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Purpose:We applied a deep convolutional neural network model for automatic identi-
fication of ellipsoid zone (EZ) in spectral domain optical coherence tomography B-scans
of retinitis pigmentosa (RP).

Methods: Midline B-scans having visible EZ from 220 patients with RP and 20
normal subjects were manually segmented for inner limiting membrane, inner nuclear
layer, EZ, retinal pigment epithelium, and Bruch’s membrane. A total of 2.87 million
labeled image patches (33 × 33 pixels) extracted from 480 B-scans were used for
training a convolutional neural network model implemented in MATLAB. B-scans
from a separate group of 80 patients with RP were used for testing the model.
A local connected area searching algorithm was developed to process the model
output for reconstructing layer boundaries. Correlation and Bland-Altman analyses
were conducted to compare EZ width measured by the model to those by manual
segmentation.

Results: The accuracy of the trained model to identify inner limiting membrane, inner
nuclear layer, EZ, retinal pigment epithelium, and Bruch’s membrane patches in the test
dataset was 98%, 89%, 91%, 94%, and 96%, respectively. The EZ width measured by
the model was highly correlated with that by two graders (r = 0.97; P < 0.0001). Bland-
Altman analysis revealed amean EZwidth difference of 0.30mm (coefficient of repeata-
bility=0.9mm)between themodel and thegraders, comparable to themeandifference
of 0.34mm (coefficient of repeatability = 0.8 mm) between two graders.

Conclusions: The results demonstrated the capability of a deep machine learning-
based method for automatic identification of EZ in RP, suggesting that the method can
be used to quantify structural deficits in RP for detecting disease progression and for
evaluating treatment effect.

Translational Relevance: A deep machine learning model has the potential to
replace humans for grading spectral domain optical coherence tomography images
in RP.

Introduction

Retinitis pigmentosa (RP) is a group of genetic eye
disorders causing visual impairment. Patients with RP
experience gradual decline in their vision and may lose
all useful sight owing to retinal degeneration. With

potential new and emerging treatments on the horizon
for inherited retinal degenerations, especially RP,1 it is
essential to have efficient and sensitive biomarkers for
detecting disease progression and for evaluating treat-
ment effects. For patients with RP, visual acuity loss
is relatively slow until at late stages of the disease,
so visual field and/or full-field electroretinograms
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are often used to quantify visual function defects
and to monitor disease progression. Advanced retinal
imaging techniques, such as spectral domain optical
coherence tomography (SD-OCT) have more recently
become available for revealing and visualizing struc-
tural changes in the retina at various stages of disease
progression.

A number of studies using SD-OCT demonstrated
that the structural defects in RP mainly occur in
the outer retina as the disease progresses, including
a decrease in thickness of outer nuclear layer, total
photoreceptor thickness, and/or photoreceptor outer
segment (OS) thickness.2–4 The visual field sensitiv-
ity loss in a transition zone between relatively healthy
and relatively affected outer retinal areas is more rapid
than it is elsewhere in the retina.5–8 In this transition
zone, OS thickness changes from visible to nonmea-
surable. The measurement of the more healthy retina
can be the width or area of the remaining ellipsoid
zone (EZ) or EZ area. Hence, EZ metrics obtained
from OCT scans could be potential biomarkers for
detecting disease progression and as outcomemeasures
in prospective clinical trials for RP. However, one
of the main limitations is that conventional graph
search–based automated OCT image layer segmen-
tation algorithms require prior definitions of retinal
structure and often incorrectly identify the EZ in the
transition zone or in the region where EZ is missing,
thus requiring time-consuming manual correction for
accurate layer segmentation.

Recent advances in deep machine learning and
convolutional neural networks (CNN)9 have shown
promising applications in ophthalmology, especially
in fundus photo and OCT image processing.10–15 A
deep CNN model can learn how to identify features
in images through training with a classified dataset.
For instance, deep neural networks have been trained
for automatic identification of diabetic retinopathy
in retinal fundus photographs,11,12,15 for automatic
identification of retinal layer boundaries in OCT
images of dry age-related macular degeneration,16 and
for quantification of EZ defects on OCT images of
macular telangiectasia type 2.17

The purpose of this study was to train and
test a CNN model to automatically delineate outer
retinal layers in SD-OCT B-scan images obtained
from patients with RP, and to evaluate the capabil-
ity of the deep machine learning-based method for
automatic measurements of EZ width and photore-
ceptor OS length in RP by comparing it with
manual segmentation method (gold standard) as
well as with automatic segmentation by Heidel-
berg Spectralis (Heidelberg Engineering, Heidelberg,
Germany).

Methods

OCT Scan Images for CNNModel Training
and Testing

Nine-millimeter (30°) SD-OCT high-speed (768 A-
scans) and high-resolution (1536A-scans) B-scans with
an automatic real-time tracking setting of 100 were
obtained using a Heidelberg Spectralis (HRA-OCT,
Heidelberg Engineering). B-scan images from patients
with RP over the past 10 years at the Retina Founda-
tion of the Southwest were reviewed. From400 patients
with SD-OCT scans, 220 patients with RP were identi-
fied with EZ transition zones visible in their midline
B-scan images and used to generate image datasets for
training and validation of a CNN model. The other
180 patients were excluded owing to no identifiable
EZ transition zone in the B-scan images (either no
visible EZ band or EZ band extended beyond the scan
areas). Among these 220 patients, 50 were autosomal-
dominant RP (adRP), 30 autosomal-recessive RP, 20
X-linked RP (xlRP), and 120 isolated RP. In addition,
midline B-scan images from 20 normal subjects were
also included for CNN model training and validation.
All 480 line B-scans from two eyes of 240 subjects were
first automatically segmented then manually corrected
by one grader using Spectralis software (ver. 1.9.10)
for the following five layer boundaries: inner limiting
membrane (ILM), distal (basal) INL (dINL), center
of the EZ, proximal (apical) retinal pigment epithe-
lium (pRPE), and Bruch’s membrane (BM). For CNN
model testing, we identified two separate groups of
patients with RPwho hadmultiple visits with SD-OCT
scans and had measurable EZ in the central retina at
their first visit. Group 1 included 36 patients with adRP.
Group 2 included 44 patients with xlRP. The outputs
of the model were compared with the gold-standard of
manual segmentation for ILM, dINL, EZ, pRPE, and
BM by two graders.

CNNModel Architecture

In this study, we adopted a well-established CNN
framework developed for classifying tiny images.16,18
This CNN model has shown promising results for
automatic segmentation of retinal layer boundaries in
OCT images of patients with dry age-related macular
degeneration.16 The CNN model was implemented
in MATLAB using MatConvNet.19 MatConvNet is
a MATLAB toolbox implementing CNNs especially
for image classification applications. Table 1 summa-
rizes the architecture and the parameters of the model,
which were the same as those used by Fang et al.,16
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Table 1. Architecture of the CNNmodel and its parameters

Type Filter Size Stride Filter Number Padding

Layer 1 Convolution 5 × 5 × 1 1 × 1 32 2
Layer 2 Max pooling 3 × 3 2 × 2 — 0
Layer 3 ReLU — — — —
Layer 4 Convolution 5 × 5 × 32 1 × 1 32 2
Layer 5 ReLU — — — —
Layer 6 Average pooling 3 × 3 2 × 2 — 0
Layer 7 Convolution 5 × 5 × 32 1 × 1 64 2
Layer 8 ReLU — — — —
Layer 9 Average pooling 3 × 3 2 × 2 — 0
Layer 10 Fully connected 4 × 4 × 64 — 64 0
Layer 11 ReLU — — — —
Layer 12 Fully connected 1 × 1 × 64 — 6 0
Layer 13 Softmax — — — —

ReLU, Rectified linear unit.

except for Layer 12 where the number of filters was 6
for six classes in our study, including ILM, dINL, EZ,
pRPE, BM, and background.

As shown in Table 1, the CNN model has a total
of 13 layers, including convolutional layers, pooling
layers, rectified linear unit layers, fully connected layers,
and a final softmax classification layer. A convolutional
layer convolves the input with different spatial filters
(kernels or receptive fields) to extract various features
in the input. For instance, the first convolutional layer
in the model has 32 filters of size 5 × 5 × 1. Each
filter extracts a different feature in the input. The deeper
a convolutional layer is, the higher level features it
extracts. A pooling layer is to reduce the dimensions of
the feature maps to ease computational burdens. The
rectified linear unit layer performs a simple nonlinear
transformation to accelerate the CNN training process.
The final softmax layer outputs six numbers between 0
and 1, giving the probability of the input image in each
of six classes.

Create Labeled Image Datasets for CNN
Training and Validation

The training data for the CNN model were tiny
classified image patches of 33 × 33 pixels extracted
from B-scan images. The classification or labeling
of each patch was determined by the class of its
center pixel. The CNN model trained with such tiny
image patches served as a pixel classifier20 to deter-
mine the probabilities of each pixel in a B-scan image
that belongs to one of six classes, five retinal layer
boundaries, and background, based on its surrounding
features.

Layer Boundary Classifications of B-Scan Images
For a CNNmodel to determine if a pixel in a B-scan

image falls on a retinal layer boundary, themodel needs
to be well-trained with a large image dataset classi-
fied according to manually graded retinal layer bound-
aries. Figure 1 illustrates the classification of layer
boundaries in a B-scan image. The Spectralis software
(ver. 1.9.10) was used to automatically segment and
manually correct the ILM, dINL, EZ, pRPE, and BM
in each B-scan image (Fig. 1a). Manually corrected
OCT scans were exported as XML files, which were
then imported intoMATLAB to extract B-scan images
and corresponding layer segmentation data. The pixels
in a B-scan image on ILM, dINL, EZ, pRPE, or BM
boundaries were labelled as 1, 2, 3, 4, or 5, respectively.
Any pixels in a B-scan image not on these five bound-
aries was labeled as 0. Figure 1c shows an example of
classifications of all pixels in a B-scan image.

Preprocessing of B-Scan Images
Because OCT B-scan images vary in intensity,

images were preprocessed for intensity normalization
and for reducing the effect of hyperintense reflections.
The method of preprocessing followed that previously
reported.16,21 Specifically, the intensity values of an
original B-scan image, Iorigin, were first linearly rescaled
to the range of [0, 1], resulting in Irescaled. Then a
median filter with a kernel size of 20× 2 was applied to
the rescaled image Irescaled. The maximum pixel inten-
sity value of the filtered image Ifiltered was used to set
a threshold. To reduce hyperintense reflections, any
pixels in the rescaled image Irescaled that were above
the threshold were set to the value of the threshold,
resulting in Ithreshold. Finally, the intensity values of
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Figure 1. Classification of layer boundaries in a B-scan image. (a) B-scan image with five manually corrected layer boundaries, ILM, dINL,
EZ, pRPE, and BM labeled as 1, 2, 3, 4, and 5, respectively. (b) Examples of 5 image patches, each centered on one of the five layer boundaries,
extracted from an A-scan indicated by the vertical line in (a). (c) Classification of every pixel in the B-scan image.

all pixels in Ithreshold were normalized by dividing by
the maximum value of Ithreshold, generating the final
normalized intensity image, Inormalized.

Extracting Classified Image Patches from B-Scan
Images for CNN Training

After classification and preprocessing, B-scan
images were ready for the extraction of image patches
for training and validation. Similar to the method used
by Fang et al.,16 the training dataset included both
positive and negative image patches of 33 × 33 pixels.
A positive patch was centered at a pixel on a layer
boundary and the patch’s label was the same as
the center pixel (label of the boundary, 1–5). A
negative patch was centered at a pixel labeled as 0.
For each A-scan containing EZ, five positive patches,
each centered at a pixel on one of five layer bound-
aries, and one randomly selected negative patch were
extracted. Figure 1b showed examples of five positive
training image patches obtained from an A-scan
indicated by the vertical line in Figure 1a. For A-scans
not containing EZ, an additional negative patch was
extracted. If 6 patches (5 positive and 1 negative) were
generated for each A-scan, then a B-scan with 768 A-
scans could produce 4608 image patches if all A-scans
contain the layer boundaries included in the model
(ILM, dINL, EZ, pRPE, and BM). In this way, a total
of 2.87 million classified patches were extracted from
480 line B-scan images of 240 subjects for training
(80%) and validation (20%).

CNNModel Training and Testing

CNNModel Training and Validation
All classified image patches were randomly grouped

into two datasets, one for training (80% of the
2.87 million patches) and the other for validation
(20%). Before the training started, all filter weights
were set to random numbers. The training and valida-
tion datasets were divided into batches. The default

batch size was 100 image patches of size 33 ×
33 pixels. After the CNN was trained for each batch,
the error between the patch classifications generated
by the CNN and the predefined patch labels (the
ground truth) was calculated. The filter weights were
updated using a stochastic gradient descent optimiza-
tion algorithm and backpropagation (backward propa-
gation of errors)22,23 to minimize the error. The train-
ing stopped after the model was trained for 45 epochs
(the full dataset was used for training 45 times). The
default values of weight decay (1.0e-04) and learning
rates (0.05 from 1 to 30 epochs; 0.005 from 31 to 40
epochs; and 0.0005 from 41 to 45 epochs) of the CNN
model were also adopted.

CNNModel Testing
The trained CNNmodel was tested using a separate

dataset (OCT line B-scan images from 36 patients with
adRP and 44 with xlRP who had multiple visits over
time with OCT scans and visual function results, so
that their data can be used for testing in future studies).
For each pixel in the test image that was on one of the
five manually corrected layer boundaries, a patch of
size 33 × 33 centered at that pixel was extracted and
classified by the CNN. A total of 600,000 patches were
generated from test B-scan images. TheCNNclassifica-
tions for test patches were compared with correspond-
ing manually defined classes. The accuracy (or error
rate) of the model to classify layer boundary patches
extracted from the test dataset were calculated.

Local Connected-Area Searching (LCASA)
Algorithm for Postprocessing of
Classification Maps

The trained CNN is effectively a pixel classifier.
Applying the trained CNN model to each pixel in
a B-scan image creates classification probabilities for
all pixels. Figures 3b and 3f show two examples of
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classification maps based on maximum probability of
classes generated for B-scan images of two patients
with RP. It is evident that a band of pixels could be
classified as the same boundary class and there are
also false positives. Hence, postprocessing of classifica-
tion maps was required to reconstruct a single line for
each layer boundary. For this purpose, we developed
a LCASA algorithm to process classification maps to
localize layer boundaries.

In the LCASA algorithm, we assumed that the
largest local connected area for a class in the classifica-
tion map truly belonged to that class. This assumption
was based on the high accuracy (90% or higher) of the
model to correctly identify the class of a pixel; thus, the
largest area of connected pixels on a classification map
necessarily represents the true class. With the largest
connected area as a starting reference, the LCASA
algorithm first eliminated smaller local connected areas
in the same class that were separated vertically from
the larger ones but fully overlapped horizontally with
larger ones (i.e., either above or below larger ones).
For smaller areas having partial overlapping horizon-
tally with or completely separated from the larger ones,
nearest neighbor distance rules were applied to deter-
mine if the smaller areas belong to the same class
of the larger ones. Based on the model’s accuracy
to identify these classes (see Results), the order to
reconstruct layer boundaries by the LCASA algorithm
was from ILM, BM, pRPE, EZ, and finally to dINL.
Once the search for a layer boundary class was
completed, that boundarywas added to the list of refer-
ence boundaries for the search of remaining bound-
aries. A single-pixel layer boundary was obtained
by averaging vertical locations of the same class
pixels.

CNNModel Evaluation

The evaluation of the effectiveness of the deep
machine learning-based method (the CNN model +
LCASA postprocessing algorithm) for automatic
segmentation of outer retinal layer boundaries,
especially the EZ band, was conducted using the
test B-scan images from a separate group of 80
patients with RP (36 patients with adRP and 44
with xlRP). EZ width, EZ–pRPE thickness, dINL–
pRPE (photoreceptor+) thickness, and ILM-BM
(total retinal) thickness generated by the deep machine
learning-based method were compared with those
obtained frommanual segmentation by human graders
(gold standard), as well as compared with the results
of automatic segmentation by Spectralis. Correlation
and Bland-Altman analyses were performed.

Figure 2. Top-1 error as a function of training epochs. The reduc-
tion of top-1 error at the 31st epochwas related to the change of the
learning rate from 0.05 to 0.005. Training stopped after 45 epochs.

Results

Accuracy of the Trained CNNModel to
Classify Image Patches on Layer Boundaries

Figure 2 plots the top-1 error (the rate that the class
having the highest probability determined by themodel
is different from the target class defined by manual
segmentation) as a function of training epochs. After
the completion of the training at 45 epochs, the overall
accuracy (1 minus top-1 error) of the CNN model to
correctly identify the classes of image patches in the
validation set was 96%.

To access the accuracy of the trained CNNmodel to
classify pixels on individual layer boundary, the model
was used to classify all pixels of 160 test B-scan images
from a separate group of 80 patients with RP to obtain
the classification maps for all classes (ILM, dINL,
EZ, pRPE, BM and background). Figures 3a and 3e
show two examples of B-scan images, and Figures 3b
and 3f show the B-scan images overlapping with their
corresponding classification maps based on maximum
probabilities of five layer boundaries generated by the
model. The model-determined classes of the pixels
were compared with those of manual segmentation of
line boundaries at the same locations, and the accura-
cies of the model to correctly identify ILM, dINL, EZ,
pRPE, and BM patches extracted from the test B-scan
images were 98%, 89%, 91%, 94%, and 96%, respec-
tively, as shown in Figure 4 at 100% of 240 patients.



Deep Machine Learning for EZ Identification in RP TVST | Special Issue | Vol. 9 | No. 2 | Article 15 | 6

Figure 3. Examples of midline B-scans (a) and (e) from two patients with RP. (b) and (f ) B-scan images with classification maps of five layer
boundaries basedonmaximumprobabilities (yellow, ILM;magenta, dINL; red, EZ;green, pRPE;blue, BM) from theoutput of theCNNmodel. (c)
and (g) B-scan images with reconstructed single-pixel layer boundaries after applying the LCASA algorithm to postprocess the classification
maps. (d) and (h) B-scan images with the results of automatic segmentation by Spectralis.

Figure 4. The accuracy of the model to identify patches on each
of five layer boundaries in the test B-scan images as a function of
percent number of patients in the training set whose B-scan images
were used to train the CNNmodel.

No background (negative) patches were included in the
testing image patch dataset for accuracy evaluation.

To assess the impact of number of OCT scan images
used for training on the performance of the CNN
model, the same CNN model was trained with image

patches extracted from randomly selected subsets of
240 subjects in our study (220 patients with RP and
20 normal subjects). Figure 4 shows the accuracy of
the model to identify ILM, dINL, EZ, pRPE, and
BM patches in the same 160 test B-scan images as a
function of percent number of patients in the training
set whose B-scan images were used to train the CNN
model. It is evident that, for layer boundaries with
less variability ormore consistent surrounding features,
such as the ILM and BM, a smaller number of patients
or OCT images may be needed to train the CNN
model to achieve a predetermined accuracy (e.g., 95%),
whereas more patients or OCT images are required
to train the model to achieve the same accuracy
for layer boundaries with more variabilities or less
consistent surrounding features (such as the EZ and
dINL).

Postprocessing of classification maps was then
conducted by using the LCASA algorithm to recon-
struct single-pixel layer boundaries. Figures 3c and 3g
show the results of automatic segmentation of ILM,
dINL, EZ, pRPE, and BM by the CNN model after
the LCASA algorithm was applied to the classification
maps in Figures 3b and 3f. The reconstructed single-
pixel layer boundaries were used for EZ width and
retinal thickness measurements.



Deep Machine Learning for EZ Identification in RP TVST | Special Issue | Vol. 9 | No. 2 | Article 15 | 7

Figure 5. (a) EZwidthmeasuredby thedeepmachine learning-basedmethod is plotted against the average EZwidthmeasuredbymanual
segmentation of two graders within central 8 mm of the test B-scan images (n = 160). (b) Bland-Altman plot of the difference between two
measurements in (a) versus their mean. Dotted line shows the mean difference. Dashed lines show ±95% limits of differences.

In comparison, Figures 3d and 3h show the results
from automatic segmentation with the Spectralis
software.

EZWidth Measurement

EZ width in millimeters was obtained by first
counting number of pixels that represented EZ, then
the width in pixels was converted to mm using the
scanning scale (mm/pixel) along the B-scan axis. The
mean ± SD of EZ widths of 80 patients in
the testing dataset obtained by grader 1, grader 2,
the CNN model, and Spectralis were 3.26 ± 2.00 mm,
2.92 ± 2.00 mm, 3.38 ± 1.87 mm, and 7.51 ± 0.71 mm,
respectively. Figure 5a plots the EZ width measured by
the deep machine learning-based method (the CNN
model + the LCASA postprocessing algorithm) versus
the average EZ width measured by manual segmenta-
tion of two graders within central 8 mm of B-scans.
The correlation between themodel-measured EZwidth
and that by two graders was 0.97 (P < 0.0001). Bland-
Altman analysis (Fig. 5b) revealed a mean difference
of 0.30 mm with a coefficient of repeatability of 0.9
mm between the model and the average measurements
of EZ width by two graders, which was comparable
with the mean difference of 0.34 mm (coefficient of
repeatability = 0.8) between the two graders.

In comparison, there was no significant correlation
between EZ width measured with automatic segmen-

tation by Spectralis and that by manual segmentation
(r= 0.147;P= 0.0644). Bland-Altman analysis showed
a mean difference of 4.42 mm with coefficient of
repeatability of 3.9 mm between EZ width measure-
ments by these two segmentation methods.

Retinal Layer Thickness Measurements

Retinal thickness was measured by first counting
number of pixels between two layer boundaries, then
the thickness in pixels was converted to millimeters
using the scanning scale (mm/pixel) along the A-scan
axis. Table 2 summarizes the results of comparing
retinal thickness measurements obtained by manual
grading with those by the CNN model and Spectralis
automatic segmentation software for central line B-
scan widths of 1, 3, 6, and 8 mm. Figure 6 plots the
retinal layer thicknesses measured by the CNN model
vs those by the average of two graders (top row of
Fig. 6) and those measured by the Spectralis software
versus two graders (bottom row of Fig. 6) over the
central 8 mm of B-scans.

It is evident that the agreement between the deep
machine learning-basedmethod and the average of two
graders was comparable to that between two graders.
In addition, when compared with manual grading
(gold standard), the trained CNNmodel outperformed
the Spectralis’ automatic segmentation software for
measuring the thickness of the photoreceptor+ and the
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Figure 6. Top row: Retinal layer thicknesses measured by the deep machine learning-based method versus those by the average of two
graders. Bottom row: Retinal layer thickness measured by the Spectralis automatic segmentation software vs those by the average of two
graders. From left to right: Photoreceptor OS (EZ-pRPE) length; photoreceptor+ (dINL-pRPE) thickness; total retinal (ILM-BM) thickness. The
width of line B-scan examined was central 8 mm.

length of photoreceptor OS (EZ-pRPE thickness). The
Spectralis software performed comparably to the CNN
model only for the total retinal thickness measurement
within the central 3 mm of the retina (Table 2).

Discussion

The results of this study demonstrated the capabil-
ity of a deep CNNmodel-based method for automatic
segmentation of outer retinal layers in SD-OCT scan
images obtained from patients with RP. The CNN
model performed similarly to human graders when
measuring EZ width and retinal thickness, suggesting
that well-trained CNNmodels may be used to quantify
structural deficits for detecting disease progression and
for evaluating treatment effects in future clinical trials
for RP.

The training of a deep CNN typically requires
a large dataset. One of the questions is how many
patients or OCT scan images do we need to successfully

train the CNNmodel used in our study? To understand
the impact of number of patients on the performance
of the CNN model, we trained the same CNN model
with data from randomly selected subsets of patients in
our study. Our results (Fig. 4) suggested that a smaller
number of patients or OCT images may be needed
for layer boundaries with more consistent surrounding
features, such as ILM and BM, whereas more patients
or OCT images may be required to train the model to
achieve the same accuracy for layer boundaries with
less consistent surrounding features (such as the EZ
and dINL). With equal number of training patches for
every layer boundary, themodel will have lower accura-
cies for classifying dINL and EZ than ILM and BM.

Lower accuracy to identify the class of image
patches for a layer boundary may lead to less accurate
segmentation of that boundary, and hence lead to
less accurate measurements of layer thickness by the
model, which may explain, at least in part, the lower
correlation between the CNN model and manual
graders for EZ-pRPE and photoreceptor+ thickness
measurements when compared with that for the total
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retinal thickness (Table 2). Another possible explana-
tion for lower correlation, especially for EZ-pRPE, is
that the number of pixels representing EZ-pRPE thick-
ness is too small owing to the A-scan resolution limit
relative to the layer thickness so that one pixel differ-
ence in thickness results in a larger percent change
(greater variability) of thickness.

To improve the model’s accuracy to identify
the pixels on EZ and dINL, more training image
patches extracted from EZ and dINL boundaries from
additional patients with RP can be added. One of the
limitations of this study was that the current model
was trained with image patches extracted from line B-
scan images. Much more training data will be available
with volume scans. The performance of the line B-scan
CNN model on volume scan images can be examined
to help determine the types of data patches needed to
train and test the CNN model for automatic segmen-
tation of outer retinal layers in volume scans obtained
from patients with RP. To further increase the size of
training datasets, multiple volume scans from the same
patients can be included. Repeated scans introduce
variations in image representation, such as rotations,
image intensity, and/or quality. Therefore, using multi-
ple scans from the same patients is equivalent to data
augmentation methods9 often used in deep machine
learning to increase the size of datasets, and will help
CNN training and testing.

In this study, the CNN model we adopted is similar
to the one used by Fang et al.16 for automatic segmen-
tation of retinal layer boundaries in OCT images of
dry age-related macular degeneration. Default param-
eters of the model were used. It has been pointed out
that that some parameters of this CNN model such as
patch and filter size are empirically selected and may
not be optimal.16 The effects of different parameters
on the model performance remain to be evaluated to
determine the optimal parameters to further improve
the accuracy of the model to identify image patches of
layer boundaries.

Often, CNNs are trained and tested with relatively
high-quality image date sets. However, in real-life appli-
cations such as in this project with OCT scans, image
quality varies. For instance, in RP, cystoid macular
edema (CME) might impact the EZ signal in OCT
scans. It has been shown that CNNs are susceptible
to image blur and noise.24 In this study, both high-
resolution and lower quality high-speed images were
used to train the CNN. As shown in Figure 3, the
trained CNN model can perform well to identify the
CME boundary. If the training image dataset includes
OCT images with weak boundary signals that can
be classified by experience graders, the trained CNN
model should be able to detect weak layer bound-

ary signals in the test images to identify EZ zone
in the presence of CME, even if EZ signals may be
weak.

Lower accuracy of the CNN model to identify the
class of image patches for a layer boundary may also
lead to the increase of false positives for the pixels not
on the layer boundary, as is the case with the dINL
illustrated in Figures 3b and 3f. The postprocessing of
classification maps can help eliminate false positives of
the model classification, as shown in Figures 3c and 3g,
hence improve themodel’s performance.Different from
the graph-searchmethod used by Fang et al.16,25 to find
layer boundaries from classification probability maps,
we developed a LCASA algorithm for the postpro-
cessing of classification maps. Judging by the results
of this study, the LCASA algorithm is promising for
automatic segmentation of retinal layer boundaries in
SD-OCT scan images. The current LCASA algorithm
only deals with maximum class probability for each
pixel. As shown in Figure 3b, some pixels near the
CME were classified as ILM (yellow pixels) based on
maximum probability. Although these false-positive
pixels were removed by the LCASA algorithm, the
next-class probability of these removed pixels could
be their true class (i.e., dINL). Hence, further refine-
ment of the LCASA algorithm is needed to improve
its performance, especially for the cases where local
connected areas are eliminated and the class of next-
level probability in these local areas can be added for
additional search. The method to combine the LCASA
algorithm with the graph search algorithm can also be
explored to determine if a more effective postprocess-
ing algorithm can be developed.

For supervised CNN learning, as is the case in this
study, accurate classification of the training dataset
is crucial. In this study, OCT scan images manually
segmented by one experienced grader (grader 1) were
used as the gold standard to classify training image
patches. Because there is intergrader variability in
manual segmentation, OCT images segmented by
additional graders may be needed to train the CNN. To
further evaluate the performance of the CNN model
trained with the data from one grader’s classification,
we examined the automatic EZwidthmeasurements by
the CNN model with those by two individual graders
(grader 1 and grader 2) for the test B-scan images.
As shown in Table 3, although the CNN model had
closer agreement of the mean difference with grader
1, the repeatability coefficient (standard deviation) was
comparable.

Furthermore, it is interesting to note that the
repeatability coefficient between the CNN model and
the average of two graders was closer to that between
grader 1 and grader 2 than to those between the
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Table 3. Comparison of EZ width measured by the deep machine learning-based method with the manual
segmentation of individual graders

CNN vs Average of 2 Graders CNN vs Grader 1 CNN vs Grader 2 Grader 2 vs Grader 1

Central 8 mm
EZWidth (mm) R2

Mean
Difference

STD
Difference R2

Mean
Difference

STD
Difference R2

Mean
Difference

STD
Difference R2

Mean
Difference

STD
Difference

EZ width 0.95 0.30 0.46 0.94 0.13 0.49 0.93 0.46 0.52 0.96 −0.34 0.41

STD, standard deviation.

CNN model and individual graders, suggesting that
the CNN model may act more like an average grader
than individual grader. With SD-OCT image segmen-
tation data from multiple graders, we could poten-
tially establish a well-trained CNN model, together
with a postprocessing algorithm, to replace humans for
automatic grading of SD-OCT images from patients
with RP. Nevertheless, further work is needed to evalu-
ate the sensitivity of the CNN model-based approach
to detect disease changes over time with longitudinal
data.
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