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In this work an approach to investigate the properties of
strongly localized vibrational modes of functional groups in
bulk material and on solid-state surfaces is presented. The asso-
ciated normal mode vectors are approximated solely on the
basis of structural information and obtained via diagonalization
of a reduced Hessian. The grid-based Numerov procedure in
one and two dimensions is then applied to an adequate scan of
the respective potential surface yielding the associated vibra-
tional wave functions and energy eigenvalues. This not only
provides a detailed description of anharmonic effects but also
an accurate inclusion of the coupling between the investigated
vibrational states on a quantum mechanical level. All results
obtained for the constructed normal modes are benchmarked
against their analytical counterparts obtained from the diago-
nalization of the total Hessian of the entire system. Three
increasingly complex systems treated at quantum chemical
level of theory have been considered, namely the symmetric

and asymmetric stretch vibrations of an isolated water mole-
cule, hydroxyl groups bound to the surface of GeO2 (001),
α-quartz(001) and Rutil (001) as well as crystalline Li2NH serving
as an example for a bulk material. While the data obtained for
the individual systems verify the applicability of the proposed
methodology, comparison to experimental data demonstrates
the accuracy of this methodology despite the restriction to limit
this methodology to a few selected vibrational modes.
The possibility to investigate vibrational phenomena of local-
ized normal modes without the requirement of executing costly
harmonic frequency calculations of the entire system enables
the application of this method to cases in which the determina-
tion of normal modes is prohibitively expensive or not available
for a particular level of theory. © 2018 The Authors. Journal of
Computational Chemistry published by Wiley Periodicals, Inc.

DOI:10.1002/jcc.25533

Introduction

Infrared (IR)-spectroscopy[1] is a particularly widespread and fre-
quently used method for the investigation and characterization
of chemical systems. As a non-invasive method it enables the
measurements to be performed without damaging the sample,
while at the same time the required instruments are compara-
tively cost-efficient and straightforward in their application.
Because of these properties IR-spectroscopy became one of the
main methods for analysis in industrial and scientific applications.
As a consequence theoretical approaches to study and predict IR
spectroscopic properties are of special interest and thus highly
regarded. Especially the distinction of overtones and combina-
tion bands gained increasing demand resulting from limitations
to unambiguously assign experimentally observed wave num-
bers to the respective vibrational modes in certain cases. To
achieve an accurate prediction of vibrational wave numbers of
chemical systems the influence of anharmonicity, inter-mode
coupling as well as other quantum mechanical phenomena such
as the influence of tunneling into the classically forbidden region
has to be accurately taken into account, while at the same time
a computationally efficient implementation is to be preferred.

However, the most common method for the calculation of
vibrational frequencies based on the harmonic approximation
of the potential neglects these important effects[2] and is
known to overestimate predicted frequencies due to the severe
oversimplification of the problem.

An improved framework to take the anharmonicity of the
underlying potential into account is Vibrational Perturbation
Theory (VPT2).[3–5] This method has a rather high computational
effort (6N-5 harmonic frequency evaluations with N being the
number of atoms in the system) but at the same time considers
only local curvature information close to the minimum. For this
reason VPT2 approaches are known to be of limited accuracy in
case of strongly anharmonic potentials (e.g., OH bonds) which
have been recently confirmed in joint experimental and theo-
retical investigations.[6,7] A further widely employed method is
the so-called Vibrational Self Consisting Field (VSCF)[8–11]

approach. This method uses, in analogy to Hartree-Fock SCF, an
ansatz which by definition strongly approximates coupling of
different modes. Various improved VSCF approaches have
been formulated focusing on higher accuracy[12–15] and a
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computational efficient procedure.[16–21] While VSCF and its exten-
sions are based on grid data that is typically interpolated to obtain
a continuous representation of the potential energy surface, there
exist different families of grid-based methods evaluating the wave
functions only on the provided data-points. These methods lead
to reliable results with comparably small computational
effort.[6,7,22–25] The latter are not limited to problems in vibrational
spectroscopy, but have also been applied in approaches to
describe the electronic density in atoms and small molecules.[26–33]

] Among these is the so-called Numerov method,[34,35] which was
shown to predict the experimentally determined vibrational fre-
quencies of H2 and H2O within 1 cm−1 (≤0.1)% using correlated
ab initio based potential energy information.[36] Also density func-
tional theory (DFT) at hybrid level[37,38] combined with the
Numerov scheme proved highly accurate in predicting the IR fun-
damental and first overtone of the OH-vibrational modes of meth-
anol and phenol, especially under gas-phase conditions where a
deviation of <0.5% was achieved.[6,7,39] The employed potential
energy grids were created via single point energy calculations
along the vibrational normal modes obtained from an evaluation
of harmonic normal modes of the entire system.

This preparatory step may quickly become a bottleneck even if
approximate gradient-based approaches are employed. In addition
to the dramatically increased execution times the high demand in
memory may exceed the capacities of available computational
equipment (for instance in periodic quantum chemical methods).
Therefore, an approach restricting the vibrational analysis to the
modes of interest avoiding the costly calculation of harmonic
modes for the entire system would greatly extend the capabilities
of grid-based approaches. Since the latter requires the execution
of individual, less-demanding single point computations, the crea-
tion of the potential energy grid is in principle perfectly paralleliz-
able. This strategy is particularly suitable if vibrational modes with
strongly local character are the focus of interest. In this case the
vibration is concentrated on a small number of atoms of the chem-
ical system. A typical example are hydroxy (OH) groups in mole-
cules or on the surface of a bulk material, which concentrate more
than 99% of the associated vector norm to the respective oxygen
and hydrogen atoms.[39] It has been shown that the frequencies of
localized modes like the OH-vibration of organic molecules can be
approximated exploiting the local character of the vibration by
considering only the motion of the involved O and H atoms,
assuming the rest of the molecule to remain rigid. Besley and
Bryan presented a similar approach based on a partial Hessian for
the determination of harmonic frequencies that only considers
atoms of interest while neglecting the motion of all other atoms.[40]

This approach resulted in a reasonable prediction of wave numbers
with small deviations compared to a full normal mode analysis
employing the Hessian of the entire system.

The concept to reduce the computational demand by focusing
only on a reduced set of vibrational modes has also been
employed in a number of investigations. Bowman and co-workers
proposed a local monomer model[41,42] to investigate clusters of
small molecules.[43–46] Jacob, Reiher, and Neugebauer proposed an
approach to calculate vibrational normal modes of quantum
mechanical (QM)-systems and combined quantum mechanica/

molecular mechanical (QM/MM) simulations.[47,48] Kjaergaard
et al. employed local mode descriptions to describe XH stretching
systems.[49–56] Another local-mode coordinate model was pro-
posed by Steele and co-workers[57] for the calculation of vibrational
frequencies of large molecules. Recently the FALCON framework
was proposed by Christiansen and co-workers,[58] a method for
flexible adaptation of local coordinates of nuclei.

The main focus of these methods are applications in molecular
clusters composed of small molecules or single large molecules,
whereas the method presented in this paper is aimed at the char-
acterization of vibrational properties of solid-state systems consider-
ing also the associated surface chemistry. For this purpose, the
strategy to employ constructed normal mode vectors[39] is adapted
to higher dimensions by combining it with the idea of a partial Hes-
sian.[40] Comparison of the results obtained via a one-dimensional
and two-dimensional treatment provides detailed information on
the contributions arising by just considering anharmonic effects
and alternatively the inclusion of both anharmonicity and coupling
of the investigated vibrational modes. First, the theoretical basis
and the presented test systems are introduced, followed by the dis-
cussion of the obtained results and concluding remarks.

Methods

Previous applications of the Numerov method to vibrational spec-
troscopy have demonstrated that the wave numbers of the
strongly localized OH modes in methanol, phenol, and thymol can
be calculated within 0.5% of the experimental value employing
artificial normal modes.[39] The latter are constructed employing
only the structural information of the OH bond at the respective
minimum geometry. In this work the approach was extended to
higher dimensions as discussed in “Numerov’s approach to solve
Schrödingers equation” Section and tested with chemical systems
containing two XH bonds (X = O,N). The vibrational frequencies are
evaluated using the Numerov method, a grid-based approach to
numerically solve the Schrödinger equation of the vibrational
quantum system. The employed Numerov approach has been
derived earlier[36] and is summarized in “Constructed normal
modes” Section. It has been shown that the respective accuracy
mainly depends on the spacing h of the potential energy grid.[36]

To guarantee an accurate prediction the individual grid points
have to be computed using at least DFT on generalized gradient
approximation level[37,38] with suitable basis sets. In the example of
water coupled cluster theory was employed.

The direction of the potential energy scan and the respective
effective mass is usually determined via a harmonic normal
mode calculation. This may become a computational bottleneck,
especially for large chemical systems. However, in most cases
only a small part of the gained information is subsequently used
to create the potential energy grid considering only a small
number of relevant modes. Thus, the idea of the presented
approach is to avoid the costly computation of harmonic normal
modes and to approximate the scan direction only for the vibra-
tions of interest via constructed displacement vectors requiring
only the knowledge of the minimum configuration. While in
case of all test systems presented in this work the results
obtained by applying constructed normal modes are critically
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compared to those obtained from modes evaluated via the full
Hessian for the purpose of validation, future investigations of
large systems (e.g., large surface structures) will strongly benefit
from the possibility to construct normal modes solely on the
basis of the respective minimum configuration. In the following
normal modes determined via the harmonic calculation of the
entire system Qi are referred to as analytical in the sense that
the entire Hessian matrix H of the system is evaluated and all
respective normal modes are calculated via diagonalization. This
consideration also applies if the individual elements of H are
computed via finite difference of gradient contributions as it is
done in the program Crystal14.[59]

Constructed normal modes

In this section the formalism to construct approximated normal

mode vectors Qi from the minimum geometry is presented. For
better clarity the discussion is split into two parts, namely the
one- and higher-dimensional case.

One dimension. Starting with theminimumgeometry the local-
ized normal modes of XH bonds (X = N,O in this work) can be
approximated.[39] As discussed up to 99% of the vector norm of
the respective localized normal mode is concentrated on a small
number of atoms of the chemical system, while the remaining part
of the molecule effectively remains rigid. The associated atomic
displacement vectors ΔrX and ΔrH are obtained via weighting
based on the respective atomicmassesmX andmH according to

ΔrX = rXH
mH

mX +mH
ð1Þ

ΔrH = −rXH
mX

mX +mH
, ð2Þ

with rXH corresponding to the associated bond vector at the
equilibrium configuration. The displacement of all other N-2
atoms is assumed to be negligible and set to zero. Finally, all
atomic contributions are collected in a single displacement vec-
tor Δr 2 R3N followed by normalization yielding the approxi-

mated normal mode Q. The quality of the constructed

displacement vector Qi can be validated via the scalar product
pi with the associated, analytical normal mode vector Qi

obtained via diagonalisation of the total Hessian.

pi =QT
i Qi ð3Þ

thereby assuming the vectors to be properly normalized. Here,
the superscript T denotes the vector transpose. The smaller the
corresponding angle obtained via the inverse cosine the better
the approximation, with 0∘ corresponding to an ideal agree-
ment. A second mean of validation is the difference in the
reduced masses μi

[2] obtained via

μi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3N

j = 1
Q2

i, j �m b j−1ð Þ=3cð Þ+1

r
, ð4Þ

with the elements of Qi representing either an analytical or
constructed normal mode, respectively, while the expression
b...c corresponds to the floor function.

Higher dimensions. Since the approach in one dimension con-
sidering just a single XH bond proved viable, an extension to
several XH bonds is envisaged, to explicitly consider the respec-
tive mode-mode interactions at quantum mechanical level. In
order to achieve a higher dimensional framework, a reduced
Hessian Hred considering only the vibrations of interest is intro-
duced. This idea was already successfully applied in case of
purely harmonic frequency calculation as shown by Besley and
Bryan.[40] Comparison between an 1d treatment and the corre-
sponding higher dimensional investigation provides detailed
information about influence of anharmonicity compared to
anharmonicity plus mode coupling.

Given a chemical system with N atoms, the respective posi-
tions can be described using Cartesian coordinates, denoted
(x1, y1, z1, …, xN, yN, zN). After choosing a basis in this 3N-
dimensional vector space the positions and movements of all
atoms are uniquely described. In this case it is convenient to
express the degrees of freedom by mass-weighted
coordinates[2]:

q1 =
ffiffiffiffiffiffi
m1

p
Δx1,q2 =

ffiffiffiffiffiffi
m1

p
Δy1,q3 =

ffiffiffiffiffiffi
m1

p
Δz1,

q4 =
ffiffiffiffiffiffi
m2

p
Δx2,…,q3N =

ffiffiffiffiffiffiffi
mN

p
ΔzN:

This enables a simultaneous treatment of XH bonds with dif-
ferent effective masses (e.g., an NH bond and an OH bond). In
the next step the Hessian matrix is introduced containing all
second derivatives with respect to {qi}

3n:

H=

∂2V
∂q21

∂2V
∂q1∂q2

…
∂2V

∂q1∂q3N
∂2V

∂q2∂q1

∂2V

∂2q2
…

∂2V
∂q2∂q3N

..

. ..
. . .

. ..
.

∂2V
∂q3N∂q1

∂2V
∂q3N∂q1

…
∂2V
∂q23N

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð5Þ

To derive vibrational data the Hessian matrix is always con-
sidered in a minimum of the potential hyper-surface at which
point the gradient of the potential energy is vanishing. By
determining a proper basis in the 3N-dimensional vector space
it is possible to reduce the Hessian to a diagonal matrix. This
basis corresponds to all 3N normal modes and is obtained by
calculating the eigenvalues and respective eigenvectors of the
Hessian matrix. If the translational and rotational normal modes
are neglected 3N − 6 vibrational normal modes exist (3N − 5 in
case of linear molecules, 3N − 3 for periodic systems). An
exhaustive theoretical evaluation including the justifications for
this step is given by Wilson.[2]

For the presented purpose this step is not required because
the size of the Hessian matrix will be significantly reduced. Simi-
lar to the ansatz in one dimension all atoms except the consid-
ered XH bonds remain fixed. The respective Hessian containing
a large number of zero entries leads to a small sub matrix with
non-zero entries. Using the coordinates qi defined above the
investigation of m XH bonds leads to 2m movable atoms and
therefore to a 2m � 3 × 2m � 3 sub matrix with non-zero entries.
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The remainder of the Hessian is zero by definition because the
respective atoms are considered fixed. Without loss of general-
ity the non-zero entries are assumed to have the indices 1,
…, 6m.

Hred =

∂2V
∂q21

∂2V
∂q1∂q2

…
∂2V

∂q1∂q6m
0 … 0

∂2V
∂q2∂q1

∂2V

∂2q2
…

∂2V
∂q2∂q6m

0 … 0

..

. ..
. . .

. . .
. ..

. . .
. ..

.

∂2V
∂q6m∂q1

∂2V
∂q6m∂q1

…
∂2V
∂q26m

0 … 0

0 0 0 0 0 … 0
..
. ..

. ..
. . .

. . .
. . .

.
0

0 0 0 0 … … 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: ð6Þ

The movement of all XH bonds is limited to the predefined
direction given by the respective XH-distance vector. This
enables to represent the displacement of the atoms in internal
coordinates as presented in Ref.[2] , which can be used to fur-
ther reduce the size of the sub matrix. By describing the dis-
placement of each atom pair using only a single internal
coordinate per XH bond, the size of the reduced Hessian matrix
is only of the dimension m × m. Here, each XH bond is consid-
ered separately as an arbitrary vibrational mode and each bond
to be investigated is represented by a single normalized coordi-
nate Δri corresponding to the displacement vectors discussed
in the one-dimensional case.

While the latter yields the constructed normal mode Qi in
the one-dimensional case, a diagonalization of the reduced
Hessian matrix is required, yielding the eigenvalues λi and the
associated eigenvectors vi. The elements of vi are then
employed as coefficients in a linear combination of the dis-
placement vectors Δri leading to the approximated normal

modes Qi for the higher dimensional system.

Qi =
Xm
j = 1

vi, j �Δrj for i = 1,…,m, ð7Þ

where vi, j denotes the j-th entry of vi. If the displacement and
eigenvectors Δri and vi have been properly normalized the

same applies to the constructed normal modes Qi . The associ-
ated reduced mass of the mode μi is then evaluated via the

components of Qi according to eq. 4.
In this work the elements of the reduced Hessian have been

numerically approximated in mass-weighted coordinates using
finite differences.[60] Assuming an n-point approximation to the
second derivative (i.e., an n-point stencil) and m XH bonds to
be considered, then nm single point energy calculations have to
be executed to approximate the reduced Hessian matrix. This
approach can be used for an arbitrary number of XH bonds.
Especially in case of large systems containing only a few vibra-
tions of interest with local character this approach may dramati-
cally improve hardware requirements as well as execution
times.

The equispaced, multi-dimensional potential grid obtained
from the subsequent scanning of the energy landscape may
then serve as input to solve the Schrödinger equation of the
respective vibrational subsystem. Because of the properties of
eigenvectors the respective sign is undetermined: It is thus pos-
sible that the potential energy scan yields a dependence oppo-
site to the general chemical consensus (i.e., the repulsive
branch is found in positive direction while the attractive disper-
sion interaction is in the negative region). Looking at chemical
systems with multiple XH bonds of interest two possibilities can
be envisaged: either the procedure presented above can be
extended to an arbitrary dimension or each combination of
modes is investigated in a pair-wise fashion. Although looking
only at two vibrations at a time may not fully represent the
coupling between all vibrational modes, this approach provides
detailed information about the mutual influence of each cou-
pling pair. Moreover, it has been pointed out in the literature
that a three-dimensional description of the potential energy is
not always required to achieve accurate predictions of vibra-
tional wave numbers.[16]

Numerov approach to solve Schrödinger’s equation

Numerov’s method[34,35] can be applied to numerically solve all
ordinary differential equations (ODEs) of the form

Δψ xð Þ= f xð Þψ xð Þ, ð8Þ

with the Laplace operator Δ, the discretised vector x and a
known function f. The eigenfunction ψ (x) is to be determined.
The grid {x1, x2, …} has to be equidistant with a spacing
h = xi + 1 − xi. In this approach the differential equation is
solved numerically on a grid, implying that the solution of the
ODE is approximated only at the grid points.

Schrödinger’s equation can be rearranged into a form com-
patible with the Numerov framework:

Δψ xð Þ= 2m

ℏ2 E−V xð Þð Þψ xð Þ= f xð Þψ xð Þ, ð9Þ

with the potential V(x), the effective mass m and the energy
eigenvalue E. In the following an adapted Numerov method[36]

presented earlier is outlined, which has the advantage that the
sparse character of the matrix formulation is fully exploited
leading to a dramatic reduction of memory demand and execu-
tion time while at the same time real eigenvalues and orthogo-
nal eigenvectors are guaranteed. As in the previous study[36]

the employed algorithms to solve the sparse eigenvalue prob-
lem is based on the Armadillo[61] library and uses the sparse
eigenvalue routine of the ARPACK[62] package.

One dimension. As mentioned the Numerov method is a grid-
based method employing K equispaced points xi, i = 1, …, K,
following the short notation ψ (xi) = ψ i and ψ (xi � k � h) = ψ i � k.

Here, k denotes a natural number and all ψ i with i < 1 and
i > K are considered zero, implying a Dirichlet (zero) boundary
condition. In the one-dimensional case the Laplace operator Δ
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simplifies to the second derivative ∂2/∂x2. Summation of the
two Taylor series for x + h and x − h and using the identity
eq. 8 yields the numerical expression

ψ i +1−2ψ i +ψ i−1 = h2fiψ i + 2
Xn
k = 2

h2k

2kð Þ!ψ
2kð Þ
i +O h2n+ 2

� �
: ð10Þ

In eq. 10 the desired accuracy n can be chosen via the num-
ber of terms included in the sum specified by the parameter n.
Next, all occurring derivatives have to be approximated using
the respective finite difference expressions.[60] As an example
the equation for n = 3 is shown:

fiψ i =
1
h2

1
90

ψ i +3−
3
20

ψ i +2

�

+
3
2
ψ i + 1−

49
18

ψ i +
3
2
ψ i−1−

3
20

ψ i−2 +
1
90

ψ i−3

�
+O h6
� �

:

ð11Þ

Thus, the more neighboring points ψ i � n are included the
better the approximation of the second derivative. Considering
ψ i as entries of a vector, the equations for all ψ i can be com-
bined to a matrix equation

with A being a matrix filled with the respective coefficients
near the diagonal and being a diagonal matrix. Next, eq. 12 is
applied to the Schrödinger equation according to eq. 9 which
leads to the eigenvalue equation in matrix form given as

A+Vð Þψ =Hψ = Eψ : ð13Þ

Since the potential matrix V is diagonal, the Hamiltonian H is
sparse filled and symmetric. It has been shown that this property
not only leads to a substantial improvement in the computational
demand, but also guarantees the respective eigenvalues to be real.
In contrast the original formulation of the matrix Numerov proce-
dure[34,35,63] requires additional steps in the computation (one
matrix inversion, onematrix multiplication, and the diagonalization
of a dense matrix). Since the product of two symmetric matrices is
not guaranteed to result in a symmetric matrix, the original matrix
Numerov formulation does not guarantee real eigenvectors. Fur-
thermore, comparing the performance of the adapted version
against the original formulation showed that effectively the same
results are obtained while a substantial reduction of the computa-
tional effort could be achieved.[36]

Two dimensions. In this part the higher dimensional approaches
are outlined shortly. Exemplarily, the derivation of the two-
dimensional approach is shown. Analogously to the one-
dimensional case a shortened notation is used: ψ (xi, yj) = ψ i,j

and ψ (xi � k � h, yj � l � h) = ψ i � k, j � l. In two dimensions the dif-
ferential equation to be solved is

∂2

∂x2
+

∂2

∂y2

� �
ψ x,yð Þ= f x,yð Þψ x,yð Þ: ð14Þ

The respective spacing h in both dimensions of the grid has
to be equal which in case of vibrational spectroscopy is ensured

by using mass-weighted coordinates.[2] Analogous to the one-
dimensional case the method is derived using a sum of four
individual Taylor series:

ψ i +1, j + 1 +ψ i +1, j−1 +ψ i−1, j + 1 +ψ i−1, j−1−4ψ i, j = 2h2fi, jψ i, j +

+4
Xn
k =2

h2k

2kð Þ!
Xk
l =0

2k!ð Þ
2k−2lð Þ!2l!

∂ 2kð Þψ
∂x2k−2l∂y2l

 !
+O h2n+2
� �

,
ð15Þ

in which the second derivatives were substituted using eq. 14.
After choosing the desired accuracy n all derivatives on the right-
hand side of the equation have to be approximated using finite
difference expressions[60] followed by a separation of terms con-
taining ψ . Next, the derivatives in eq. 15 are applied to Schrö-
dinger’s equation leading again to a matrix eigenvalue problem
as shown in eq. 13. In this formulation the two-dimensional
wave function is represented in vector form ψ . Diagonalisation
of the resulting Hamiltonian matrix H yields the eigenvalues Ei
and the associated two-dimensional wave functions. It has been
demonstrated that this concept can be analogously adapted to
higher dimensions.[36]

Target systems

As mentioned the presented approach is focused on problems
in solid-state chemistry, in which the definition of local mono-
mers is not as straightforward as it is in case of clusters com-
posed of small molecules. Moreover, in case of X-H vibrational
groups located at the solid-state interface, the vibrational fea-
tures inside the solid are of minor importance due to the com-
parably higher reduced masses and the associated low wave
numbers. On the other hand since a substantial amount of
atoms should be included to properly represent the bulk of the
solid, the calculation of all vibrational modes via the diagonali-
zation of the full Hessian provides a large number of redundant
information while at the same time the computational effort is
unnecessarily increased.

To demonstrate the applicability of this strategy four increas-
ingly complex solid-state systems were investigated. The pre-
dicted wave numbers obtained using the constructed

vibrational vectors Qi are then compared to those resulting
from application of the analytically derived normal modes Qi.
For this purpose a GeO2 (001) with two adsorbed hydrogen
atoms, bulk Li2NH containing two NH bonds in the unit cell, the
complex H bond pattern on hydroxylated SiO2 (001) reported
by Catlow et al.[64] and a TiO2 (001) bulk with a chemisorbed
H2O molecule on the surface were considered. Finally, an iso-
lated water molecule was used to test the performance of the
approach in case two O-H bonds are assigned to the same oxy-
gen atom. Furthermore, it was investigated if the presented
approach is also applicable to deuterated water.

If not explicitly mentioned the number of grid points was
chosen in between 41 and 61, corresponding to a grid size h in
between 0.025 an 0.03 Å. In all examples the calculations were
performed in one and two dimensions, so that the influence of
mode–mode coupling can be observed in comparison to the
uncoupled 1d-case. The results are then compared to the
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harmonic frequency calculation and to experimental data. For
the approximation of the Hessian matrix a 9-point-stencil was
applied in all examples, combined with a grid size of
h = 0.025 Å, leading to 81 single point energy calculations. The
grid size h was chosen low to ensure the accuracy of the
numerical second derivative.

Germanium dioxide—(001)-surface. The first example is the
(001)-surface of tetragonal GeO2 with two hydrogen atoms
adsorbed to different oxygen atoms, forming two surface
hydroxy groups. The number of atom layers of the GeO2 surface
was chosen sufficiently high to ensure that a surface model con-
sistent with the bulk material is retained, resulting in a system
containing 20 atoms subject to two-dimensional periodic
boundary conditions. A depiction of the unit cell and its periodic
images are shown in Figure 1. To determine the minimum
geometry of the system two different variations with and with-
out relaxation of the unit cell were carried out. In the following
these two variations are referred to as configurations A and B,
corresponding to models without and with relaxation of the unit
cell, respectively.

The calculations were performed with the program Crys-
tal14[59] at DFT level using the PBESOL[65] functional. The
8-51G,[66] LC-31d,[67] and POB-TZVP[68] basis sets have been
applied in case of O, Ge, and H, respectively. The layer group
was set to P1 in all cases to ensure each atom in the system is
irreducible, which is a requirement for the associated normal
mode scan moving the atoms away from the respective mini-
mum positions.

Lithium imide. In addition a bulk material was investigated to
analyze the performance of the artificial normal mode calcula-
tion in a material. For this purpose lithium imide (Li2NH) was
chosen, the respective structural data have been obtained from
Ohoyama et al.[69] Since the positions of the hydrogen atoms are
only reported via fractional occupation (1/4 to 1/24 for different
structural models), two idealized configurations with parallel
(P) and opposing (O) orientation of the NH-groups based on the
data provided by Magyary-Köpe et al.[70] and Mueller et al.[71]

have been constructed to ensure a manageable computational
demand. The respective unit cells are depicted in Figure 2a.

Again two different variations of geometry optimization strat-
egies A and B as described in “Germanium dioxide—(001)-sur-
face” Section were performed. The calculations were executed
using Crystal14[59] on hybrid DFT-level[37,38] using the functional
B3LYP.[72] For H and N the POB-TZVP[68] basis set was applied,
in case of Li the 6-11G[73] basis was chosen. Similar as in the
case of GeO2 (001) the space group was set to P1 for all sys-
tems ensuring irreducibility of all atoms in the systems which is
required during the potential energy scanning along the direc-
tion of the vibrational mode vectors.

α-quartz (SiO2)—(001)-surface. The third target system is a
hydroxylated α-quartz (001)-surface. The investigated system
was inspired by the results of Catlow et al.[64] , being composed
of an 18 layer two-dimensional-periodic (001)-surface contain-
ing 21 atoms. The number of layers was chosen sufficiently
high to encompass the full properties of the surfaces. Following
the notation in Ref.[64] , the target system was constructed by
the reconstructed configuration on the lower surface and the

Figure 1. GeO(001) surface with adsorbed
hydrogen atoms in front (left) and top view
(right). The unit cell of the 2d-periodic system
is outlined via the gray box which has been
periodically enlarged for clarity (represented
by the transparent atoms). The z-dimension is
not considered as periodic. [Color figure can
be viewed at wileyonlinelibrary.com]

Figure 2. Lithium imide cells shown prior to
energy minimizations: a) Unit cell of lithium
imide and its periodic propagation. Due to the
large number of possible arrangements of the
hydrogen atoms resulting from the fractional
occupation, two idealized systems have been
constructed based on the discussion provided
in literature[70,71]: b) Conf. P of the investigated
lithium imide, both NH bond are oriented in
the parallel direction c) Conf. O of the
investigated lithium imide, the NH bond are
oriented in opposite directions. [Color figure
can be viewed at wileyonlinelibrary.com]
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hydroxylated configuration on the upper side. For the hydroxyl-
ation a water molecule was adsorbed to the so-called cleaved
surface as an OH −-group and a proton. A depiction of the unit
cell and its periodic images are shown in Figure 3. The interest-
ing and at the same time challenging property of this surface
is, that the OH-groups of interest are connected to each other
via subsequent hydrogen bonding. Looking at the target sys-
tem it has the effect, that the hydrogen atom of one hydroxy
group is hydrogen-bonded to the oxygen of a periodic image
of the other OH group and vice versa. This configuration is
shown in Figure 4. The calculations were executed using the
program Crystal14[59] at DFT level employing the PBESOL[65]

functional. The O6-31d1[74] basis set was applied for oxygen
and hydrogen, while for silicium the Si88-31G(*)[75] basis set
was used. The box parameters are a = b = 5.01035882Å
with γ = 120∘.

TiO2—Rutil (001) surface. As fourth example a 10 layer system
of a rectangular, 2d-periodic 2 × 2 supercell (sidelength
9.187 Å) of TiO2 was investigated. It contains 120 atoms plus an
chemisorbed, dissociated H2O molecule forming two OH-
groups on the surface, leading to a total number of 123 atoms
and 1530 electrons. The 10 layers are necessary to achieve an
adequate representation of the bulk structure thus avoiding
interactions between the top and the bottom surfaces. All cal-
culations were executed applying the PBESOL functional[65]

with the basis sets 86-51(3d)G for titan[76,77] and the
O6-31d1[74] basis set for oxygen and hydrogen. The gridspacing
h of the 31 ×31 point grid was chosen as 0.05Å before mass
weighted coordinates were applied.

Water. As last example the two OH-modes of an isolated
water molecule were chosen. In this system both OH bonds
share the same oxygen atom leading to a strong coupling of
the symmetric and asymmetric stretching modes. Water thus
comprises a further critical test for the suggested approach. In
the other examples the XH bonds of interest do not originate
at the same atom, thus being simpler examples compared to
H2O. Moreover, since the performance of the Numerov method
in three dimensions has already been demonstrated,[36] the
influence of the coupling between the symmetric and asym-
metric OH stretch modes can be highlighted by comparing the
results of the 2d-problem to that of the individual one-
dimensional predictions. Additionally the vibrational frequen-
cies of heavy water (D2O) were calculated to verify the perfor-
mance of the approach if the hydrogen atom is replaced with
deuterium.

All computations were executed with the ab initio program
Gaussian09[78] at CCSD(T)/aug-cc-pvqz[79,80] level without frozen
core approximation using tight settings for energy and gradient
convergence criteria.

Results

In this section the predicted wave numbers for the different sys-
tems are discussed. The main focus of this work is the compari-
son of the wave numbers obtained via the use of the constructed

and analytical normal mode vectors Qi and Qi, respectively.
Although the experimental data (if available) is not 100% com-
parable to the executed calculations, the comparison gives an
impression of the general quality of the applied procedure and
level of theory. In general only the fully optimized geometries
(Conf. A) were compared to the experiment, while the geome-
try with fixed box dimensions (Conf. B) was considered only to
compare constructed and analytical vibrational frequencies.

Germanium dioxide

The first example is comprised of a germanium dioxide (001)
surface with two adsorbed hydrogen atoms. Since the system
contains 20 atoms the number of vibrational degrees of free-
dom amounts to 57 resulting already in a cumbersome, time-
consuming evaluation of the analytical normal modes in

Figure 3. Hydroxylated α-quartz (001) surface
with two hydrogen bonded, OH groups in
front (left) and top view (right). The unit cell
of the 2d-periodic system is outlined via the
gray box which has been periodically
enlarged for clarity (represented by the
transparent atoms). The z-dimension is not
considered as periodic. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 4. Top five layers of the hydroxylated α-quartz (001)-surface showing
the hydrogen bonded OH groups. Due to the periodicity of the surface the
OH groups subsequently act as hydrogen bond donor and acceptor,
forming a unique H bond wire motif. The associated hydrogen bonds are
represented by the dashed black lines. [Color figure can be viewed at
wileyonlinelibrary.com]
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addition to the rather costly requirements in terms of system
memory as well as hard disk capacity imposed by the periodic
quantum chemical treatment.[59]

The possibility to avoid the harmonic frequency calculation
proved to be a substantial improvement in the general applica-
bility as well as the computational effort. While in this work the
chosen system still enables the comparison of the different
strategies (i.e., constructed vs analytical normal modes), a
further enlargement of the system would lead to a prohibi-
tively expensive computing time, thus rendering the approach
based on constructed modes the only option. As outlined
above two different minimum geometries have been consid-
ered. First the unit cell dimension and the atom positions were
optimized simultaneously (Conf A) while in the second case
only the atom positions have been subject to minimization
(Conf B). The dimensions of the optimized 2d-periodic unit
cells are shown in Table 1. It can be seen that the optimization
of the entire system (Conf A) leads to a notable relaxation of
the surface structure. Therefore, the vibrational properties of
conformer A are expected to provide a more reliable represen-
tation of the surface. For both configurations the vicinity of the
OH groups on the surface may induce inter-mode coupling
and a two-dimensional Numerov treatment appears
mandatory.

The wave numbers of the OH vibrational modes of both con-
formers are presented in Table 2. Since the one-dimensional case
does not account for any coupling between the modes, large devia-
tions between the analytical and constructed modes are observed.
In the two-dimensional case the differences vanish with a consistent
deviation of 3 cm−1 corresponding to 0.1%. Considering the typical
accuracy of experimental setups being in the range of approx.

2–8 cm−1, the observed deviations between the analytical and con-
structed normal modes are within the same range of precision.

The angle between the respective normal mode vectors α

obtained via the associated scalar products remain in the range
of 0.09�–3.05� , respectively. Comparing the angle to the respec-
tive results no correlation between angle and accuracy of the
predicted wave numbers can be identified.

The vibrational frequencies of Conf. A show a good agree-
ment with the experimental spectrum.[81] Although experiment
and calculation are not 100% comparable this shows that the
calculations lead to reasonable results.

Lithium imide

As a second example lithium imide (Li2NH) was chosen in order
to investigate the performance of the approach in a bulk material.
The respective unit cell parameters have been taken from the arti-
cle of Ohoyama and co-workers[69] and Noritake and co-
workers.[82] Due to the fact that the occupancy of the hydrogen
atoms is reported in the range of 1/4 to 1/24 for different struc-
tural models, a selection of systems had to be made to achieve a
manageable system size. The unit cells employed in this study are
composed of two NH-groups surrounded by four lithium ions.
Two conformers with parallel (P) and opposing (O) alignment of
the N-H groups as suggested by Magyari-Köpe et al.[70] and Muel-
ler et al.[71] have been employed, both being subject to energy
minimization optimizing both cell dimension and atom positions
(Conf PA and OA) as well as considering only the atomic positions
(Conf PB and OB). The respective structural parameters of the unit
cell are summarized in Table 3. It can be seen that the unit cell
obtained for the PA conformer remains close to the constrained
geometry (PB, OB) whereas a significant alteration is observed for
the OA case. This implies that the anti-parallel configuration of the
NH bonds appears to be of minor relevance.

The predicted wave numbers obtained from the respective
one-dimensional and two-dimensional Numerov treatment for
the different Li2NH model systems are listed in Table 4. Again a
substantial decrease in wave numbers from the harmonic
approximation to the two-dimensional analysis of the vibrational
quantum system is observed in line with the simultaneous con-
sideration of anharmonicity and mode–mode coupling discussed
earlier. Similar as in the case of the water molecule, anharmoni-
city may result in a blue-shift of the respective wave numbers
resulting from higher order contributions to the potential.

Comparison to experimental measurements reporting a dom-
inant peak at 3180 cm−1[83] in very good agreement with the

Table 1. Unit cell parameters of the two considered GeO2(001)
minimum geometries under 2d-periodic boundary conditions
optimizing the entire system (Conf A, cell dimension plus atom
positions) and only the atom positions (Conf B), respectively. The cell
dimensions a and b are given in Angstrom, the respective angles γ in
degree.

Conf A Conf B

a 4.508 4.364
b 4.525 4.364
γ 93.584 90.0

Table 2. Predicted wave numbers of the OH modes on the GeO2 (001)
surface in cm−1 obtained at PBEsol level and the angle α between the
analytical and constructed normal modes in degree. Conf A and B
correspond to different minimum configurations with and without
surface relaxation, respectively.

Conf A

Analytical Constructed
harm 1D 2D 1D 2D α

asym 3547 3361 3215 3547 3212 3.05
sym 3556 3310 3243 3362 3240 0.09

Conf B
Analytical Constructed

harm 1D 2D 1D 2D α
asym 3453 3558 3334 3604 3337 0.35
sym 3479 3437 3349 3446 3352 0.34

Table 3. Primitive cell parameters of the configuration with parallel
(P) and opposing (O) orientation of the NH groups considered in the
test calculations for Li2NH considering the cell plus atom positions (A) as
well as only the atomic positions (B) in the energy minimization. The
cell dimensions a, b, and c are given in Angstrom, the respective angles
α, β, and γ in degree.

a b c α β γ

P A 3.467 3.641 6.912 58.202 62.769 58.321
O A 3.491 3.512 7.419 61.772 73.168 59.802
P B,O B 3.590 3.590 7.080 60.000 60.000 60.000
4real 3.590 3.590 7.080 60.000 60.000 60.000
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prediction obtained for the P-conformers (N-H bonds in parallel
orientation), in particular the case considering the relaxation of
atoms and the unit cell (PA). Again, this shows that the
Numerov treatment with both, analytical and constructed nor-
mal modes, leads to reasonable results.

Comparison of the prediction obtained via the constructed
normal modes yields wave numbers within 1% of the values
obtained using the analytical mode vectors. In the two-
dimensional case all conformers showed deviations of 1 cm−1

and less. Nevertheless, the angle between the analytical and
constructed normal vectors remained within a range of 2.29�–
2.92

�
in all cases, the deviation in the associated reduced

masses are in the range of 0.102–4.67 mg/mol.
The results clearly demonstrate that although the employed

model configurations do not fully reflect the variation of all pos-
sible structural motifs in the crystal the obtained results provide
an excellent evidence in favor of the presented strategy to
study vibrational phenomena. The selected system lithium
imide is a particularly well-suited example to demonstrate the
allocation of IR-peaks, providing substantial insight into the
underlying chemical structure. Since the presented model sys-
tem contains only 8 atoms corresponding to 21 vibrational
modes, a benchmark of the constructed normal modes against
their analytical counterpart was feasible. Extending the system
to larger unit cells soon results in an overwhelming computa-
tional demand, especially in case of advanced approaches (such
as VSCF and VPT2). The possibility to focus exclusively on the
experimentally most visible N-H vibrations (relevant for instance
in case of purity determination, quality assurance, etc.) and
avoiding the requirement to analyze the harmonic frequencies
of the entire system is thus of great advantage and enables the
application of the outlined approach to more complex systems.

α-quartz—(001)-surface

The third example is the hydroxylated α-quartz (001)-surface
reported by Catlow et al.[64] The 21 atoms of the system result
in a total of 60 normal modes, whereas only the two O-H
modes are of main interest, for instance in spectroscopic mea-
surements of surface wetting. The investigated chemical system
is a 18-layer α-quartz (001)-surface. Following the notation of
Catlow, the top layer of the solid is hydroxylated whereas the

opposite side features the reconstructed configuration.[64] The
minimum structure obtained at PBESOL-level is shown in
Figure 3, the associated hydrogen bonds are marked by dashed
lines. These hydrogen bonds in between the individual OH
groups make the system challenging and highly complex: Due
to the periodic extension of the surface OH group act as each
acceptor for its respective counterpart, forming a unique H
bond wire motif along the surface which is depicted in
Figure 4.

The potential obtained from the respective 2d-normal mode
scan is shown in Figure 5. The unique structural features of the
H bond wire leads to a double well potential. The second mini-
mum of the potential is at 4.3 kcal/mol compared to the global
minimum of this potential energy surface. This local minimum
can be seen as evidence for the possibility of a concerted pro-
ton transfer (PT) reaction of both H-atoms. The higher value of
the potential can be explained by the missing surface relaxation
of the oxygen atoms and the underlying structure of the solid.
This concerted PT leads to a mirror image of the hydrogen
bond structure, with a comparably high reaction barrier of
approximately 40 kcal/mol.

While the missing surface relaxation may appear as a poten-
tial limitation of this approach, one should keep in mind that
PT reactions may occur spontaneously and are often aided by
quantum tunneling. As such the transfer of the protons may
occur on a faster time scale as the relaxation of the heavier O
and Si atoms of the solid and hence, the quantification of the

Table 4. Wave number in cm−1 obtained for the N-H stretch vibration for different configurations of Li2NH. P and O refers to configurations with parallel
and opposite orientation of the N-H bonds, while A and B denote energy minimization with and without consideration of the unit cell parameters.

Conf. P A Conf. P B

Analytic Constructed Analytic Constructed

harm 1D 2D 1D 2D harm 1D 2D 1D 2D

NH1(sym) 3274 3189 3159 3169 3160 3301 3223 3129 3221 3130
NH2(asym) 3276 3391 3161 3167 3161 3307 3408 3135 3398 3136

Conf. O A Conf. O B

Analytic Constructed Analytic Constructed
harm 1D 2D 1D 2D harm 1D 2D 1D 2D

NH1[a] 3288 3177 3127 3283 3127 3445 3432 3312 3522 3311
NH2[a] 3322 3168 3146 3205 3146 3495 3396 3354 3419 3353

[a] In Configuration O the different vibrations cannot be categorized as symmetric and asymmetric stretch modes.

Figure 5. Potential energy surface of the two hydroxy groups on the
α-quartz surface. The potential is plotted up to 100 kcal/mol. Values above
are ignored.
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unrelaxed minimum is of particular interest. Interestingly, the
2d-Numerov procedure yields two separated sets of vibrational
wave functions that can be unambiguously assigned to either
of the two minima. Two of the wave functions resulting from
the Numerov procedure now act as ground states for the indi-
vidual minima (cf. Figure 6). Since the associated energy differ-
ence between these states amounts to 4.3 kcal/mol
(≈1120 cm−1), the associated wave functions are clearly sepa-
rate. No superposition of these eigenstates occur, implying that
tunneling is not relevant on this potential energy surface.

Similarly as the two separate ground states associated
excited wave functions are observed, that show the expected
orthonormal features visible by a local rotation close to 90

�
(see

Fig. 6). The resulting vibrational frequencies obtained via analyt-
ical and constructed normal modes are listed in Table 5. Com-
parison of the two sets shows that the vibrational frequencies

in the global minima show a maximum deviation of 4 cm−1.
This agreement is in line with the observation of the GeO2 and
Li2NH systems presented above. However, in case of the local
minimum a larger deviation of 8 and 44 cm−1 is observed. This
large deviation highlights a potential limitation of this strategy
to obtain normal modes, namely the constructed normal
modes are only valid close to the associated minimum of the
potential energy surface.

Due to the complexity of the H bonded structure no experi-
mental data addressing this particular surface motif could be
found in the literature. In Ref.[84] three different types of
α-quartz powder were investigated. All IR-spectra showing a
small band in the range of 2800–3000 cm−1 that could be the
result of a concerted PT reaction. Furthermore two of the three
samples showed a distinct band at ≈3300 cm−1, which corre-
sponds to a deviation of ≈3% of the results in the global

Figure 6. Due to the double-well potential and the large reaction barrier of approx. 40 kcal/mol two separate sets of vibrational wave functions are obtained
for the global (right) and local minimum (left). The associated excited vibrational states show the expected orthonormality, i.e., a local rotation by approx.
90 ∘. The displacement of the modes Q OH1 and Q OH2 is given in Å

ffiffiffiffiffiffiffiffiffi
amu

p
.

Table 5. Wave number in cm−1 obtained for the O-H stretch vibrations of hydroxylated α-quartz according to Catlow et al.[64] The global minimum data
refers to the vibrational frequencies of the OH-vibrations of the minimum structure, while the local minimum refers to the OH-vibrational frequencies for
the second minimum obtained after a concerted proton transfer without relaxation of the oxygen atoms. Harmonic and one-dimensional calculations do
not provide data for the local minimum.

Global minimum Local minimum

Analytic Constructed Analytic Constructed

harm 1D 2D 1D 2D 2D 2D

OH1[a] 3243 3096 3044 3112 3041 2810 2818
OH2[a] 3372 3277 3204 3314 3200 2994 3038

[a] The different vibrations cannot be categorized as symmetric and asymmetric stretch modes.
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minima. However, also in this case the experimental data shows
that the Numerov treatment combined with constructed nor-
mal modes leads to reasonable results.

In case of both O-H vibrations the angle between analytical
and constructed modes is below 0.084

�
and the difference of

the effective mass is 5.56 and 1.55 mg/mol, respectively. These
results show that the constructed modes are in good agree-
ment with the analytical normal modes (deviations below 1%).
Looking at this system with 21 atoms and only 2 vibrational
modes of interest the approach using constructed normal
modes showed to be a promising alternative to save computa-
tional time with a minimal loss of accuracy for the vibrations
associated to the global minimum.

Titan dioxide—(001) surface

As fourth example the (001)-surface of rutil-structured titan diox-
ide was investigated. Due to the large number of atoms and at
the same time the large number of electrons amounting to
123 and 1530, respectively, the computational effort to execute a
frequency analysis is massively increased, especially since no use
of symmetry considerations can be employed to accelerate the
calculation. Moreover, 362 out of the 366 expected normal
modes can be expected to represent vibrations linked to the lat-
tice of the solid-state system, which due to the high reduced
masses occur at comparably low frequencies. Two modes are the
associated Ti-O-H frequencies which too can be expected to be
about factor of 2 smaller than the O-H stretching vibration. Thus,
since the OH vibration occur at a distinct range of wave num-
bers, an approach to focus only on the vibrational modes of
interest is of particular benefit. The determination of the har-
monic frequencies required approximately 10–15 days using
32 computing nodes (Intel Xeon X5650), which appears rather
high considering the at most 0.5% of the computed normal
modes are relevant for the following investigations. Although a
harmonic frequency analysis was done in crystal for up to 1000
atoms,[85] such an approach greatly reducing the required execu-
tion time to just determine the normal vectors of the two OH
stretch vibrations would enable multiple studies within the same
time frame for instance the impact of different OH configurations

on the surface. Figure 7 depicts the minimum configuration of
the TiO2 (OH)2 system considered in this example. During the
energy minimization of the system dissociation of the H2O mole-
cule took place forming an isolated OH-group pointing away
from the surface. The transferred proton is accepted by a surface
oxygen atom, which forms a hydrogen bond to the water oxy-
gen atom. As a consequence the latter can be expected to have
a significantly reduced wave number. However, due to the simi-
lar frequency range and the spatial proximity of these OH bonds
an explicit consideration of inter-mode coupling in addition to
anharmonic contributions appears necessary. The harmonic fre-
quencies calculated using Crystal14 are 3153 and 3597 cm−1.
Application of Numerov’s procedure in 2 dimensions yields 2890
and 3445 cm−1, compared to 2898 and 3452 cm−1 in the one-
dimensional case. While the considered anharmonicity leads to
strong deviations of 263 and 152 cm−1, respectively.

Water

The water molecule was chosen to provide evidence that the
approach can be applied to two H-atoms binding to the same
oxygen, thus leading to a particular strong coupling between
the vibrational modes. The benefit of avoiding the harmonic
frequency analysis is negligible in case of small molecules like
water, however the respective potential energy surface has
been extracted from the three-dimensional Numerov investiga-
tion presented earlier.[36]

The one-dimensional and two-dimensional results using the

constructed normal modes Q obtained via the reduced Hessian
yields wave numbers in good agreement with the analytical
result (see Table 6), the respective deviations being 8 (sym) and

4 cm−1 (asym), respectively. The angle between Q and Q repre-
senting the agreement of the constructed and analytical normal
mode vectors was found as 1.6

�
(sym) and 3. 1∘ (asym), respec-

tively. The associated difference in reduced mass amounts to
4.09 (sym) and 7.33 mg/mol (asym). Also for D2O the con-
structed normal modes lead to a good agreement compared to
the two-dimensional analytical Numerov treatment with devia-
tions of 4 (sym) and 9 (asym) cm−1.

Figure 7. TiO2 (001) surface with chemisorbed
H2O forming two OH-groups on the surface in
front (left) and top view (right). [Color figure
can be viewed at wileyonlinelibrary.com]
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These results can be seen as a proof of concept for the ade-
quate representation of the vibrational properties by the con-
structed modes and demonstrate that the vibrational
frequencies of two OH bonds originating from the same oxygen
atom can be accurately calculated using this approach, leading
to a dramatic improvement over a simple one-dimensional treat-
ment. At the same time it shows that the approach of the con-
structed normal modes is applicable also to deuterated bonds.

Conclusions

In this work a strategy for the approximation of strongly local-
ized vibrational modes such as O-H and N-H bonds was investi-
gated. In the presented approach the normal modes of interest
are approximated via a reduced Hessian in order to reproduce
the interactions between selected XH bonds, while considering
the remaining part of the chemical system as rigid. The underly-
ing vibrational degrees of freedom can be constructed solely
on the basis of the minimum geometry of the system, thus
avoiding the often costly harmonic normal mode analysis.
Although in this manuscript the approach is demonstrated only
for systems containing two XH bonds at a time, the number of
considered bonds can be in principle chosen arbitrarily.

Benchmark computations comparing the result using these
constructed modes against their analytical analogues yield devi-
ations of just a few wave numbers in case of the four different
test systems, being two hydroxy groups on GeO2 (001), two N-H
bonds in the Li2NH bulk material, and two hydroxy groups on
α-quartz(001) and Rutil(001). The water molecule was only con-
sidered to demonstrate that the vibrational frequencies of two
OH bonds originating from the same oxygen atom can be accu-
rately calculated using this approach. Furthermore, the investi-
gation of heavy water showed that the constructed normal
modes treatment is also applicable in case of deuterated bonds.

The extension to 2d-periodic and 3d-periodic solid-state sys-
tems demonstrates the advantage in exploiting the local char-
acter of vibrational modes, thus greatly reducing the associated
computational effort. This is of particular interest in those cases,
in which the determination of analytical normal modes is pro-
hibitively expensive or not implemented in a particular quan-
tum chemical program. The angle between the analytical and
constructed normal modes as well as the deviation of the
reduced masses provide another means to measure the accu-
racy of the procedure. The largest registered angle amounts to

approx. 3.5
�
, the highest observed deviation of the reduced

mass was 7.33 mg/mol.
Since the potential energy surface required for the Numerov

procedure needs only single point information along the
involved normal mode vectors the approach is in principle per-
fectly parallelizable. Due to the sparsity of the respective matrix
problem, the Numerov procedure itself does not provide any
bottleneck even if large grids and stencil sizes are employed. A
big advantage of the applied Numerov method is that once the
potential is given no additional assumptions about the form of
the wave function have to be introduced. The accuracy of the
resulting eigenenergies and respective wave functions depend
solely on the quality of the grid (i.e., the applied level of theory
and the grid-spacing) and the chosen stencil size to approxi-
mate the second derivative in Schrödinger’s equation.

The presented general strategy for the investigation of
strongly localized vibrational phenomena provides access to a
broad variety of chemical systems including solid-state struc-
tures and has the potential to provide detailed insight into the
anharmonic and coupling properties in various chemical envi-
ronments. Future investigations will focus on the possibility to
construct the normal mode vectors of more complex vibrations
such as angle bending and dihedral rotation, which will further
enhance the spectrum of the outlined methodology.
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