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Background: Amnestic mild cognitive impairment (aMCI) is considered to be the transi-
tional stage between healthy aging and Alzheimer’s disease (AD). Moreover, aMCI indi-
viduals with additional impairment in one or more non-memory cognitive domains are at
higher risk of conversion to AD. Hence accurate identification of the sub-types of aMCI
would enable earlier detection of individuals progressing to AD.

Methods: We examine the group differences in cortical thickness between single-domain
and multiple-domain sub-types of aMCI, and as well as with respect to age-matched con-
trols in a well-balanced cohort from the Sydney Memory and Aging Study. In addition,
the diagnostic value of cortical thickness in the sub-classification of aMCI as well as from
normal controls using support vector machine (SVM) classifier is evaluated, using a novel
cross-validation technique that can handle class-imbalance.

Results: This study revealed an increased, as well as a wider spread, of cortical thinning
in multiple-domain aMCI compared to single-domain aMCI. The best performances of the
classifier for the pairs (1) single-domain aMCI and normal controls, (2) multiple-domain
aMCI and normal controls, and (3) single and multiple-domain aMCI were AUC=0.52,
0.66, and 0.54, respectively.The accuracy of the classifier for the three pairs was just over
50% exhibiting low specificity (44–60%) and similar sensitivity (53–68%).

Conclusion: Analysis of group differences added evidence to the hypothesis that multiple-
domain aMCI is a later stage of AD compared to single-domain aMCI. The classification
results show that discrimination among single, multiple-domain sub-types of aMCI and
normal controls is limited using baseline cortical thickness measures.

Keywords: amnestic, mild cognitive impairment, subtype, cortical thickness, classification, early detection,
Alzheimer

1. INTRODUCTION
There is an increased focus on developing computer-assisted tools
for identifying individuals at high risk of developing Alzheimer’s
disease (AD). Recent reports suggest that the amyloid pathol-
ogy begins at least 20 years before any clinical symptoms appear
(1–3), which highlights the importance of preclinical detec-
tion. Epidemiologic studies from across the globe have reported
the annual progression rates of clinically diagnosed mild cog-
nitive impairment (MCI) to dementia to be in the 15–25%
range (4). There is also an interest in identifying sub-types of
MCI, and whether these relate to specific dementia diagnoses
and differential rates of conversion to dementia (5). Moreover,
an association between prior subtype of MCI and subsequent
progression to a particular dementia is also reported (5). The
development of automated techniques for the accurate clas-
sification of MCI sub-types, hence, has important prognostic
applications.

Amnestic subtype of MCI (aMCI) is found to have highest con-
version rate to AD as compared to other dementias (5). There are
two sub-types of aMCI based on the number of domains impaired:
single-domain (sd-aMCI) and multiple-domain (md-aMCI) sub-
types. There is evidence to suggest that md-aMCI is the most likely
subtype to progress to AD (6) and to dementia (7, 8). Structural
MRI (sMRI) is a non-invasive and economical way to capture com-
prehensive picture of atrophy in the brain in terms of subcortical
volumetry as well as cortical thickness features. Hence it would
be of value to assess the ability of structural biomarkers such as
cortical thickness in accurately identifying the sub-types of aMCI.

Research in this field has so far focused on studying group
differences alone, i.e., regional differences in gray matter loss or
cortical thickness in pair-wise fashion. Initial attempts to study
the group differences among normal controls (NC), sd-aMCI, and
md-aMCI were based on voxel-based morphometry (9–11), with
few studies analyzing cortical thickness (12, 13). These studies
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suggest that moderate differences exist. However, the sample sizes
examined have been small [except for Ref. (10)] and unbalanced
(9, 10, 12). In a study, where the goal is to identify which patients
are at increased risk of conversion to dementia, it is important
that aMCI (both single and multiple-domain sub-types) is not
underrepresented. Furthermore, it is important to evaluate the
diagnostic utility of these measures, which no study has previ-
ously assessed based on MRI measures (9–13). In this study, we
present the first thorough assessment of classification power in
cortical thickness features in identifying the sub-types of aMCI, in
a well-balanced cohort.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
The study sample was part of the Sydney Memory and Aging
Study (MAS) program, which comprises community-dwelling,
non-demented individuals recruited randomly through electoral
roll from two electorates of East Sydney, Australia. Please refer
to Ref. (7, 14) for complete details about this study. To be eli-
gible, participants needed to be aged between 70 and 90 years
old, sufficiently fluent in English to complete the psychome-
tric assessment and were able to consent to participate. Par-
ticipants were excluded if they had a previous diagnosis of
dementia, psychotic symptoms or a diagnosis of schizophre-
nia or bipolar disorder, multiple sclerosis, motor neuron dis-
ease, developmental disability, progressive malignancy (active
cancer or receiving treatment for cancer, other than prostate
non-metastasized, and skin cancer), or if they had medical or
psychological conditions that may have prevented them from
completing assessments. Participants were excluded if they had
a Mini mental Statement Examination [MMSE; (15, 16)] score
of <24 adjusted for age, education, and non-English speak-
ing background at study entry, or if they received a diagno-
sis of dementia after comprehensive assessment. The study was
approved by the Ethics Committee of the University of New South
Wales. The demographics for the current study sample are listed
in Table 1.

2.2. MAS SUBSAMPLE AND COGNITIVE ASSESSMENTS
Demographic characteristics of normal and MCI participants
selected for this study from the larger MAS cohort are presented
in Table 1. Participants received a comprehensive neuropsycho-
logical assessment examining the cognitive domains of mem-
ory, language, attention/processing speed, visuospatial function,
and executive functions (see Table 2 for listing of test mea-
sures). Participants were classified as having MCI according to
the latest international consensus diagnostic criteria and if all
of the following criteria were met – a cognitive complaint from

Table 1 | Demographics of aMCI and normal subjects in this study.

Diagnostic

group

Total N Age in years

mean (SD)

Gender Education in N

years mean (SD)

NC 42 78.57 (4.13) 17 M+25 F 11.97 (3.10)

sd-aMCI 38 79.92 (4.87) 25 M+13 F 12.68 (3.53)

md-aMCI 32 78.63 (4.44) 17 M+15 F 11.52 (3.84)

Table 2 | Neuropsychological tests used for MCI classifications.

Cognitive domain Test Normative data source

and demographic

adjustments

Memory Logical memory story A

delayed recall

Education

RAVLT Age

RAVLT total learning,

trials 1–5

RAVLT short-term

delayed recall; trial 6

RAVLT long-term

delayed recall; trial 7

Benton visual retention

test recognition

Age and education

Attention/processing

speed

Digit symbol-coding Age

Trail making test A Age and education

Language Boston naming test Ñ

30 items

Age

Semantic fluency

(animals)

Age and education

Visuospatial Block design Age

Executive function Controlled oral word

association test (FAS)

Age and education

Trail making test B Age and education

Please refer to Ref. (14) for complete details on normative data sources and

related references.

the participant or a knowledgeable informant, cognitive impair-
ment on objective testing, they were not demented, and normal
function or minimal impairment in instrumental activities of
daily living. Cognitive impairment was defined as a test perfor-
mance of 1.5 standard deviations (SDs) or more below published
normative values (demographically adjusted where possible –
Table 2). Participants were considered impaired in a domain if
at least one measure in the domain was impaired. In this study,
only amnestic type of MCI is included. If the impairment was
restricted to the memory domain, it was classified as single-domain
amnestic MCI (sd-aMCI). If an additional cognitive domain was
impaired, it was classified as multiple-domain amnestic MCI
(md-aMCI).

Participants from non-English speaking background were
excluded from the MCI groups because of the questionable valid-
ity of applying standard normative data to establish cognitive
impairment in non-native English speakers (17). Of the total
remaining subjects with MR imaging, subjects whose cortical
parcelation did not meet our quality control, either owing to
their failure in either Freesurfer cortical parcelation or estima-
tion of cortical thickness from our Laplacian streamlines method,
have been excluded. Our quality control consisted of checking
for permanent failure in Freesurfer automatic parcelation, visu-
ally examining for presence of holes or handles in the pial or
white surfaces (left or right hemisphere), or when the cortical
surfaces have gross errors in following the structural boundaries.
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FIGURE 1 | Neuropsychological assessment of aMCI and normal
subjects included in this study (standardized scores, mean).

Further, even with acceptable Freesurfer parcelation, some sub-
jects were excluded if our thickness computation method based
on Laplacian streamlines fails to estimate thickness in either left or
the right hemisphere. Within the quality controlled subset, a ran-
dom subset of controls that matched in age and size with aMCI
have been selected. The final selection consisted of 38 sd-aMCI,
32 md-aMCI, and 42 age-matched NC, for which the cognitive
assessments are presented in Figure 1.

2.3. IMAGE ACQUISITION
The participants were scanned using a 3-T Intera Quasar scan-
ner initially, followed by a 3-T Achieva Quasar Dual scanner, both
manufactured by Philips Medical Systems, Best, The Netherlands.
There was no alteration in acquisition parameters for T1-weighted
sequences for both the scanners: TR= 6.39 ms, TE= 2.9 ms,
flip angle= 8°, matrix size= 256× 256, FOV= 256× 256× 190,
and slice thickness= 1 mm with no gap between; yielding
1× 1× 1 mm3 isotropic voxels. The use of different scanners was
due to reasons beyond investigator’s control and any systematic
bias arising from the scanner change is unlikely given that partic-
ipant recruitment was random. In fact, there were no significant
differences in cortical features found between the two scanners
in the Sydney MAS cohort (18). Even though there were some
cohort differences across the two scanners (at age scan: scanner
1= 77.9, scanner 2= 79.0, p= 0.003; years of education: scanner
1= 11.4, scanner 2= 12.2, p= 0.013; male/female ratio: scanner
1= 125/160, scanner 2= 120/137, p= ns; the final selection of
subjects in Section 2.2 are part of this larger cohort), previous stud-
ies have suggested that when vendor, field strength, and acquisition
parameters remained unchanged, data collected during scanner
upgrades could be pooled (19).

2.4. THICKNESS MEASUREMENT AND PROCESSING
Initial cortical reconstruction and volumetric segmentation of the
whole brain were performed with the Freesurfer image analysis
suite (20) to obtain Pial and WM/GM surfaces. The resulting
cortical parcelations were quality controlled whenever possible
(they were excluded otherwise). On the volume lying between
these surfaces, a discrete approximation of Laplace’s equation was
solved (21, 22) using the tools developed by our group. Stream-
lines of this harmonic function define corresponding points on the

surfaces, and the Euclidean distance between these points defines
the cortical thickness.

This results in thickness measurements at every vertex on the
pial surface. In order to perform group-analysis, the surface of
each subject in the study has been registered to the surface of
a common atlas (derived from averaging over 80 healthy sub-
jects) using the tools from Ref. (20) – see Appendix for further
details. The atlas contained 327684 vertices in the whole brain.
This establishes vertex-wise correspondence and enables group-
wise analysis into the differences. Finally, cortical thickness was
smoothed with a 10-mm full width at half height Gaussian ker-
nel to improve the signal-to-noise ratio and statistical power for
subsequent analysis (23).

2.5. HIPPOCAMPAL FEATURES
As this study focuses on amnestic type of MCI, hippocampal fea-
tures are relevant. Hence preliminary experiments on classifying
the sub-types using hippocampal volumes and shape features have
been performed as well (24, 25).

2.6. CLASSIFICATION USING THICKNESS FEATURES
We performed three pair-wise tests for comparison using SurfStat
(26) and identified a set of regions, which are significantly dif-
ferent (p < 0.05) between each pair. The results from this group
difference analysis are presented in Section 3.1. This is followed by
an evaluation of accuracy of cortical thickness features in a binary
classification test. The classification system consisted of intrinsic
dimensionality reduction by subdividing the brain into small par-
titions, followed by a ranking based feature selection method and
support vector machine (SVM) as classifier (27).

The dimension reduction method subdivides the cortex by par-
titioning each Freesurfer label (such as posterior cingulate cortex)
into 10 smaller patches using the spatial clustering of vertices using
k-means method. This results in 680 patches for the 34 corti-
cal labels in both the hemispheres. Mean thickness value in each
patch represents the feature for that partition, providing a total of
680 thickness features for each brain.

To avoid the curse of dimensionality, T -statistic based feature
selection (top K features) has been performed prior to feed-
ing the SVM classifier. For each pair, K is determined by the
total number of samples in the corresponding binary test so
as to avoid the curse of dimensionality, which is K max=N /10
(28). This would give K max= 8, 7, and 7 for the three pairs
NC vs. sd-aMCI, NC vs. md-aMCI, and sd-aMCI vs. md-aMCI,
respectively.

During the training phase, the parameters of the SVM classifier
are tuned using grid search in the following ranges: penalty con-
stant C = 10m, m=−1 to 5 and the kernel width gamma g = 2n,
n=−5 to 4. For all the parameter combinations mentioned, the
classifier is trained on a stratified training set (50% of the smallest
class) and the prediction power has been evaluated on the remain-
ing test set, and in each pair-wise classification experiment. This
method is repeated 250 times, each time creating random train-
ing/test sets, in order to avoid the bias that can arise from a single
training/test sets. The mean performance metrics, and their SDs,
are noted. Please refer to Ref. (29) for a detailed discussion of
classification method.
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3. RESULTS
Analysis of group differences is presented first in Section 3.1.
This descriptive analysis also serves to provide regional infor-
mation on significant differences among NC, sd-aMCI, and md-
aMCI groups. This is followed by the evaluation of prediction
power for cortical thickness using statistical learning techniques
in Section 2.6.

3.1. GROUP DIFFERENCES
Using SurfStat (26), the differences among NC, sd-aMCI, and md-
aMCI are analyzed in a pair-wise fashion and the set of vertices that
are significantly different [p < 0.05 after correcting for multiple-
comparisons using random field theory (30)] between the two
groups are presented in the maps of T -statistic and p-value.

3.1.1. NC vs. sd-aMCI
The group differences between NC and sd-aMCI as measured by
T -statistic are visualized in Figure 2A. Here, we can see that it is

FIGURE 2 | Visualization of the differences between the two groups NC
and sd-aMCI. (A) T -statistic values displayed at each vertex (B) the set of
clusters, which survived the multiple-comparisons test (cluster-wise
significance), each colored differently. We can see that significant
differences exist, although in few localized cortical areas.

bright red (T -stat > 4) around central sulcus, meaning sd-aMCI
is much thinner than NC. In fact this is the only area that survived
the multiple-comparison test as visualized in Figure 2B.

3.1.2. NC vs. md-aMCI
The group differences between NC and md-aMCI as measured
by T -statistic are visualized in Figure 3A. It is immediately clear
that the differences are much more widespread and thinning in
md-aMCI is higher. In fact the areas (as listed in Table A2 in
the Appendix) that survived the multiple-comparison test are
throughout the brain as shown in Figure 3B. These are mostly
complementary to the differences exhibited in NC vs. sd-aMCI,
except for a slight overlap in the central sulcus.

3.1.3. sd-aMCI vs. md-aMCI
The group differences between sd-aMCI and md-aMCI as mea-
sured by T -statistic are visualized in Figure 4A. It can be observed

FIGURE 3 | Visualization of the differences between the two groups NC
and md-aMCI. (A) T -statistic values displayed at each vertex (B) the set of
clusters, which survived the multiple-comparisons test (cluster-wise
significance), each colored differently. We can see that they exhibit
significant differences, in many cortical areas compared to the differences
noticed between NC and sd-aMCI as shown in Figure 2B.
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FIGURE 4 | Visualization of the differences between the two groups sd-
and md-aMCI. (A) T -statistic values displayed at each vertex (B) the set of
clusters, which survived the multiple-comparisons test (cluster-wise
significance), each colored differently. These visualizations display areas
where md-aMCI is causing significantly differences as compared to
sd-aMCI.

that there are only few areas (as listed in Table A2 in the Appendix),
which exhibit strong group differences, which can be visualized in
Figure 4B (areas that survived the multiple-comparison test with
p < 0.05). The significant differences are localized mostly in the
frontal and occipital lobes.

3.2. CLASSIFICATION USING HIPPOCAMPAL FEATURES
The classification experiments using support vector machines with
hippocampal features (both left and right) revealed that hip-
pocampal volume or shape lack any discrimination power. This
is expected given that both the aMCI sub-types affect hippocam-
pus in a similar way resulting in large overlap (see Table 3). This is
consistent with findings reported in the study (24), which is based
on aMCI subjects from the same MAS cohort combining both
the sub-types into one group (in contrast with our study trying
to discriminate the sub-types). That study assessed the power of

subcortical volumetry and fractional anisotropy measures individ-
ually and in combination, to find that volumes alone didn’t have
any classification power.

3.3. CLASSIFICATION USING THICKNESS FEATURES
The results for the best performance for each pair, as ranked by
AUC over all the parameter sets, are shown in Table 4. The average
ROCs are visualized in Figure 5, which are constructed by the ver-
tical averaging method as described in Ref. (31), by averaging the
250 ROCs obtained from the 250 repetitions.

To demonstrate that performance of the mean thickness (MT)
features is significantly better than chance, additional experiments
testing the statistical significance of the improvement in classifi-
cation performance have been performed. The significance test
is conducted using ROC comparison methods described in Ref.
(32). The repeated cross-validation method employed in this study
[known as RHsT, (29)] provides us with 250 estimates of AUC for
each repetition of a cross-validation experiment. The distribution
of these AUC samples for MT features are used to estimate whether
it is significantly better than a random classifier (AUC of 0.5), using
a non-parametric Wilcoxon rank-sum test. The result of this test
is indicated in the last column of Table 4.

4. DISCUSSION
We examined the group differences in cortical thickness between
the two sub-types of aMCI and age-matched normal controls.
Using surface-based analysis, the regions with significant differ-
ences were visualized and we have analyzed how they differed from
the other pairs. We then presented an assessment of the power of
cortical thickness in accurately classifying the sub-types of aMCI.

In comparison with NC, sd-aMCI presented significant differ-
ences in post central and precentral regions in both left and right
hemispheres (see Figure 2). These regions are relatively robust in
AD, and do not show pathology in the early stages. It might be
possible that this is a reflection of a more generalized atrophy in
the parietal and/or frontal lobes. The differences appear to cover
slightly larger areas in the right hemisphere. It is interesting to note
that the significant differences exist only around central sulcus and
not medial temporal lobe. As the only domain of impairment in
sd-aMCI is memory, we expected to see differences in the medial
temporal lobe. This result is not consistent with previous findings
in Ref. (9, 10, 12, 13), which reported differences in the medial
temporal lobe.

In the comparison between md-aMCI and NC, the significant
differences were found in the left temporal pole, left frontal pole,
left superior parietal lobe, left inferior parietal lobe, left paracentral
lobule, left precuneus, left posterior cingulate, left fusiform gyrus,
left gyrus rectus, left superior frontal gyrus, right supramarginal
gyrus, right cuneus, right temporal pole, and right lateral occip-
itotemporal gyrus (see Figure 3). As expected, the differences in
md-aMCI (relative to NC) are much more widespread than sd-
aMCI and cover a large set of regions in md-aMCI,adding evidence
to the hypothesis that md-aMCI is a later stage of AD compared to
sd-aMCI. Such spreading of atrophy into frontal lobe and poste-
rior cingulate is similar to that seen in AD patients and is consistent
with previous reports (10). The thinning in md-aMCI (relative to
NC) covers regions functionally associated with visual perception
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Table 3 | Volumes of hippocampi (in mm3) of the aMCI sub-types and normal controls used in this study.

Pair Structure Class 1 volume in mm3 Class 2 volume in mm3 p-Value

NC vs. sd-aMCI Hipp L 3437.26 3250.40 0.009*

NC vs. md-aMCI Hipp L 3437.26 3211.33 0.001*

sd- vs. md-aMCI Hipp L 3250.40 3211.33 0.616

NC vs. sd-aMCI Hipp R 3359.98 3175.03 0.010*

NC vs. md-aMCI Hipp R 3359.98 3128.40 0.005*

sd- vs. md-aMCI Hipp R 3175.03 3128.40 0.591

Notice the large overlap in the distribution of volumes for each structure. The results of the significance testing of whether volumes of hippocampi differ significantly

between different pairs of diagnostic groups. Significant differences (p < 0.05) are noted with an asterisk.

Table 4 | Comparison of the best classification performance of the classifier for each pair, and whether that performance is significantly better

than random.

Pair Model AUC ACC (%) SPEC (%) SENS (%) p-Value (AUC > Random)

NC vs. sd-aMCI K =8, γ=16, C =1 0.52 50 44 58 >0.05

NC vs. md-aMCI K =7, γ=8, C =100 0.66 61 60 62 <0.05

sd-aMCI vs. md-aMCI K =7, γ=4, C =0.01 0.54 53 53 53 >0.05

FIGURE 5 | Comparison of ROC curves for the best classifier found
from grid search as described in Section 2.6. The model from which ROC
is generated are listed inTable 4.

(precuneus, cuneus, lateral occipitotemporal gyrus, and fusiform
gyrus), spatial ability (parietal lobe and precuneus), language
(inferior parietal, supra marginal, and frontal pole), behavioral
regulation (superior frontal gyrus and frontal pole), executive
function (precuneus), and motor skills (paracentral lobe). Some
regions (fusiform gyrus and temporal pole) are in agreement with
those reported in Ref. (9, 12), although additional differences were
observed.

Relative to sd-aMCI, md-aMCI presented significantly more
thinning in the right insula, right middle frontal gyrus, right pre-
cuneus, right posterior cingulate cortex, right superior frontal
gyrus, right gyrus rectus, right superior frontal gyrus, and right

inferior frontal gyrus (see Figure 4). This is expected as the sd-
aMCI patients exhibit impairment in memory domain only and
md-aMCI patients exhibit impairment in additional domains. The
regions found to be significantly different are located mostly in the
frontal and occipital lobes and are functionally associated with per-
sonality, behavior (frontal gyrus), attention (posterior cingulate),
emotion (insula), executive, and visuospatial skills (precuneus).
The differences found in posterior cingulate, temporal and frontal
regions are consistent with those reported in Ref. (9, 13) and those
found in precuneus are consistent with the experiments in Ref.
(12). However, we find many additional differences compared to
Ref. (12, 13). In our study, the differences noticed in md-aMCI
relative to sd-aMCI are predominantly in the right hemisphere
(see Figure 4B). Such hemispheric asymmetry to the right is con-
sistent with Ref. (13). However, our findings are in disagreement
with Ref. (12), where a left predominant atrophy is reported.

The disagreement in the set of regions found to be significantly
different among the three studies may be attributed to the use
of different cohorts for each study and substantial heterogeneity
in the MCI construct, as well as class-imbalance in cohorts. Our
cohort consists of community-dwelling residents in Sydney, Aus-
tralia, whereas the cohort used in Ref. (12) comes from South
Korea and the study presented in Ref. (13) is part of Alzheimer’s
Disease Neuro-imaging Initiative, which sources patients from
various sites in the United States. It is to be noted also that the sam-
ple sizes are unbalanced across domain types in Ref. (12), which
can be another reason for detecting relatively smaller number of
differences.

Analysis of the group differences and characterizing the pat-
terns of differences is useful. Confirming the presence of dif-
ferences across groups and comparing them with other studies
improves our understanding of these classes. But this knowledge as
such is insufficient to build an imaging biomarker that could accu-
rately identify the different groups. Often the differences found
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FIGURE 6 | Visualization of the distribution of thickness in the region found to be the most significantly different for each pair-wise comparison, as
visualized in Figures 2B, 3B, and 4B, respectively from top to bottom.

aren’t strong enough to serve as a reliable biomarker for predic-
tion. In this study, the classification power of cortical thickness has
been assessed in accurately identifying the two sub-types of aMCI
and normal controls. We performed the comparisons in a multiple
pair-wise fashion using SVM as described in Section 2.6.

Looking at the best performance of the classifier for each pair,
optimized via model selection and as compared in Table 4, we
observe that classification performance is rather moderate. In fact,
the classifier’s performance achieved significance over chance only
in NC vs. md-aMCI experiment, and it was not significant in
NC vs. sd-aMCI and sd-aMCI vs. md-aMCI. This is expected, as
the differences among the groups are moderate at best (also see
Figure 6).

We have also performed experiments in classifying the 3 groups
directly in a 3-class setting with several multi-class classifiers
including Decision Trees (J48) as well as multi-class SVMs. This is
the first study to attempt the sub-classification of MCI, using either
binary classifiers or multi-class classifiers. The best performance of
the 3-class classifiers was AUC≈ 0.6. This moderate performance
is not unexpected given that the best performance of classifiers in
the binary classification experiments (Table 4) is only moderate.

To gain further insight into the results, the distribution of
thickness in the area found to be the most significantly differ-
ent (lowest p-value), among those areas, which are significantly

different between a given pair, has been visualized. For compari-
son purposes, we plotted the distribution for the remaining group
as well. The comparison of thickness distribution for the three
pair-wise tests is shown in Figure 6.

In the top plot of Figure 6, the histograms of mean thick-
ness for all subjects in the most significantly different area for
differences between NC (in red) and sd-aMCI (magenta) are
compared. A smooth Gaussian is fitted for each histogram for
ease of visualization. It is easy to see that the means of NC
and sd-aMCI are separated, but there still exists a large over-
lap between them. The differences are enough to survive the
multiple-comparison test as a cluster (Figure 2B), but not well
separated. Moreover, if we compare these two groups with md-
aMCI, md-aMCI completely overlaps with sd-aMCI. Very sim-
ilar trends can be observed in other visualizations as well in
the middle and bottom rows in Figure 6, i.e., the two groups
under comparison, e.g., sd-aMCI and md-aMCI in the bot-
tom row exhibit a small separation of means (magenta and
blue curves), but still have a large overlap in the distribu-
tion. Moreover, the third group (NC) almost coincides with
the group closest to it in disease severity level (in this case
sd-aMCI).

Such large overlap in the thickness distribution, we believe, is
the primary reason for moderate classification performance. This
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is expected as the differences, as seen in cortical thickness extracted
from structural MRI scans, among the three groups at such an early
stage of impairment are subtle at best. In addition, it is to be noted
that the diagnosis of MCI is not very stable yet, e.g., high rates of
reversion to normal are reported in Ref. (33, 34) and significant
percentage of subjects convert to other sub-types (34). This can be
another reason for moderate classification performance.

It is to be noted that one of the limitations in this study is the
lack of histopathological confirmation for the clinical diagnoses
employed in this study. Another limitation is the scanner upgrade
midway, which is not modeled into our analysis. Even though there
were minor cohort differences across the two scanners in some
of demographic parameters, previous studies have suggested that
when vendor, field strength, and acquisition parameters remained
unchanged, data collected during scanner upgrades could be
pooled (19). Another study (35) concluded that scanner upgrade
did not increase the measurement variability nor introduce bias
and that applying smoothing filters (which we have done with
10 mm FWHM Gaussian kernel) on the raw thickness maps can
substantially reduce that thickness measurement variability. Fur-
ther, the number of subjects in each diagnostic group belonging
to the two scanners are: CN (scanner 1: 20 and scanner 2: 22),
sd-aMCI (18/20), and md-aMCI (15/17). This shows a fairly even
distribution across the two scanners, indicating that the chances of
significant bias toward one scanner are greatly reduced. However,
for the sake of completeness, we have performed additional exper-
iments to investigate if there is any effect of scanner upgrade on
the classification results. To this regard, we have regressed out the
scanner upgrade factor from the cortical thickness features, and
used the residuals to form the new set of features for classification.
We repeat the classification procedure as detailed in Section 2.6,
and the results (AUC of 0.52, 0.67, and 0.55 in the three pair-wise
experiments, respectively) did not differ from the previous results
presented in Table 4.

In conclusion, this study contributes to the important discus-
sion of prognosis of MCI sub-types and in particular in assessing
the classificatory power of sMRI features in distinguishing the
sub-types of MCI. Our analysis revealed a wider spread of corti-
cal thinning in md-aMCI (relative to NC) compared to sd-aMCI,
adding evidence to the hypothesis that md-aMCI is a later stage of
AD compared to sd-aMCI. Classification results from our study
show that baseline cortical thickness alone does not have suffi-
cient discriminability to differentiate normal controls, sd-aMCI,
and md-aMCI from each other. However, it is currently not
known whether longitudinal rates of change in thickness offer
discrimination between sd-aMCI and md-aMCI, which would be
worth investigating. We speculate that longitudinal features might
improve the prediction accuracy of which patients are at risk of
developing dementia. Fusion of subcortical features, white mat-
ter lesion features, as well as complementary features from other
modalities such as FDG-PET or PiB-PET (which directly measures
the presence of pathological features, if present) may substantially
improve the ability in accurately identifying sub-types of aMCI.
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APPENDIX
ESTIMATION OF THE COMMON ATLAS
After the extraction of cortical thickness from each subject, the
surface of each subject has been registered to that of a common
atlas. This atlas is derived from averaging 80 healthy controls
using tools from Freesurfer. With the help of Talairach trans-
form computed for each subject, Talairach (MNI305) coordinates
for each vertex are computed. These coordinates (from the 80
subjects) are averaged after mapping them to the common surface

Table A1 | List of IDs of the subjects used for the estimation of average atlas.

295 1261 1280 907 981 602 484 498 681 68 1222 2 5 16 21 22 23 502 575 1035

519 520 558 883 899 1288 14 130 61 963 985 1063 403 824 843 920 1098 48 672 813

1023 1002 643 779 934 19 312 386 363 640 489 711 171 896 533 1014 173 601 405 506

605 680 260 622 863 232 969 1200 123 319 441 433 488 86 196 1194 1195 1197 1202 1203

Note these are baseline subjects from ADNI-1.

Table A2 | Comparison of the cortical locations in the brain found to be significantly different between the three different pairs from the current

study.

sd-aMCI vs. CN md-aMCI vs. CN sd- vs. md-aMCI

L: precentral On BOTH hemi Only RIGHT

L: postcentral Caudal anterior cingulate Isthmus cingulate

L: superior parietal Caudal middle frontal Lateral orbitofrontal

L: supramarginal Cuneus Medial orbitofrontal

Parts of central sulcus Fusiform Paracentral

R: paracentral Inferior parietal Pars opercularis

R: postcentral Inferior temporal Pars orbitalis

R: precentral Isthmuscingulate Pars triangularis

Lateral occipital Postcentral

Lateral orbitofrontal Posterior cingulate

Lingual Precentral

Medial orbitofrontal Precuneus

Middle temporal Rostral middle frontal

Parahippocampal Superior frontal

Paracentral Superior parietal

Pars opercularis Frontal pole

Pars orbitalis

Pars triangularis

Postcentral

Posterior cingulate

Precentral

Precuneus

Superior frontal

Superior parietal

Superior temporal

Supramarginal

Frontal pole

Temporal pole

Transverse temporal

Only LEFT: banks of STS

Entorhinal

Only RIGHT: pericalcarine

Rostral anterior cingulate

Please note that this is rather an exhaustive list of regions automatically generated by the program, with regions not immediately visible in the figures as they may

have only few vertices part of cluster. L, Left; R, Right Hemi.

(which overlays well on the average MNI305 volume). Below, the
list of all subjects that were part of this averaging are presented in
Table A1.

COMPARISON OF SIGNIFICANTLY DIFFERING REGIONS ACROSS THE
EXPERIMENTS
A comprehensive comparison of the list of brain regions, which
exhibited significant group differences in the three pair-wise
comparisons are presented in Table A2.
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