaced by an
isogeometric analysis, thus generalizing what done in Reference [15] in a steady setting.
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