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INTRODUCTION

Classification in medicine is central to establishing 
diagnosis, prognostication as well for selection of treatment 
strategies. Traditionally, tumors were classified based on 
anatomical location, for example lung cancer originating in 
the lung, and within each organ specific group, subgroups 
were based on the cell type and histopathological features. 
For example, the 2004 World Health Organization (WHO) 
classification divided lung cancer into two main subtypes; 
small cell lung cancer (SCLC) and non-SCLC (NSCLC), and 
further sub-classified NSCLC into adenocarcinoma and 
Squamous cell carcinoma (SCC) (1). This classification 
was sufficient as SCLC was treated with chemotherapy 
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and/or radiation, and NSCLC was primarily treated with 
surgery, with chemotherapy and/or radiation reserved 
for unresectable or metastatic tumors. In the past, all 
advanced NSCLC were essentially treated with platinum 
based chemotherapy. The radiologist approach to staging 
and response assessment of tumors also mirrored this 
classification system. In patients undergoing conventional 
chemotherapy, response was seen primarily as change in 
size so size based criteria such as the WHO and Response 
Evaluation Criteria in Solid Tumours (RECIST) were 
developed to communicate results in universal fashion. 

However, in recent years due to advances in molecular 
biology and gene sequencing, numerous genes have been 
identified across hematological and solid malignancies, 
that when mutated, promote tumorigenesis. Specific 
genetic mutations in cancers have the potential to be 
treated with molecular targeted therapies (MTT) such as 
epidermal growth factor receptor (EGFR) inhibitor Erlotinib 
in lung cancer, tyrosine kinase inhibitor (TKI) Imatinib in 
gastrointestinal stromal tumors and vascular endothelial 
growth factor (VEGF) inhibitor Sunitinib in renal cell 
carcinoma, leading to dramatic responses and significantly 
improved overall survival. This has led to a paradigm shift in 
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the classification and treatment of cancer. The last decade 
saw a slew of newer cancer treatments focused on MTT 
obtain Food and Drug Administration (FDA)-approval, and 
treatment options have now exploded. Sub-classification 
of tumors based on their molecular characteristics allows 
for stratification of patients for optimal targeted therapy, 
the promise of precision medicine. Cancer genomics and 
personalized cancer treatment is the “new kid on the block” 
and is here to stay. 

Lung cancer is the leading example of how transformative 
cancer classification and care has become in this era of 
precision medicine. Prior to 2004, the discovery of EGFR 
mutations in NSCLC and subsequent specific treatment with 
TKIs, gefitinib and erlotinib, paved the way for precision 
medicine in NSCLC (Fig. 1). This was quickly followed by 
the discovery of other driver genes such as echinoderm 
microtubule associated protein like 4-anaplastic lymphoma 
kinase 1 (EML4-ALK1) in 2007 and the ALK inhibitor 
crizotinib, which was granted accelerated FDA approval for 
treatment of ALK rearranged lung cancers (Fig. 1). EGFR 
mutations and ALK rearrangements currently account for 
12% of all adenocarcinomas in the United States and EGFR 
accounts for up to 60% of lung adenocarcinomas in Korea 
and 55% of lung adenocarcinomas in Taiwan (2-4). The 
clinical success of targeted agents such as EGFR inhibitors 
and ALK inhibitors has fueled the research to identify 
additional genomic abnormalities and targetable agents. 
Other driver genes in lung cancer include receptor tyrosine 
kinase (ROS1), fibroblast growth factor receptor 1 and 
the landscape continues to evolve (Fig. 2). The WHO lung 

cancer classification was recently updated in 2015 to reflect 
these advances and testing for EGFR mutations and ALK 
rearrangements is currently the standard of care for patients 
with initial diagnosis of lung adenocarcinoma (5). Similar 
changes have been made to the classification of other 
cancers for example renal cell carcinoma, breast cancer and 
gastric cancer, to better reflect the molecular and genomic 
characteristics. This in turn allows the matching of the right 
gene with the right cancer agent and eventually improves 
the efficacy of therapy and patient outcomes.

Imaging plays a central role in the assessment of 
response to treatment both in day-to-day practice as well 
as in the setting of clinical trials. Tumors treated with MTT 
often show morphological changes rather than change in 
size. Since conventional size based assessment such as WHO 
and RECIST may not be accurate in this scenario, alternate 
tumor response criteria such as Choi criteria, Morphology, 
Attenuation, Size and Structure (MASS) criteria, and 
Response Assessment in Neuro-Oncology (RANO) criteria 
have been developed, to capture these morphological 
changes. In addition, MTT are associated with class 
specific and drug specific toxicities, different from those 
encountered with conventional chemotherapeutic agents. 
A new class of agents that have emerged are the immune 
checkpoint inhibitors, which promote the body’s intrinsic 
T-cell immune response to cancer cells, and have shown 
significant activity across multiple cell lines such as 
melanoma, lung cancer, renal cell carcinoma, bladder 
cancer and lymphoma. Tumors treated with immune 
checkpoint inhibitors respond in a different fashion, often 

Fig. 1. Timeline of events in lung cancer molecular targeted therapies. ALK = anaplastic lymphoma kinase, EGFR = epidermal growth 
factor receptor, FDA = Food and Drug Administration
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demonstrating early increase in size and new lesions prior to 
dramatic tumor shrinkage, leading to new immune-related 
response criteria and are also associated with unique range 
of immune related adverse events. It is important for the 
radiologists to be familiar with the new cancer classification 
based on genomics and the various treatment strategies 
employed, in order to effectively communicate with the 
oncologists and participate in the multi-disciplinary care.

A review of the entire gamut of genomic alterations in 
cancer and the changes in classification of different tumors 
is beyond the scope of this article. Instead, in this paper, 
we will focus on lung cancer as a prototype of the new 
molecular classification system and review in detail the two 
most common targetable alterations in lung cancer. EGFR 
mutations and ALK rearrangements, and we will look at 
EGFR mutations and ALK rearrangements beyond lung cancer 
in different cell lines comparing the presentation and their 
targeted therapies. 

Overview of Epidermal Growth Factor Receptor 
Mutations and ALK Rearrangements

Epidermal growth factor receptor is a tyrosine kinase 
receptor of the ErbB family, which is comprised of four 
related receptors: ErbB1 (EGFR/HER1), ErbB2 (HER2/
neu), ErbB3 (HER3), and ErbB4 (HER4). Each receptor is 
composed of an extracellular ligand binding domain, a 
transmembrane domain and an intracellular domain (6). 
When epidermal growth factor binds to the extracellular 
ligand, a downstream signaling pathway is triggered 
that includes the Ras-Raf-MAP-kinase and the PI3K-Akt-

mTOR pathway, linked to multiple responses promoting 
tumorigenesis including cell growth, proliferation, motility 
and survival (7). EGFR induces cancer by one of three 
mechanisms: mutational activation, amplification and 
overexpression of ligands. EGFR is overexpressed in multiple 
human tumors including lung, breast, colorectal, vulvar and 
head and neck cancers (8).

Anaplastic lymphoma kinase is a member of the insulin 
ROS1. Once activated it triggers downstream signaling on 
multiple pathways including RAS/MAPK, PI3K/AKT, JAK/
STAT, and Cdc42/Rac (9).

A small inversion in chromosome 2p causes the formation 
of a fusion gene of the ALK and echinoderm microtubule-
associated protein-like 4 (EML4). EML4-ALK rearrangements 
act as oncogenes and the EML4-ALK fusion protein has 
oncogenic potential with transforming activity, which is 
the most common fusion in NSCLC (10). ALK-rearranged 
cancers are oncogene-addicted with dependence on 
the oncogene mutation for sustaining proliferation and 
growth (10). Aberrant activation of ALK has been found 
in several cancers including NSCLC, anaplastic large cell 
lymphoma (ALCL), inflammatory myofibroblastic tumor and 
neuroblastoma (11). 

Comparison of EGFR and ALK in NSCLC

EGFR in NSCLC
In NSCLC, EGFR mutations are more common in never 

smokers, females and patients of East Asian origin (12, 13). 
A recent study looking at CT findings and EGFR mutation 
status, reported that EGFR-mutated adenocarcinoma had 

Fig. 2. Pie chart demonstrating percentage of driver alterations in lung adenocarcinoma. Adapted from Sholl et al. J Thorac Oncol 
2015;10:768-777 (2). ALK = anaplastic lymphoma kinase, EGFR = epidermal growth factor receptor
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significantly higher frequencies of multiple bilateral lung 
tumors, convergence of surrounding structures, surrounding 
ground glass opacity, and notch sign at HRCT compared 
with the non-EGFR-mutated type (14, 15). Cavitation and 
pleural effusions less frequent when compared to the non-
mutated subtype (14, 15).

It is important to understand that not all EGFR mutations 
are responsive to treatment. The two most common 
mutations of EGFR in NSCLC are deletions in exon 19 and 
L8585R point mutation in exon 21 (13). These mutations 
are associated with response to EGFR-TKI treatment and 
are considered sensitizing mutations, whereas tumors 
with other EGFR mutation such as exon 20 insertions are 
resistant to EGFR-TKI treatment. NSCLCs that contain 
these sensitizing EGFR mutations have been shown to be 
‘addicted’ to mutant EGFRs for proliferation and survival 
(16, 17). Therefore drugs that bind to the EGFR tyrosine 
kinase and inhibit EGFR are highly effective in treating 
NSCLC with mutations. Erlotinib and gefitinib are first line 

EGFR TKIs that reversibly inhibit EGFR and afatinib is a 
second line EGFR TKI that irreversibly binds to EGFR. All 
three are administered orally and approved by the FDA as 
first line therapy in patients with EGFR mutation. Response 
to EGFR-TKI therapy is usually dramatic with response rates 
as high as 70%, and associated with early and significant 
tumor shrinkage (18). A third generation EGFR inhibitor 
(BI 1482694) got FDA breakthrough therapy designation 
in December 2015 for metastatic EGFR T790M mutation 
positive NSCLC (Fig. 1). 

Patients with NSCLC that initially respond to EGFR 
inhibitors usually have disease progression after a median 
of 12 months due to the development of resistance (19). 
In approximately 50% of patients resistance is secondary 
to a second site mutation T790M at exon 20 (Fig. 3) (20). 
Afatinib has been shown to be effective against all forms 
of EGFR including wild type, exon 19, exon 21 L858R and 
T790M (20), and is currently used as first line treatment 
in EGFR mutated lung cancer or as second-line agents 

Fig. 3. Axial contrast enhanced CT on soft tissue windows at four different time points in 57-year-old woman with EGFR exon 19 
deletion lung adenocarcinoma. 
A. Initial image demonstrates large right upper lobe mass (arrow). B. Second image demonstrates response to first generation EGFR TKI (erlotinib) 
after 3 months with significant decrease in size of mass (arrow). C. Third image was performed 6 months later demonstrates further decrease in 
size of right upper lobe mass (arrow). D. Final image demonstrates gradual increase in size (arrow). Biopsy demonstrated T790M mutation that 
has known resistance to EGFR TKI (erlotinib) therapy. EGFR = epidermal growth factor receptor, TKI = tyrosine kinase inhibitor

A B

C D
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in patients who develop erlotinib resistance. In 20% of 
patients EGFR TKI resistance is caused by MET amplification 
that causing kinase switching triggering the erbB3 pathway 
instead of the erbB1 pathway (21). MET amplification can 
coexist with T790M or occur independently, and addition of 
MET-inhibitors to erlotinib has shown clinical benefit (20). 

The use of RECIST to determine disease progression in 
patients on EGFR therapies is under debate. Patients treated 
with erlotinib may have an initial dramatic response to 
therapy followed by slow progression over several months 
suggesting some continued sensitivity to therapy. When 
erlotinib is discontinued due to disease progression, 
a flare phenomenon has been observed with dramatic 
increase in tumor burden, which promptly improves with 
re-administration of erlotinib (Fig. 4) (22). This ‘flare’ 

phenomenon is not merely an imaging finding but can be 
associated with symptomatic disease worsening, resulting 
in hospitalization and in some cases even death (23). The 
current strategy at many centers is to continue erlotinib 
beyond RECIST defined progression and add conventional 
chemotherapy to EGFR inhibitor, or replace erlotinib with 
second-generation inhibitors such as afatinib.

The most common toxicities that are seen with EGFR 
inhibitors include skin toxicity, colitis, and rare but 
potentially fatal pneumonitis. CT findings of pneumonitis 
include multifocal ground-glass opacities (Fig. 5) with or 
without interlobular septal thickening or diffuse ground 
glass changes with consolidation and traction bronchiectasis 
(24, 25). Colitis may be manifest on imaging as fluid-filled 
colon, mural thickening, pericolonic fat stranding, and 

Fig. 4. Axial CECT on lung windows in 53-year-old woman with L8585R point mutation in exon 21 adenocarcinoma. 
Patient had been treated with EGFR tyrosine kinase inhibitor (erlotinib) for 11 months but was progressing on serial CT studies. Initial CT (A) 
demonstrates multiple small right-sided pulmonary metastases and almost confluent opacification in left lung. Patient was taken off therapy 
and CT performed two weeks later due to patients dyspnea demonstrates now complete opacification in left hemithorax and interval increase 
in size in right sided pulmonary metastases, several had doubled in size (B). Appearances and clinical presentation were consistent with ‘flare’ 
phenomenon. CECT = contrast enhanced CT, EGFR = epidermal growth factor receptor

A B

A B C
Fig. 5. Axial CECT on lung windows in 68-year-old woman with exon 19 EGFR mutant adenocarcinoma. 
A. Patient had dominant masses in right and left lower lobes (arrows) on initial CT. Patient was treated with EGFR tyrosine kinase inhibitor 
(erlotinib) and follow up CT performed 2 months later (B) demonstrates decrease in size of lower lobe masses (arrows). C. Patient also had 
developed multifocal faint bilateral subpleural ground glass changes (arrowheads) consistent with pneumonitis. Patient was asymptomatic and 
remained on treatment with changes on pneumonitis resolving on follow up studies. CECT = contrast enhanced CT, EGFR = epidermal growth 
factor receptor
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hyperemic mesenteric vessels. A rare but important toxicity 
is pneumatosis and pneumoperitoneum, the frequency of 
which increases with duration of drug treatment (26). 

ALK Rearrangements in NSCLC
Anaplastic lymphoma kinase rearrangements occur in 

approximately 2–5% of all NSCLC and are more commonly 
seen in younger patients (median age early 50s) that are 
never smokers or former light smokers, adenocarcinoma 
histology, typically of signet ring cell subtype (27). 
Metastatic disease at presentation is common, with high 
propensity for pleuropericardial disease and central nervous 
system (CNS) metastases (Figs. 6, 7). A multi-institution 
trial performed for assessing the presence of an ALK 
molecular phenotype in primary NSCLC on CT found that a 

central tumor location, absence of a pleural tail and large 
pleural effusion in patients under 60 years were associated 
with ALK rearrangements (28). There are multiple ALK 
rearrangements in NSCLC, of which EML4-ALK is the most 
predominant (29). Without ALK targeted therapies, these 
tumors carry a poor prognosis with a median survival 
of approximately 20 months (30). Crizotinib is a first 
generation small molecule inhibitor with activity against 
ALK, MET and ROS1 (31). Crizotinib received accelerated 
approval from the FDA in 2011 and regular approval in 2013 
for ALK rearranged NSCLC. 

Tumors treated with crizotinib or other ALK inhibitors 
often show an initial dramatic tumor shrinkage followed 
by slow progression on serial studies while the patient 
remains relatively asymptomatic through progression 

A B C
Fig. 6. Axial contrast enhanced CT of thorax on lung windows (A, B) and axial T1 post gadolinium contrast MRI of brain (C) in 
40-year-old man with metastatic lung adenocarcinoma with ALK rearrangement. 
On initial CT (A) patient has 2.5 x 2.3 cm mass in left upper lobe (arrow). Patient was treated with first generation ALK tyrosine kinase inhibitor 
(crizotinib) and had durable response in his lungs with second CT (B) post 5 year of treatment demonstrating small 1.2 x 0.6 cm ill-defined 
nodule at site of primary dominant mass (arrow). Patient unfortunately developed brain metastases due to poor blood brain barrier penetration 
with ALK inhibitor (crizotinib) and MRI (C) demonstrates ring enhancing 1.0 cm metastasis in right occipital lobe (arrowhead). ALK = anaplastic 
lymphoma kinase

A B C
Fig. 7. Axial contrast enhanced CT on soft tissue (A, B) and lung windows (C) in 38-year-old man lifelong non smoker with 
metastatic ALK rearranged lung adenocarcinoma. 
A, B. Initial CT demonstrates extensive left pleural nodularity and circumferential thickening with example of pleural thickening in left lower lobe 
included (arrows). C. Follow up performed 8 weeks after treatment with alectinib (second generation ALK inhibitor) demonstrated decrease in 
left pleural metastatic disease but interval development of new right lower lobe ground glass changes (arrowheads) consistent with pneumonitis. 
Patient was not symptomatic and therapy was continued. ALK = anaplastic lymphoma kinase
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(32). Acquired resistance to crizotinib occurs secondary 
to development of mutations in the kinase domain of ALK 
such as the gatekeeper mutation of L1196M (33). Despite 
the development of resistance, tumors usually remain ALK-
dependent, very similar to EGFR mutant lung cancer on 
EGFR-TKI therapy, and patients continue to be treated with 
the crizotinib despite evidence of radiological progression 
on CT by RECIST. 

One of the most common sites of relapse is the CNS, which 
represents pharmacokinetic failure as crizotinib has poor 
blood brain barrier penetration (Fig. 6) (34). Surveillance 
MRI brain is recommended for patients on crizotinib every 
6–9 months. Second generation ALK inhibitors developed 
include ceritinib and alectinib. Ceritinib is an oral small 
molecule inhibitor of ALK that does not inhibit MET but 
does inhibit ROS1 and was approved in 2014 by the FDA for 
patients with metastatic ALK NSCLC that progressed or was 
intolerant to crizotinib. Alectinib is a highly selective ALK 
inhibitor that has no activity against MET or ROS1 but does 
have activity against crizotinib mutations including L1196M 
and C1156Y and may have a better result in patients with 
brain metastases (35, 36). 

Side effects that may be seen with crizotinib include 
development of simple or complex renal cysts, fluid filled 
bowel loops, peripheral edema, osteopenia and more rarely 
pneumonitis (Fig. 8) (37, 38). A peculiar finding is the 
include development of simple or complex renal cysts, not 
to be mistaken for cystic metastases or cystic renal cell 
carcinoma (37). 

EGFR Mutations in Non-Lung Cancers

EGFR in Breast Cancer 
Between 12–30% of breast cancers have over-expression 

of ErbB2 (HER2/neu), typically affecting younger patients 
and have a clinically aggressive course (39). Patients 
with HER2 expression are more likely to have multifocal 
cancers, lymph nodal and liver metastases (40, 41). Tumors 
that over-express HER2 was previously associated with a 
poor survival until the development of targeted therapy. 
Trastuzumab is a humanized monoclonal antibody that 
works on the extracellular domain of EGFR/HER2, and has 
shown to significantly improve overall survival in HER2 
positive breast cancer (42). Other HER2 targeting agents 

A B C

D E F
Fig. 8. Axial (A–D) and coronal enhanced (E, F) CT in 58-year-old woman with metastatic lung adenocarcinoma with ALK 
rearrangement. 
A, B. Initial CT demonstrates post obstructive atelectasis in left upper lobe from left hilar lymphadenopathy (not shown) and bilateral lung 
metastases, largest in left upper lobe measuring 1.3 x 1.3 cm (arrow) and in right lower lobe (arrow) measuring 1.6 x 1.4 cm. Patient was 
treated with crizotinib and follow up CT performed after 8 weeks of therapy (C, D) demonstrates response with resolution of metastases with 
only mild ground glass changes at site of dominant masses. E, F. Coronal CT demonstrates complication of crizotinib therapy with development 
of osteopenia best seen on CT as decreased sclerosis after 2 years of therapy within blastic bone metastasis (arrow). ALK = anaplastic lymphoma 
kinase
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are pertuzumab, trastuzumab-emtansine (T-DM1) and 
lapatinib. CNS metastases are more common in patients 
with HER2 positive breast cancers and subtypes of triple 
negative patients treated with trastuzumab, likely due to a 
combination of trastuzumab prolonging survival combined 
with the inability of trastuzumab to cross the blood 
brain barrier (42). Trastuzumab may be associated with 
cardiotoxicity, manifest on imaging as cardiomegaly, pleural 
effusions and interlobular septal thickening.

EGFR in Head and Neck Cancers
Over-expression of EGFR may be seen in SCCs of the 

head and neck (SCCHN) (Fig. 9), and correlates with poor 
prognosis and resistance to radiation therapy (43). Human 
papilloma virus (HPV) negative SCCHN is associated with 
EGFR mutations while HPV positive SCCHN is associated with a 
lack or low expression of EGFR expression (44). Cetuximab is 
a chimeric human: murine monoclonal antibody that binds to 
EGFR in the extracellular domain, and thereby prevents the 
binding and activation of downstream signaling pathways. 
Cetuximab can also recruit activated immune cells into tumor 
cells leading to tumor cell death. Cetuximab combined with 
radiotherapy has been shown to improve median survival in 
SCCHN (45). One of the common side effects of cetuximab 
therapy, acneiform skin rash, interestingly correlates with 
a greater response rate in SCCHN, and may be a surrogate 

marker of tumor response (45).

EGFR in Colon Cancer
The abnormal expression in EGFR has also been found 

in metastatic colorectal cancer. There are two anti-EGFR 
antibodies used in the treatment of colorectal cancer 
and head and neck squamous cell cancers: cetuximab and 
panitumab. Cetuximab was discussed previously. Panitumab 
is a fully human monoclonal antibody (IgG2) also given 
intravenously. As it does not contain any murine portion 
of IgG there is less hypersensitivity reactions and it has a 
longer half-life than cetuximab. Toxicities seen with the 
anti-EGFR monoclonal antibodies are skin rash, electrolyte 
abnormalities (hypokalemia, hypomagnesaemia) and an 
infusion reaction (46). The acneiform skin rash seen with 
cetuximab as with SCCHN also in colon cancer correlates 
with a greater response rate in treatment (47). Imaging 
findings in panitumab toxicities include colitis which may 
appear as fluid filled colon, mural thickening, pericolonic fat 
stranding and hyperemia of mesenteric vessels and deranged 
liver function tests may be associated with periportal edema, 
gallbladder wall thickening and ascites (25).

EGFR in Vulvar Cancers
Squamous cell carcinoma of the vulva, similar to head and 

neck cancers can be HPV associated or HPV-independent 

Fig. 9. Axial CECT at floor of mouth in 58-year-old man with EGFR mutant squamous cell carcinoma of tongue. 
A. Patient had been treated with right sided hemiglossectomy but developed large enhancing mass in surgical site on right (arrow) and level 
IIa low density left cervical chain lymph node (arrowhead) on CT. B. Patient was treated with EGFR monoclonal antibody (cetuximab) and follow 
up CT performed 2 months later demonstrates resolution of mass on right and significant decrease in left cervical lymph node. CECT = contrast 
enhanced CT, EGFR = epidermal growth factor receptor

A B
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but the pathogenesis and classification is currently 
controversial. HPV-associated neoplasms present in younger 
women with vulvar intraepithelial neoplasm and expression 
of p16, a cell cycle protein, compared to HPV-independent 
vulvar SCC occurring in older women with TP53 mutations 
(48-50). A number of mutations have been identified in 
HPV-independent vulvar SCC including activation of EGFR 
(51). A study found EGFR amplification in 12% of invasive 
vulvar SCC and another study found a negative correlation 
with p16 expression and positive association with p53 
raising the possibility of synergism between TP53 and EGFR 
in the tumorigenesis of HPV-independent vulvar SCC (48, 
51). Studies have also shown EGFR expression in vulvar SCC 
with advanced stage and lymph node metastases and an 
association with decrease in survival (51, 52). While HPV-
associated neoplasm in head and neck cancers have shown 
a better prognosis and therapeutic response, the results 
are conflicting in vulvar SCC but the presence of EGFR 
amplification does represent a possible target for therapy 
with EGFR inhibitors (53).

ALK Rearrangements in Non-Lung Cancer

ALK Rearrangements in Anaplastic Large Cell Lymphoma
Anaplastic large cell lymphoma accounts for 10–15% of 

pediatric non-Hodgkins lymphoma (NHL) and 1–2% of adult 
NHL. ALCL more recently has been subdivided into ALK 
positive and ALK negative subclasses with approximately 
90% of pediatric tumors and 40–50% of adult tumors being 
ALK positive (54, 55). Most patients present at a late stage 
with B symptoms with intra-abdominal or mediastinal lymph 
node involvement and extranodal spread to lung, liver, soft 
tissue, bone and skin (55). ALK positive ALCL is extremely 
chemosensitive in front line and relapse with high response 
rates to traditional NHL chemotherapy regimes (Fig. 10). 
ALK inhibitors have shown promise in treating relapsed ALK 
positive ALCL in small phase one trials (56).

ALK Rearrangements in Inflammatory Myofibroblastic 
Tumors

Inflammatory myofibroblastic tumors (IMT) are 
mesenchymal neoplasms that occur most commonly in the 

Fig. 10. MIP (A, C) and axial non contrast fused 18F-FDG PET/CT (B) in 20-year-old man with ALK positive anaplastic large cell 
lymphoma. 
A. Patient had been diagnosed one year earlier and treated with brentuximab but had relapsed 6 months after completing treatment. New 
baseline PET/CT demonstrated residual lymphadenopathy in right external iliac and inguinal lymph nodes (arrows). B. Axial fused PET/CT 
demonstrates FDG avid right inguinal lymph node (arrow) with SUVmax 5.5. C. Patient was treated with salvage chemotherapy (gemcitabine, 
vinorelbine and doxil) with response to treatment and resolution of right pelvic lymphadenopathy on PET/CT performed 8 weeks later. ALK = 
anaplastic lymphoma kinase, MIP = maximum intensity projection, PET = positron emission tomography

A B C
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lung, abdomen and bladder in children and young adults 
(57). IMT has a wide spectrum ranging from a clinically 
benign inflammatory pseudotumor to an aggressive 
sarcomatous neoplasm and surgical resection is the principal 
treatment. Most cases have a benign clinical course but IMT 
can recur locally and rarely metastasize (58). Approximately 
50% of IMT have ALK rearrangements involving multiple 
fusion partners (59). ALK expression and rearrangement has 
been described as a good prognostic marker in IMT with 
positive cases showing a better outcome compared to a 
more aggressive course in ALK-negative IMT (58, 60). 

ALK Rearrangements in Neuroblastoma
Neuroblastoma is the most common extracranial tumor 

in children and is responsible for approximately 12% of 
pediatric cancer deaths (61). ALK mutations are found in 
the majority of familial neuroblastoma cases and up to 
10% cases of sporadic neuroblastoma (61, 62). Somatic 
mutations in ALK have been associated with decrease in 
overall survival and can occur simultaneously with another 
genetic aberration that is associated with a poor prognosis 
(amplification of MYCN) (63). 

CONCLUSION

The utility of classification systems ultimately rests on 
the ability to provide prognostic data and if possible offer 
specific therapies. In the past, histological classification 
had little impact on treatment protocol as seen with 
lung cancer, where almost all patients with advanced 
NSCLC received platinum-based chemotherapy. In the 
current era of precision medicine, tumor specimens are 
tested for targetable mutations and tumors are classified 
accordingly, in order to match the right patient with the 
right treatment. As cancer genomics and genomically 
driven therapies evolve, pure histological classification may 
become irrelevant in the coming years. As pathologists 
and oncologists are moving away from the traditional 
classification systems, as part of multidisciplinary patient 
management team it is important for radiologist to “adapt” 
to the evolving changes and “adopt” the new wave of 
genomic medicine and personalized cancer treatment. 
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