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Abstract: Metabolic networks are regulated to ensure the dynamic adaptation of biochemical reaction
fluxes to maintain cell homeostasis and optimal metabolic fitness in response to endogenous and
exogenous perturbations. To this end, metabolism is tightly controlled by dynamic and intricate
regulatory mechanisms involving allostery, enzyme abundance and post-translational modifications.
The study of the molecular entities involved in these complex mechanisms has been boosted by
the advent of high-throughput technologies. The so-called omics enable the quantification of
the different molecular entities at different system layers, connecting the genotype with the phenotype.
Therefore, the study of the overall behavior of a metabolic network and the omics data integration
and analysis must be approached from a holistic perspective. Due to the close relationship between
metabolism and cellular phenotype, metabolic modelling has emerged as a valuable tool to decipher
the underlying mechanisms governing cell phenotype. Constraint-based modelling and kinetic
modelling are among the most widely used methods to study cell metabolism at different scales,
ranging from cells to tissues and organisms. These approaches enable integrating metabolomic data,
among others, to enhance model predictive capabilities. In this review, we describe the current state
of the art in metabolic modelling and discuss future perspectives and current challenges in the field.
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1. Introduction

Cell metabolism represents all the biochemical reactions occurring within the cell. Those reactions
provide the supply of precursors for biosynthetic purposes, energy for anabolic reactions, signaling
metabolites and general maintenance processes. In order to maintain the cell homeostasis and
ensure the availability of all the necessary components, metabolism is highly regulated by different
mechanisms involving allostery, enzyme abundance, and post-translational modifications. Metabolic
network complexity provides plasticity and robustness to the cell in response to perturbations,
leading to a challenge for researchers to understand and predict the molecular mechanisms governing
cell behavior.

Development of high-throughput technologies has provided researchers with the capability to
analyze and quantify an increasing amount and variety of biochemical constituents in the living cells,
the so-called omics data. These omics technologies enable the identification and quantification of
biological molecules (metabolites, protein, mRNA, etc.) connecting the genotype with the phenotype.
Due to the close relationship between metabolism and cellular phenotype, the development of
the high-throughput technologies for metabolomics has been particularly important in the study of
a large number of biological processes.
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Thus, the increasing amount of data provided by high-throughput platforms together with
the complexity of metabolic networks makes it implausible to assess the overall behavior of metabolism
from the individual properties of its components. Therefore, the study of cell metabolism behavior
as a whole must be approached from a holistic perspective in order to extract relevant biological
knowledge from the increasing amount of omics data by instead the so-called data-driven approaches.

In this sense, metabolomics in combination with computational methods has the potential to
unravel how cell metabolism is modulated in response to endogenous or exogenous perturbations
such as genetic mutations or changes in the environmental conditions.

A number of methods have been developed to analyze the increasing amount of omics data,
the so-called data-driven approaches. These methods are extremely useful to define patterns or
correlations between metabolic species and/or between groups/conditions. However, these correlations
do not necessarily imply causality, which makes it difficult, if not impossible, to infer specific molecular
mechanisms associated with a given phenotype. In this sense, incorporating prior information, such as
network structure, component interactions, or physico-chemical properties enhances the predictive
capabilities of the analysis and enables the identification of the mechanisms governing the system’s
behavior. This information is typically incorporated in the form of a computational model. Models
can describe cellular functions organized into hierarchical levels that are tightly controlled by
dynamic and intricate gene regulatory mechanisms, signaling pathways and metabolic control
(e.g., feedback, feed-forward inhibition, and covalent modification of enzymes). The results of these
regulations and the network topology make metabolic networks highly non-linear and complex systems.
Thus, model-driven methods are required to cope with this complexity in order to unveil the molecular
mechanisms responsible for changes in metabolite concentrations as well as the emergent properties
(properties that cannot be inferred from the individual components of the system) of metabolic systems
arising from its intrinsic structure.

Based on how the metabolic network is formalized, two main modelling approaches can
be considered: (i) constraint-based approaches that incorporate the reactions’ stoichiometry and
thermodynamic information to infer metabolic flux distributions and predict complex metabolic
phenotypes; and (ii) kinetic models that simulate changes in metabolite concentrations over time by
incorporating biochemical network stoichiometry, mechanistic reaction rate laws, kinetic parameters
and enzyme concentrations. These approaches are complementary and can be used jointly to explain
emergent properties, show hidden patterns, and build new hypotheses. In this review, we will
describe the current state of the art of model-driven methods to integrate omics data, with special focus
on metabolic data. Furthermore, we will look into the examples of metabolomics data integration,
strengths, and limitations of such approaches, as well as the successful case studies.

2. Metabolic Modelling Approaches

In brief, constraint-based modelling incorporates information about reaction stoichiometry and
thermodynamics [1], while kinetic modelling requires adding kinetic parameters and regulatory
mechanisms in addition to what is required in constraint-based modelling [2–4]. As a consequence,
kinetic modelling precisely describes the dynamic behavior of a system. However, it is limited to
relatively small-size metabolic networks due to the lack of kinetic parameters and computational
challenges of integration of big sets of ordinary differential equations. At the same time, constraint-based
modelling enables the analysis of large-scale metabolic systems at steady state. However, it cannot
model the dynamic response of metabolism to a perturbation. In the following, we will briefly describe
how metabolic networks are formalized via either kinetic modelling or constraint-based modelling
(Figure 1).
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coefficient of a metabolite in a specific reaction. Metabolites consumed in a reaction have a negative 
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Figure 1. Modelling approaches to study metabolism. (a) Constraint-based modelling allows balancing
the fluxes in the system, but cannot work with metabolite concentration directly. (b) Kinetic modelling
allows the simulation and analysis of the dynamic behavior of metabolite concentration over time.

2.1. Constraint-Based Modelling

Constraint-based modelling is one of the most widely used family of methods to study
metabolism [1]. It allows researchers to understand the possible states of the system (i.e., cell
metabolism) based on prior knowledge such as the occurring reactions, their substrates and products
(i.e., metabolites), their stoichiometry and reversibility. Based on this information, a metabolic network
is built and formalized as a stoichiometric matrix (S). In this matrix, each row represents a metabolite
and each column corresponds to a reaction, while the entries represent the stoichiometric coefficient of
a metabolite in a specific reaction. Metabolites consumed in a reaction have a negative stoichiometric
coefficient, while metabolites produced by the reaction have a positive stoichiometric coefficient for
that specific reaction.
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Given a vector describing the flux of each reaction (v) and the stoichiometric matrix, one can
determine how the metabolite concentration varies along time ( dx

dt ) by applying the following equation:

Sv =
dx
dt

, (1)

where the changes in metabolite concentrations over time ( dx
dt ) are given by the reaction fluxes and

the system’s stoichiometric matrix. Yet, if we assume that the system is at steady state, i.e., the metabolite
concentrations do not change over time, then we can describe the system as follows:

Sv = 0 (2)

This ensures that the sum of fluxes for the reactions that produce a given metabolite is equal to
the sum of fluxes that consume it, such that the metabolite concentration remains constant. In other
words, there is no accumulation or depletion of intracellular metabolites over time. By solving this
system of equations, it is possible to determine the flux distribution. The overall nutrient uptake
and release are represented by exchange reactions, which describe the in- and out-fluxes that cross
the boundaries of the system. Here, the system is usually defined as the cell, but can also be the cell
and the media, depending on the modelling goals. These exchange reactions can be, for instance,
metabolite uptake or secretion rates. Transport reactions describe the transport of a metabolite from one
cellular compartment to another or between cell and media when the media is the part of the modelled
system [5].

In addition to equality constraints (Sv = dx
dt ), other kinds of constraints can be also added

in the form of inequalities [6]. These are typically used to define lower and upper boundaries for
reaction fluxes that can describe an enzyme’s maximum capability [7] or reversibility (reactions with
a non-negative lower boundary are considered irreversible) [8]. These boundaries can be inferred
from exometabolomics measurements and constrain the space of feasible flux solutions of the system.
Constraint-based modelling formulations allow us to model large metabolic network systems without
the need to specify kinetic parameters or enzyme/metabolite concentrations. However, because there
are more variables (reaction fluxes) than equations (Sv = 0), the described system is underdetermined,
which leads to many possible solutions (flux distributions). A variety of methods has been proposed to
find a solution space, i.e., a reduced set of feasible solutions, depending on the problem, some of which
are described below.

Constraint-based modelling can be applied to problems of different scales. The applicability of
this method to the genome scale is particularly important, since it provides an overview of the whole
metabolism. With the development and wide usage of genome sequences, methods to automatically
annotate the genome and to derive genome-scale models were created [9–12]. The process of annotation
is based on so-called gene–protein–reaction rules (GPRs), using information that links enzymes
and protein identifiers, reaction names and reacting metabolites and more recently stoichiometric
GPRs (S-GPRs) that define the number of transcripts required to generate a catalytically active unit
(enzyme) [13]. After automatic annotation and manual curation, a draft of the plausible metabolic
capabilities of the cell is assembled. This significantly reduces the amount of time needed to create
an organism-specific model.

Flux balance analysis (FBA) [6,14,15] is one of the most widely used constraint-based methods
developed for simulating metabolism at the genome scale. FBA is a computational method that is
usually used to predict flux distributions while optimizing a given cellular function, or a combination of
them (i.e., maximize growth). FBA yields a specific solution, i.e., a flux distribution, where the objective
function is guaranteed to be optimal. The idea that cells follow a specific functional objective,
and if so which, is being debated, but thought to have an evolutionary reasoning [16–19]. One of
the most widely used objective functions for actively dividing cells is the growth rate. In rich media,
this approach is in good agreement with experimental data [20]. Other common optimization functions
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are the maximization of ATP produced, minimization of consumed glucose, or a complex combination
of such functions. However, choosing an objective function describing a given cell phenotype is
not always obvious, since it depends on many factors, for instance, on the type of cells modelled,
the growth conditions or the availability of nutrients [18].

To explore alternative and suboptimal solutions as well as study the network flexibility, a variant
of FBA, flux variability analysis (FVA) [16], can be used. FVA can determine a range of fluxes for each
reaction such that the minimum growth rate should be at least 90% (or other specified percentage) of
the maximum growth rate [21,22]. FVA is also applied to the metabolism of byproducts and secondary
metabolites, where FBA solutions are unreliable [23].

While FBA with the objective of maximizing growth results in reasonable solutions for wild-type
cells, it does not so for (unevolved) gene knockout mutants. While in principle wild-type cells
optimize their growth, unevolved cells with knockouts do not. Since homeostasis governs metabolic
reprogramming [24,25], we cannot assume that the cell will follow a common objective, such as
maximizing its growth. To acknowledge the requirement for metabolic homeostasis, the minimization
of metabolic adjustment (MOMA) approach was proposed [26]. The main idea behind this method
is that, to maintain homeostasis, the difference in fluxes before and after the perturbation should be
minimal. MOMA predicts the fluxes of a knockout strain by assuming that the cell will have a minimal
redistribution of fluxes compared to its ancestor [26]. Another similar approach is the regulatory on/off

minimization (ROOM), which minimizes the number of fluxes that are significantly different from
the wild type [27]. Wild-type fluxes, determined by FBA or other methods, need to be known in order
to use these approaches.

For problems which cannot be addressed by traditional stoichiometric methods, such as —changing
concentrations over time and/or changing steady states, —dynamic methods were proposed. The idea
behind them is to solve multiple constraint-based problems, each at a different time point, assuming
steady state at each of them, which allows the modelling of metabolic changes over time. This approach,
called dynamic FBA (dFBA), was originally proposed by Varma and Palsson to predict the metabolism
of Escherichia. coli throughout batch cultivations in different conditions [28].

In this review, we described constrained-based methods that are necessary to understand
state-of-the-art approaches of metabolomics data integration. To obtain more information about
the variability of approaches of constraint-based methods, we refer the readers to the review by
Lewis et al. [29]. We also refer to other articles covering other powerful and widely used techniques
such as the GECKO method [7], a method that enhances constraint-based methods to account for
enzyme maximum capacity by incorporating kinetic constants, metabolism and expression models
(ME models) [30] and protein allocation models [31–34].

A different way of approaching the analysis of metabolic networks is the elementary flux modes
(EFM) analysis [35,36]. EFMs are minimal sets of reactions that lead to a steady state flux solution.
Minimal refers here to the fact that they do not contain any loops in the metabolic network and that no
reaction can be removed while still allowing for a steady state flux [37]. All the EFMs found in a EFM
analysis (EFMA) for a given network describe the possible paths that can be taken through it, e.g., all
the ways a substrate could take to be turned into a product under steady state conditions.

Among the major limitations of constraint-based models in their classical implementation is that
they rely only on fluxes and stoichiometry and not metabolite concentration. Thus, under the steady
state assumption, fluxes occur irrespective of the metabolite pools—so it is neither possible to incorporate
nor predict concentrations in the system. The choice of objective function and the applicability of
the steady state assumption have an important impact on the final solution [18]. Another limitation
is that it does not have the ability to account for allosteric regulation, which depends on metabolite
concentrations [38]. These limitations are addressed by imposing additional constraints or using
different modelling approaches such as kinetic modelling [39].



Metabolites 2020, 10, 303 6 of 27

2.2. Metabolic Flux Analysis

Metabolic flux analysis (MFA) [40] is a widely used tool for metabolic engineering, which has also
become more common in other fields, such as biomedical applications [41] and basic science [42,43].
MFA follows the same principles as FBA but does not assume any functional objective, e.g., the growth
rate or ATP production. Instead, MFA is an optimization problem that minimizes the difference
between simulated and experimental flux data for constraint-based models (Figure 2). In other words,
unlike FBA that uses metabolomics to define the boundaries of the system and constrain the space of
feasible flux solution, MFA incorporates the metabolomic data in the objective function in order to set
a metabolic flux profile able to minimize the difference between the predicted and calculated secretion
and uptake rates. There are two main types of MFA, differing on the use of isotopic labelling.
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Figure 2. Metabolic flux analysis. MFA is an optimization problem that minimizes the difference
between simulated and experimental flux data and labelling pattern data in case 13C-MFA and solely
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of isotopic labelling given the metabolic model; (b) stMFA relies solely on balancing measured and
unmeasured rates given metabolic model.
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Stoichiometric MFA (stMFA) [44,45] does not require labelling experiments. It is used to balance
the fluxes of extracellular and intracellular metabolites according to the biochemical network when
given experimental measurements such as glucose uptake rate, CO2 secretion rate, or the growth
rate. stMFA is based on minimizing the difference between the experimental and simulated secretion
and uptake rates. Given stoichiometric constraints and measured fluxes, least square regression is
performed. However, secretion and uptake rates are usually insufficient to resolve all the reaction
fluxes in the model. Further, small-scale models are typically used, and therefore the reduction
in genome-scale models is needed. Similar to dFBA [46], the dynamic extension of FBA, dynamic MFA,
is also used to address changing concentrations in the environment.

Another technique is 13C-MFA [47,48], where isotope labelling patterns are used as additional
constraints that help resolve the intracellular fluxes. 13C-MFA is based on minimizing the difference
between the experimental and simulated secretion, uptake rates and isotopic-labelling pattern.
This more detailed metabolic information allows 13C-MFA to infer metabolic reaction fluxes, which
otherwise could not be resolved, such as cycles, bifurcations or the source of NADPH production.
Thus, when such a part of the metabolism is of interest, researchers should consider adding isotope
labelling to their experiments. However, this implies more complexity in terms of experimental design
and data analysis [40,49].

There are different ways to approach labeling experiments, depending on the molecules/reactions
of interest and the required resolution. Methods range from measuring the labeling patterns of distinct
sets of metabolites, e.g., central carbon metabolism intermediates [50], proteinogenic amino acids [51]
or further bound entities such as glycogen-bound glucose or RNA-bound ribose [52], to increasing
the analysis to the genome scale [53]. For more specific parts of metabolism that are of interest, subsets
can be investigated, as described by Liu et al. for NAD metabolism [54].

It might not be possible to resolve the more complex metabolic architectures by a single labeling
experiment and may require parallel setups with differentially labeled tracers, for example, a mixture
of different tracers of a single substrate, such as (1-13C)glucose and (13C6)glucose, or different labelled
substrates, such as (13C6)glucose and (13C6)glutamine [55,56].

While measuring the labeling at metabolic and isotopic steady state is the commonly used
approach, isotopically non-stationary metabolic flux analysis (INST-MFA) harbors distinct advantages
in certain aspects. For instance, by taking time-dependent labeling of metabolites into account,
metabolite pool sizes and reversible exchange fluxes can be estimated. This allows for comparison
with (or inclusion of) metabolomics data [8,57].

The above-described methods use the same formalism as constraint-based models: linear
combinations of reaction fluxes and the steady state assumption. Notably, this approach (minimization
of the difference between observed and modelled fluxes and isotopic pattern) can be applied in the kinetic
modelling framework and such an application was demonstrated [58–62]. In this approach, kinetic
parameters are refined and the flux distribution is determined. This approach was not widely explored,
despite clear benefits: acquiring not only flux distribution that describes the metabolic phenotype,
but also a kinetic model that has predictive and explanatory capacities.

For detailed information about MFA and a family of different MFA methods, we refer to this
review [40] and protocol [52].

2.3. Kinetic Modelling

Kinetic modelling describes the changes in metabolite concentrations given an initial condition by
representing the metabolic network as a system of differential equations, most commonly ordinary
differential equations. The fate of each metabolite is described by an ordinary differential equation that
consists of a rate equation for each reaction that either consumes or produces the metabolite. Solutions
for such systems yield the concentration of metabolites at each time point, and make it possible to
evaluate the evolution of fluxes and metabolites over time. The equations for the reaction rates are
functions of the enzyme concentrations, kinetic parameters, and metabolite concentrations. Kinetic
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modelling describes not only the stoichiometric relation between substrate and products but also
the enzymatic mechanisms and different levels of regulation (i.e., allostery or post-transcriptional
regulation), which makes these methods suitable for the integration of multiple omics data types.

While constraint-based models are suitable to predict the state of the system, they do not answer
how it is achieved. Further, it is not always possible to assume that the system is in a steady state.
Since kinetic models describe the enzymatic mechanisms underlying a given metabolic reaction, this
approach enables the incorporation of allosteric regulations, where the enzyme activity is affected
by the binding of a small molecule to a site other than the enzyme’s active site [63]. Allosteric
regulation [64] is an important component of cellular metabolism control and regulation [65–67].
Although possible [39], it is not straightforward to account for regulation in constraint-based models
because this interaction typically depends on metabolite concentrations, which are not explicitly
included in constraint-based models.

Kinetic modelling approaches have been widely applied in a variety of cases, such as inferring
metabolite kinetics from experimental data [68–71], or developing the mechanistically accurate
expressions to describe the involved reactions [72]. Due to insufficient availability and inaccuracy of
kinetic parameters in literature, kinetic models are usually limited to studying smaller metabolic network
systems [73]. Nonetheless, the feasibility of genome-scale kinetic models has been demonstrated [74,75].

Researchers are working on solutions to address current limitations, such as kinetic parameter
paucity and small-scale preference. One possible approach to address the lack of kinetic parameters
and/or uncertainty in the given kinetic parameters, and as a consequence in predictions, is to use
ensemble modelling [76]. Among currently available ensemble modelling packages are approaches
such as ORACLE [77], GRASP [78]. An update to the previous work is K-FIT [79], which significantly
improves computational efficiency and makes it more accessible, enabling extending the use of kinetic
modeling to larger network systems.

In ensemble modelling, the predictions of multiple models are combined in order to create
a feasible solution space that encompasses all of them. The topology of a network and its steady state
flux are used to infer the metabolic flux distributions. As much information as is available about
the mechanism of enzymatic reactions in the model is included to keep the ensemble biologically
feasible. The steady state flux can be determined experimentally, taken from literature, if available,
or estimated based on the exchange fluxes of the system. An ensemble of models is created, spanning
the range of thermodynamically allowed kinetic parameters, each reaching the same steady state
flux and metabolite concentrations. Flux changes due to enzyme perturbation can be used to refine
the analysis and reduce the number of models in the ensemble [76].

3. Metabolomics Integration

Numerous approaches have been developed to integrate metabolomics data into mechanistic
models, such as kinetic or constraint-based models. These computational tools allow researchers to
obtain new insights into metabolism regulation. From a mathematical point of view, we can describe
two main types of data integration: variable constraints (i.e., fixing the upper and lower boundaries
of a metabolic reaction flux or the relationship between two metabolic fluxes) and parameter fitting
(i.e., kinetic parameters estimation by minimizing the difference between model predictions and
experimental data). From a problem statement point of view, researchers can infer intracellular
fluxes from the experimental data, estimate flux changes that lead to a specific phenotype, or find
the parameters of the system (e.g., kinetic parameters such as the turnover rate or the Michaelis–Menten
constant) to predict or describe another metabolic state (Figure 3). In this section, we will discuss
different data integration examples (summarized in Table 1)—in particular, how problems are defined,
types of data used and achievements.
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Figure 3. Description of reviewed approaches to integrate omics data and the outcome of the modelling
methods. Different omics data types can be generated in order to study different metabolism
phenomena. Those omics data correspond to different layers of cell functioning. Collected omics data
can be formalized in different modelling approaches as different layers of the hierarchical organization
of biological systems. Conventional ways of integration are shown with arrows pointing to the equation
part. The typical outcomes of the modelling approaches described in this review are highlighted.

3.1. 13C Metabolic Flux Analysis as an Isotope Labelling Data Integration

A major goal of metabolic research is to explain how metabolic networks are rewired and regulated
in response to a given perturbation. Unlike proteins, transcripts, and metabolites, fluxes cannot be
measured directly—they can only be estimated. Labelling experiments have been extensively used to
determine flux values (relative or absolute) and pathway usage [80]. To acquire flux values, cells are
cultivated using labeled substrates, e.g., glucose labeled with one or more stable 13C isotopes as a carbon
source. The substrate is processed by the cell and converted into labeled products and intermediates.
By measuring these products and intermediates, distinct labeling patterns are revealed, from which
the fluxes through the reactions can be inferred [81]. The dynamics of the downstream metabolite
labeling can also be measured directly and taken as the reaction fluxes [80]. 13C-MFA extends this
idea to the systems biology approach. Together with previous knowledge about the cell metabolism,
the data is integrated via 13C-MFA methods to infer a metabolic flux profile that is consistent with
the experimental measurements. 13C-MFA integrates the prior information in the form of a network
topology and carbon rearrangements to find the steady state that best satisfies the stoichiometric and
mass-balance constraints, as well as the experimentally measured isotopic-labelling pattern. This is
usually referred to as “fluxomics” in literature. 13C-MFA is now a gold standard in resolving flux
distributions. 13C-MFA has been extensively used in different biological fields, such as metabolic
engineering, cancer research, physiology, biochemistry, and plant sciences, both in prokaryotic and
eukaryotic systems.

13C-MFA was used in cancer cell culture research to show drug vulnerabilities and lead to
possible treatment targets and combinations [82]. 13C-MFA was also applied to study cell metabolism
in biotechnological processes. As an example, Pereira et al. used 13C-MFA to study the metabolic
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response of industrially relevant Chinese Hamster Ovary (CHO) cells to change the media composition
in order to decrease the production of toxic ammonia as a byproduct of the fermentation [83].
Templeton et al. used 13C-MFA to identify metabolic reprogramming associated with high antibody
productivity in CHO cells [84]. Aguilar and colleagues studied metabolic reprogramming associated
with cancer stem cells in a dual cell model consisting of one highly metastatic subpopulation
displaying cancer stem cell properties and a second non-metastatic subpopulation displaying a stable
epithelial–mesenchymal transition [58]. Experiments with the incorporation of 13C-glucose were used
to estimate the flux distribution and showed differences in cellular respiration between those two cell
types. In addition, model-driven strategies were used to support other findings in a study that suggest
differences between metabolic features of cancer stem cells and epithelial–mesenchymal transition
phenotypes. Each of the phenotypes can be linked to optimal cell proliferation and sustaining specific
cell phenotypes. This study provides an example of how isotope-labelling data can be used with
kinetic models to determine the intracellular fluxes. Labeling metabolomics in combination with
kinetic modelling can also be used to infer the intracellular metabolic network topology in order
to study physico-chemical phenomena such as channeling [85] or crowding [86]. However, due to
the paucity of atom transition information and kinetic parameters, this approach is limited to very
well-known metabolic systems, which limits the scope of this approach and the number of available
software solutions.

While in general the models used in 13C-MFA are small scale, genome-scale models have been
introduced recently. One of such approaches was introduced by Martin and coworkers [87] who
proposed a method to constrain a genome-scale model with 13C labeling data. They assumed that
the flux flows from the central carbon metabolism to the peripheral parts of metabolism and does not
flow back. 13C-MFA is then used to infer the flux distribution in central carbon metabolism, which
is used as a constraint to predict the flux distribution in peripheral metabolism. One advantage of
this approach is that it does not require any strong evolutionary or physiological assumption, such
as the maximization of the cell growth rate or ATP production. Another example is the work by
Gopalakrishnan and Maranas [88], where they demonstrated the possibility of extending 13C-MFA to
a genome-scale model. This study highlighted the variation in flux values that is introduced by selecting
models of different sizes. The authors point out that even though using genome-scale models should be
preferable, it is impractical due to the increase in computational time associated with a higher number
of variables. McCloskey et al. [53] used 13C-labelled metabolomics to constrain a model that describes
537 reactions and 429 metabolites, and showed a significant increase in the number of calculated fluxes.
This included measurements for metabolic intermediates in central carbon metabolism and cofactors of
peripheral metabolism. The authors also used this approach to study the evolution of gene knockout
strains of E. coli and find how the cells adapt to gene loss [89].

13C-MFA is proven to be a valuable approach to determine flux distributions. However, it still
remains a challenge for many systems, especially those with slow labelling dynamics, multiple
compartments, and different carbon sources. An assessment of the measurement uncertainty of this
method has also highlighted: (i) the importance of improving the model used to reduce its structural
error, and (ii) that suitable certified matrix reference material is lacking for isotopologue analysis [90].
Finally, 13C-MFA is used to determine flux values, but provides no mechanistic explanation for
observed events.

3.2. Label-Free Metabolomics Data Integration

Concentration data at a single point of time can be used to constrain a model by defining steady
state concentrations, thermodynamics and, accordingly, reaction directionality or flux cue changes for
multiple condition experiments.

To integrate single-point intracellular metabolomics into a kinetic model, one can utilize the steady
state assumption, where the model is simulated until the system reaches a steady state that should
describe the observed concentrations. Kinetic modelling can integrate metabolite concentration values,
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metabolic fluxes, enzyme amounts and/or kinetic parameters (i.e., Km or Vmax). Metabolomics
experiments provide metabolite concentrations that can be used to either find the kinetic parameters
given the known fluxes, or to infer the metabolic fluxes given the kinetic parameters known from
the literature.

For instance, the kinetic parameter inference approach (find kinetic parameters from experimental
data) was used to build personalized kinetic models of red blood cells based on patients’ metabolomics
data [91]. Assuming that possible flux distributions in red blood cells of healthy individuals are
significantly constrained, the authors calculated the parameters for 300 models, which constituted
the model ensemble. All models in the ensemble converged on the same steady state flux with
the assumption that possible distributions of fluxes in RBC of healthy individuals are significantly
constrained. They showed that inferred parameters represented the genotype better than metabolite
concentrations. The authors used this model to simulate a response to ribavirin, a drug often used
in the treatment of hepatitis C, which is known to cause anemia. Since some of the individuals who
participated in the study had protective SNPs, the authors were able to propose a mechanism for
ribavirin-induced cell hemolysis.

One of the main challenges in the interpretation of metabolomics data is to trace back the changes
that led to the observed phenotype. To address this issue directly with modelling, Savoglidis et al. [92]
proposed a new methodology called inverse metabolic control analysis (IMCA), which was inspired
by metabolic control analysis (MCA). MCA coefficients show the linearization of the response to
the enzyme perturbation, i.e., they show whether and in what direction metabolite concentrations and
reaction fluxes will change after the enzyme concentration is perturbed. IMCA on the other hand allows
us to integrate metabolomics data and assess which enzyme concentration changes led to the measured
metabolite concentrations. In this study, the authors developed a detailed kinetic model for sphingolipid
metabolism and used it to integrate lipidomics data. They used the ORACLE framework [77] to generate
a model ensemble, i.e., a cohort of models exploring possible solutions allowed within the range
of the given kinetic and physico-chemical parameters, using computationally estimated flux and
experimentally derived metabolite concentration measurements. They performed metabolomics on
different strains of S. cerevisiae with knockouts in the sphingolipid biosynthesis. They used this data to
validate their approach to predict knockout targets. The authors propose using this method for cell
factory design and characterization of unknown mutations in personalized medicine.

Integrating metabolomics data from single-point experiments is challenging since constraint-based
models only utilize flux information. The approaches mentioned so far require either strong assumptions
or measurements of at least two time points to infer the metabolic fluxes. Nevertheless, different
approaches have been proposed to incorporate single measurements. For instance, Mo et al. [93]
used exometabolomics to formulate secretion constraints by introducing additional assumptions, e.g.,
a change in extracellular metabolite concentrations implies a change in exchange reaction flux. In this
way, the authors were able to derive changes in the flux distribution. They studied different mutant
strains of Sacaromyces cerevisiae in various environmental conditions and were able to characterize
the changes in different parts of the metabolism.

Methods assessing the thermodynamics of the system also allow the integration of single-point
absolute metabolite concentrations into models. Metabolite concentrations can be used to calculate
the Gibbs energy of the reaction according to the equation:

∆rG = ∆rG◦ + RTlnQ, (3)

where ∆rG—Gibbs energy, ∆rG◦—standard-state Gibbs energy, R—universal gas constant,
T—temperature, Q—reaction quotient or CcDd

AaBb where A and B are the concentrations of the substrates of
the reaction, C and D are the concentrations of the products and a, b, c, d are respective stoichiometric
coefficients. Thus, one can impose additional constraints on the system, since all reactions have to
occur in the direction of decreasing Gibbs energy. Measuring the standard Gibbs energy change for all
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reactions taking place in the metabolism is challenging and not always possible. With the advent of
the group contribution methods [94] and the ability to compute Gibbs free energies for any metabolic
reaction [94,95], this method can be applied on large-scale models. This approach can be used as a data
quality control by verifying that, for a given reaction, the calculated Gibbs free energy and the expected
reaction’s flux are in agreement [96]. Additionally, the directionality of reversible reactions and
the reaction Gibbs energy can be used to find enzymes that are likely to be allosterically regulated, since
these reactions are generally thought to be far from equilibrium. For example, McCloskey et al. [97]
used an E. coli genome-scale model as an integration platform to calculate the Gibbs free energy of
the metabolic reactions in different E. coli strains. They showed significant differences in reaction
thermodynamics, among them such drastic changes that led to reversing the reaction directionality.
That enabled a more accurate characterization of the strains, making them good candidates for
biotechnological applications. In another paper [98], researchers studied the metabolism of E. coli
in anaerobic and aerobic conditions. They integrated metabolomics data as a way of estimating
thermodynamics in a genome-scale model, which allowed them to find inconsistencies between
the model and the data. With this analysis, the authors were able to highlight the importance of enzyme
promiscuity and the usage of alternative pathways and pathway directionality for microbial growth.
In a study using elementary flux modes, Gerstl et al. [99] introduced thermodynamic EFMA (tEFMA)
which allows for the integration of metabolomic data with elementary flux modes. This information is
used during the calculation of EFMs to exclude thermodynamically infeasible solutions and obtain
biologically relevant EFMs, which allows for the evaluation of larger networks.

3.3. Integration of Metabolomics Data from Time-Series Experiments

A larger number of approaches have been developed to integrate metabolomics from time-course
experiments compared to single-point metabolomics. In this section, examples of both intracellular
and extracellular metabolomics time-series data integration will be discussed.

Exometabolomics from time-series experiments is one of the most commonly experimental
data type integrated into both kinetic and constraint-based models. Exometabolomics refers
to the metabolomics of the cell milieu, such as the culture media, the natural environment of
the microorganisms, or the extracellular fluid. From an experimental point of view, this approach has
less technical requirements than the assessment of intracellular metabolites. In addition, extracellular
metabolite concentrations are integrated over time and produce a more intensive signal [100].
Such information allows us to define the boundaries of the system, in terms of maximum and
minimum allowable exchange fluxes. Moreover, performing exometabolomics in a time-series manner
opens a wide range of approaches for data integration. Time-series exometabolomic data allows us to
infer secretion and uptake fluxes from the difference in concentrations and cell density over time. By
using stoichiometric MFA (stMFA), the calculated fluxes can be integrated in the stoichiometric model
to infer the resulting intracellular flux values. To illustrate, Quek et al. [101] used stMFA to determine
the flux distribution in the central carbon metabolism of mammalian cells. From the extracellular
concentrations of sugars and amino acids, Quek and co-workers inferred the exchange fluxes (i.e.,
uptake and secretion rates) and used them to fit the reaction fluxes in the mammalian central
carbon metabolism model. Thus, the researchers were able to infer the intracellular flux distribution
in hybridoma and CHO cell lines from uptake and secretion rates.

When there are distinct metabolic states throughout the time-series experiment (e.g., exponential
and steady state phases during cultivation, behavior of the system before and after stress introduction,
the adaptation to the stress), it is necessary to split the data into distinct phases and construct models
separately to study the different metabolic behaviors in each phase [102]. Dynamic MFA (dMFA)
was proposed as an alternative to such division, since it allows using a single model that describes
the different metabolic states observed throughout the experiment. For example, Martinez et al. applied
dynamic MFA to study the temperature shift in a CHO cell line fermentation study [103]. Changes
in metabolite concentrations were approximated with B-splines, which were then used to calculate
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the fluxes continuously. It was shown that a temperature shift during cultivation leads to different
time profiles of specific antibody productivity, with associated metabolic changes.

However, label-free metabolomics-based MFA has limitations. For instance, it cannot resolve
the source of NADPH production in the cell. Hence, it requires us to make additional assumptions,
such as cofactor balances or leaving out reactions that are believed to carry no flux. Still, this approach
narrows down the number of possible solutions significantly and is relatively easy to apply.

An alternative approach is to use calculated fluxes to constrain the model for FBA. FBA will also use
the assumption of metabolic optimality and give a single solution (or narrowed down solution for FVA).
Aurich and coworkers [104] used this approach to integrate exometabolomics data from the NCI-60
panel (exometabolomics time-series data for 60 cell lines in duplicates [100]) to better understand
cancer metabolism [105]. These data were used by the authors to calculate secretion and uptake rates
(i.e., exchange fluxes), which were used to constrain the system’s boundaries. Here, they had to deal
with a very common problem: targeted metabolomics is limited to a defined set of metabolites, thus not
all exchange fluxes can be calculated. To address this issue, they proposed and utilized a new approach
to calculate the missing uptake and secretion rates. The authors achieved it by finding the minimal
set of additional metabolites that satisfied the growth rate, yet sufficiently constrained the model.
The authors were thus able to describe distinct metabolic phenotypes within the cell lines. In addition,
they performed perturbation analysis (gene knockouts) to predict novel drug targets and showed that
the predicted flux values were in agreement with gene-expression and genomics data [104].

Dynamic FBA was proposed to incorporate the rate of change of flux constraints from measured
concentrations in a time-course experiment [46]. Similarly to dMFA, dFBA enables the identification
of changes in the flux distribution throughout the time of cultivation. Unlike stMFA methods,
dFBA requires objective function in the form of a cellular objective rather than minimization of error
between experimental and modelled data. Researchers studied the growth of E. coli on glucose
in a batch fermentation, where acetate is initially secreted and subsequently consumed. With the use
of dFBA, researchers were able to predict fluxes during diauxic growth on glucose and acetate by
imposing additional constraints on the maximum oxygen uptake level, including the secretion and
later reutilization of acetate [46].

M-DFBA and R-DFBA incorporate the MOMA and ROOM algorithms into dFBA. MOMA and
ROOM were proposed to study the fluxes of knockout phenotypes. M-DFBA and R-DFBA were thus
used to smooth flux transitions over time. Kleessen and Nikoloski [106] showed a good agreement
between R-DFBA and a kinetic model simulation. Luo et al. [107] used the M-DFBA approach to
study the metabolism of mammalian myocardia under normal and ischemic conditions. The authors
proposed that, under ischemic conditions, myocardia does not maximize ATP production—an objective
function often used for mammalian cell lines.

To incorporate time-series of both intracellular and extracellular metabolomics data, a number of
dynamic FBA variations have been proposed. Among them are MetDFBA [108], TREM-Flux [109],
and unsteady state flux balance analysis (uFBA) [110]. While these methods differ in implementation
details and assumptions, they allow similar data integration processes. Time-series metabolomics
and exometabolomics can be integrated in order to estimate the flux distributions. Using time-series
metabolomics and exometabolomics, Bordbard et al. [110] were able to predict the fate of citrate in red
blood cells, which had previously been mostly neglected. This finding was also validated by isotopic
labelling. Chandrasekaran and colleagues [111] applied a similar approach to integrate time-series
intracellular and extracellular metabolomics of naïve and primed murine pluripotent stem cells. They
derived metabolomics data of mouse embryonic stem cells in naïve and primed states at three data
points. The metabolomics data did not show any changes specific to a particular pathway, even though
it showed significant changes in some metabolites. To address this, the authors developed a dynamic
genome-scale metabolic model of the naïve and primed state. The approach, called FBA with flux
activity coefficients, allows deviations from a strict steady state assumption [111]. The authors used
time-course metabolomics measurements as cues for altered flux activity around a metabolite to find
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the state that best fits the metabolomics data. The authors performed both in silico knockout analysis
and flux variability analysis to determine the range of feasible fluxes for each reaction. They showed
that one-carbon metabolism differs between the two states, resulting in differential sensitivity to
antifolates. They also found that Lin28 knockout cells, which were thought to change mouse embryonic
stem cells to a naïve-like state, differ in the pentose phosphate pathway, suggesting that the states are
not identical.

Kinetic models, which describe the changes of metabolite concentrations over time, are innately
appropriate to integrate time-course metabolomics. As an example, Christodoulou et al. performed
a time-series intracellular metabolomics experiment to study the metabolic response of E. coli to
a peroxide pulse [112]. To further characterize the system, they built multiple kinetic models to test
for important allosteric regulators that could lead to such response. The authors tested thousands of
combinations of allosteric regulators and selected those that best described the metabolite concentration
changes after the peroxide challenge. They found a number of relevant interactions that were further
validated. Based on these findings, the authors proposed that E. coli reserves the pentose phosphate
pathway flux capacity during normal growth in order to perform a rapid response for oxidative stress.

Another example is the work of Nishino et al. [113], where the authors tested different perturbations
on a kinetic model in order to match the time-series metabolomics of long-stored red blood cells for
transfusion. Red blood cells are stored at a low non-physiological temperature 4 ◦C. Since kinetic
constants depend on the temperature, the authors had to find new parameters for their system rather
than use systems that can be obtained from the literature data. They used a genetic algorithm to
find the parameters that closely described the experimental data. Indeed, they showed that for
some enzymes, the activity was altered in stored conditions compared to physiological conditions.
The authors also performed simulations to describe the effects of possible additives on red blood cell
metabolism, which were in agreement with known effects of blood storage.

3.4. Integration of Metabolomics with Multiple Omics Data

Integrating different types of omics data is the most promising, yet challenging, goal.
It has the potential to incorporate enzyme regulation occurring at different levels, such as gene
regulation or signaling pathways, and show the cross-talk between them. In this section, some of
the most successful methods developed in the field will be discussed.

Hackett et al. collected omics data (proteomics, fluxomics, metabolomics) for 25 different
steady state conditions for S. cerevisiae grown in a chemostat [114]. They developed a method
(SIMMER) that tests whether the observed fluxes through an individual reaction can be explained
by a Michaelis–Menten rate law, given the metabolite and enzyme concentrations measured
in the experiment. When this is not the case, the algorithm tries to find the allosteric regulator
that best explains the measured flux. Interestingly, this approach takes into account one reaction at
a time. While it is possible that this leads to emergent properties being neglected, it is compatible
with the analysis of large-scale models. It was shown that including allosteric regulators improved
the fit for many reactions, while several known interactions were recovered and new regulations
were proposed. Researchers also used their model to study the governing principles of metabolic
regulation of S. cerevisiae. They showed that regulation occurs not only within pathways but also
between pathways.

The same dataset from Hackett and colleagues was also analyzed by St John et al. [69]. In this study,
the authors modeled the whole system simultaneously using the lin-log formalism to model the reactions
dynamics instead of Michaelis–Menten kinetics. This method allows for kinetic parameter inference
and selection of allosteric regulators. The authors were able to recapture most of the variance seen
in observed fluxes, enzyme and metabolite concentrations. Additionally, by using a Bayesian approach,
the priors for the parameters can be specified, thus encoding additional beliefs about the system.
Such methods have been used for a long time. However, recently they are becoming more relevant with
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the rise of probabilistic languages (e.g., PyMC3 [115], stan [116], Turing [117]) and the development of
the computation capabilities needed for such analyses.

Untangling complex interactions between signaling and metabolism is one of the most important
goals of metabolic modelling. Such a possibility was demonstrated by Yugi and coworkers [118].
In their study, they focus on the dynamic events during insulin activation of the rat hepatoma Fao cell
culture. They obtained time-course phospho-proteomics and metabolomics and built a kinetic model
to explain the dynamic changes seen in experiments. The model included both the metabolism and
signaling pathways. A possible flux distribution was sampled from the stoichiometric model, and used
to estimate the kinetic model parameters. The kinetic model was then used to explore the behavior
around the liver-type phosphofructokinase 1 node. Experimental values for metabolite concentrations
were used in that model and kept at a fixed level, except for fructose-1,6-bisphosphate’s concentration.
The authors describe how they iteratively refined the kinetic model to capture the specific differences
observed in fructose-1,6-bisphosphate, thus showing that insulin regulates the glycolytic pathway and
that the key event is the phosphorylation of phosphofructokinase.

A number of approaches aim to estimate the flux distribution without using labelled data.
To address that, Yizhak et al. [119] proposed a method that finds the steady state flux distribution by
integrating metabolomics and proteomics data into a genome-scale model. Researchers integrated
metabolomics and proteomics together in kinetic modelling simulation of a core set of reactions
and used predicted fluxes through those reactions to constrain genome-scale model. In addition,
the predicted fluxes have to be consistent with flux estimations derived from kinetic model simulations,
which integrate metabolomics and proteomics data. They demonstrated that their approach is
able to predict the metabolic state of human erythrocytes and E. coli with different gene knockouts.
Kleessen et al. [109] proposed the approach TREM-Flux to integrate time-series transcriptomics and
quantitative metabolomics data to predict the intracellular flux distribution. TREM-Flux uses the E-Flux
approach [120] in which the reaction flux is assumed to be proportional to the expression value of
the gene whose product catalyzes the reaction, and then estimates flux between each time point
from the changes of the metabolites level. The authors used this method to characterize the systemic
metabolic response of a Chlamydomonas strain to rapamycin treatment. Covert et al. [121] also proposed
an integrated FBA (iFBA) framework that combines dynamic and constraint-based models to address
inclusion of the regulatory behavior in constraint-based models. Their approach combines FBA with
regulatory Boolean logic and ordinary differential equations. Thus, researchers were able to show
the possibility to add regulatory (both expression regulation and signal transduction) components
both to FBA and dynamic models.

Metabolomics and transcriptomics data can also be used to impose constraints on constraint-based
genome-scale metabolic models. GIM3E is an example of such an algorithm [122]. The GIM3E algorithm
uses metabolomics, both absolute and relative, and transcriptomics data to develop constraints for
a constraint-based model. Specifically, this algorithm uses metabolomics data as cues to ensure
that the detected species are used in the model and transcriptomics data to further constrain fluxes
proportionally to the transcript level in different conditions. Notably, metabolomics and transcriptomics
imposed different constraints on the solution space. This approach is practical in large-scale models
and explorative studies.

Salvy and Hatzimanikatis [123] published a variation on metabolism and expression models,
also referred to as ME models [124], named Expression and Thermodynamics Flux models (ETFL),
which are capable of incorporating metabolomics data as thermodynamic constraints that ensure
proper directionality of reactions. In this approach, thermodynamically feasible fluxes are combined
with proteomics and transcriptomics data. ETFL can predict proteome-limited growth by integrating
growth-dependent parameters (e.g., relative protein or mRNA concentrations) and phenotypic
differences in growth regimens. Additionally, the method was able to predict gene-editing experiments
more accurately than the FBA method.
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4. Multicellular, Multitissue and Community Modelling

The modelling approaches described so far treat a whole cell population as a homogeneous
single-cell type group of cells. While this is a simple yet powerful approach that allows obtaining
numerous findings, it is challenging to study systems where such assumptions do not hold. Examples
of such systems are (a) interactions within communities of microorganisms in different environments,
(b) cross-talk between cells in a normal tissue, (c) heterogeneous tumors, (d) interactions between
tissues and organs, (e) interactions within the microbiome, (f) interactions between the microbiome and
an organism, etc. In order to study these biological systems, novel approaches capable of capturing
the underlying interaction between different cell types are required. The interest in these topics is
driving the rise in the development of multicellular, multitissue, and community modelling techniques
and software. The necessity to work with different cell types increases the size and complexity
of the models. Strategies for building community metabolic models are usually the following
(1) multispecies dynamic modelling that accounts for kinetics of nutrient uptake and metabolite
production by individual species; (2) compartmentalized network modelling, where species are
treated as compartments in the model, and generally used for prediction of cross-species metabolic
interactions; (3) mixed-bag network modelling, where the community is treated as a superorganism
(cell). These strategies are typically used to uncover environment-community interactions [125]. Yet,
currently available experimental approaches are not able to capture many of these interactions. All this
leads to an increase in the degrees of freedom, which increases the uncertainty of metabolic model
solutions. Multilevel modelling is, however, crucial to describe which interactions occur between
different cell types and how they affect the individual cell functioning and the whole community
behavior. Metabolic modelling has been utilized to decipher interactions and mechanisms in mutualistic
and parasitic relations [126]. FBA techniques and network analysis approaches are already being used
to study the communities [127–129]. For example, metabolic modelling approaches have been applied
to study how diet affects microbiome composition [130,131]. In these studies, the researchers were able
to predict changes in metabolite concentrations induced by microbiome composition [131].

4.1. Metabolomics Data Integration for Community Models

Mature metabolic modelling standards and practices are the foundation for successful data
integration processes [132]. Researchers are already applying metabolic modelling to integrate
genomics and transcriptomics data. A number of approaches have already demonstrated that
integration of metabolite concentration data into mechanistic models of multicellular systems is viable.

Dynamic constraint-based methods are suitable for integration of large-scale models, since they
do not rely on kinetic parameters that are often hard to obtain. dFBA was one of the first methods
to be used in metabolomics data integration for community modelling. Hanemaaijer and coworkers
applied dFBA to study a synthetic anaerobic co-culture of Clostridium acetobutylicum and Wolinella
succinogenes [133], and showed that dFBA can be used to study community interaction. These bacteria
interact by exchanging hydrogen with each other. The changes in hydrogen concentration were used
to predict the intracellular fluxes and optimal metabolite exchange rates.

Inference of fluxes is crucial for the understanding of metabolism and its regulation. In addition,
it facilitates the development of kinetic models that allow researchers to characterize the system and its
regulation. 13C-MFA is a gold standard to infer flux distributions and has been extensively applied to
mono-cultures during the past two decades. Yet, there are only a handful of 13C-MFA examples for
microorganism communities. Ghosh et al. demonstrated a peptide-based alternative to the standard
amino acid-based 13C-MFA [134]. This method is based on the availability of peptide sequences that can
be used to trace back the microbial species they originate from and used to infer intracellular metabolic
fluxes. Recently, Gebreselassie and Antoniewicz [135] combined total biomass labelling experimental
data and 13C-MFA to infer the metabolic flux profile of a co-culture system of two E. coli knockout
strains. They did not use physical separation nor genetic labelling to perform the measurements. Rather,
the fluxes were inferred via pooled distribution of isotopes in co-culture. While the peptide-based



Metabolites 2020, 10, 303 17 of 27

approach is capable of resolving fluxes in larger and more diverse communities, the total biomass
labelling approach is suitable for closely related species, and in theory should be capable of finer
resolutions, since peptides inherently contain less flux information than amino acids.

4.2. Metabolomics Data Integration for Multicellular, Multitissue and Multiorgan Models

Constraint-based modelling has been used to model whole organisms, multitissue and multicellular
models of plants and animals to elucidate the interactions between the different cell types within a tissue
and higher levels of interactions [136–138]. To integrate the changes in metabolite concentrations, dFBA
has been applied to whole-plant metabolism, including diurnal changes [139,140], and to a human
whole-body physiologically-based pharmacokinetic model [141]. For example, Krauss et al. applied
dFBA to describe the human metabolism within the context of whole-body physiologically-based
pharmacokinetics [141]. They demonstrated three cases in which this approach was successful:
(1) the analysis of the distribution and therapeutic effect of allopurinol in the treatment of hyperuricemia;
(2) the effect of impaired ammonia metabolism on blood plasma metabolites levels to identify biomarkers;
(3) paracetamol-induced intoxication on liver metabolism.

Recently, 13C-MFA was applied at an organism level in humans [142]. The authors explored
the contribution of circulating lactate and related metabolites to tumors metabolism. Patients were
infused with labelled glucose and both isotope enrichment analysis [142] and MFA were performed to
analyze the lactate metabolism. They were able to provide the first direct evidence that lactate and
other three-carbon products of glycolysis are consumed by human non-small-cell lung cancers.

5. Conclusions and Perspectives

The technical capability provided by different high-throughput platforms to analyze and quantify
an increasing number of molecular entities existing within a living cell opens up opportunities for
novel discoveries and scientific findings in metabolic research [91,143–145]. To cope with this vast
amount of omics data, systems biology has developed mathematical approaches to understand
emergent properties of metabolism. In this sense, metabolic modelling can be applied to different
metabolic studies and has the capability to encode previous knowledge to extract more information
from the data or find existing inconsistencies in current knowledge and propose new hypotheses and
new experimental designs in an iterative fashion. For instance, mechanistic models are a promising
tool for drug design and personalized medicine [91,143], and are capable of predicting response to
drug combination based on single drug response data [146]. There are examples of how metabolic
engineering tasks are guided by metabolic modeling for increased production of industrially relevant
compounds [144,145]. Broadly, the application of mechanistic models was very fruitful in metabolism
research, with high potential in the area of data integration.

Stoichiometric models have the advantage of scaling well for large-scale problems, since they
require little prior information. In this review, we have discussed several techniques and examples to
integrate metabolomics data in order to study cell metabolisms. In general, kinetic models are more
suitable for well-known metabolic systems, which on the other hand reduce their scope to models
of small and medium size. Kinetic models are also suitable to predict the state of the systems and
they can deal with allostery and regulation. On the other hand, constraint-based modelling is usually
more suitable when using large-scale models with scarce knowledge about the system. We refer to
the specialized article for the details of usage of mechanistic models [147]. The type of data and
the system under study also play an important role when choosing integration techniques. For example,
dynamic techniques (i.e., D-FBA) should be used when the overall metabolic behavior of a system is
researched that is not constant along the experiment. Another example is the use of labelling data when
there is need of a more detailed description of intracellular fluxes. We have also seen that gathering
time-series data can dramatically improve the possibilities in modelling and interpreting the data.

The application of such models supports the systematic overview of the metabolism by applying
physico-chemical principles to metabolic pathways. Kinetic models can innately encode different
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types of information and various types of omics data from first principles. Kinetic models, especially
large scale, are not easy to parametrize due to the lack of kinetic parameters describing the in vivo
behavior or because they are not fully characterized and not applicable for case-specific studies.
Accurate inference of large-scale kinetic models from experimental data is the most promising
technique, yet needs a significant amount of data points and efficient computational approaches as
well as computational power. The combined application of both kinetic models and constraint-based
models in the study of biological systems would allow taking advantage of their complementary
features in a synergistic manner with the potential to overcome existing setbacks. The combination of
the methods can be achieved in different ways, from modelling different parts of the metabolism with
either kinetic modelling or constraint-based modelling [119,121] (or other formalisms) to enhancement
of constraint-based models with kinetic parameter information, such as in the GECKO method [7].
Another hybrid approach is to combine mechanistic and statistical or machine learning models. It is
challenging to identify the causalities and mechanisms by using machine learning approaches. Recently,
the article showing “white-box” approach [148], as opposed to “black-box” uninterpretable machine
learning models, was shown, demonstrating the power of such methods. Modern machine learning
algorithms are capable of pinpointing associations from dataset inputs and outputs but are not able
to give mechanistic explanations of the phenomena. To address this challenge, researchers used
an integrated screening–modeling–learning approach in which they linked input and output data with
mechanistic models. White-box machine learning is potentially capable of identifying biologically
interpretable biomarkers, personalized treatment strategies and mechanisms of disease pathogenesis
from big datasets.

The development of metabolome measurement technology also plays an important role
in the accuracy and comprehensiveness of metabolic modeling. The most important directions
are accurate quantitative acquisition, identification of unknown metabolites and subcellular metabolite
localization. First, acquisition of quantitative metabolome data can contribute to improvement of
model accuracy. Therefore, progress in a comprehensive metabolite measurement method using
the stable isotope dilution method is desired [149]. Furthermore, identification of unknown metabolites
is also an important issue in constructing an accurate metabolic model [150]. It can uncover shed
lights on new reactions and better determine scope of the model. Metabolomics data integration
dealing with different cell compartments remains a challenge. Existing experimental methods usually
capture pooled metabolite concentrations. For example, for eukaryotic cells, it is not possible to
obtain the real concentration and/or isotopic labelling in different compartments from the pooled
data. Both experimental and computational improvements are needed to solve this issue. So far,
different experimental approaches have been proposed for sample preparation to extract mitochondria
and leave the internal metabolites intact [151–154]. However, only mitochondria have been isolated
for a labeled and label-free analysis of the mitochondrial metabolites. Therefore, studies are limited
where researchers are focusing on metabolites that only exist in cytosol and/or mitochondria, while
the metabolism in other cell compartments is neglected.

Multicellular modelling of heterogeneous cellular ecosystems is now an exciting and quickly
developing field. Researchers are still discovering new mechanisms of interplay between
organs and tissues in different whole-organism studies. Awareness of the importance of tumor
heterogeneity in clinical outcome has led to more studies on the metabolic vulnerabilities of tumor
subpopulations [155]. Following the success of metagenomics and metatranscriptomics, studying
the metabolic basis of microbiome and organism interaction will demand systems biology approaches to
integrate, interpret, and generate new hypotheses. First efforts show that widely used methods currently
applied to single-cell type modelling can be extended to multicellular approaches describing metabolic
interactions between different cell types [156]. The recent advances in single-cell metabolomics [156]
have the potential to support improvements in methods to analyze heterogenous cellular communities.
However, more experimental multicellular-specific methods are also needed.
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Standardization of metabolic model formulation and simulation is an important task for researchers
and the scientific community in order to advance the field of metabolic modelling and data integration
in particular. Several initiatives and tools were proposed in order to harmonize the modelling studies,
including MEMOTE (for metabolic model tests) [157] and The Systems Biology Markup Language
(SBML) [158]. Further, good practices of models and data distribution should be more widely adopted
in order to allow different scientific groups to integrate different datasets and use already published
models. We refer the readers to the Findability, Accessibility, Interoperability, and Reusability (FAIR)
guidelines [159].

Systems biology already provides insights into the mechanisms that govern metabolism in different
biological fields. By routinely using mechanistic models to integrate and interpret metabolomics data,
it will be possible to shed more light into the complex network of interactions in the metabolism.

Table 1. Summary of the metabolomics integration approaches described in the review.

Integrated Omics Data Model Type (FBA, MFA,
Kinetic Model, etc.) Comment Reference

Isotopic-labelling data 13C-MFA 13C-MFA at a genome scale [88]

13C-MFA

13C-MFA of central carbon metabolism of
hepatocellular carcinoma and effect of Hexokinase-2

on the metabolism
[82]

13C-MFA 13C-MFA at a genome scale [53]

13C-MFA
13C-MFA at a genome scale of evolved knockout

E. coli strains
[89]

13C-MFA

13C-MFA of central carbon and amino acid
metabolism reveals how changing medium amino
acid composition metabolism in CHO cell culture

[83]

13C-MFA
Application of 13C-MFA of central carbon and amino

acid metabolism to study CHO cells with high
productivity of industrially relevant proteins

[84]

Metabolomics
(single data point) Kinetic model Personalized kinetic model parametrization and

analysis of red blood cells [91]

Kinetic model IMCA approach to trace back the changes that led to
the observed phenotype [92]

Constraint-based model Constraint-based modelling approach and
single-point extracellular metabolomics [93]

Constraint-based model Tool for system thermodynamic analysis of
quantitative metabolomics [96]

Thermodynamic FVA
Genome-scale thermodynamic FVA applied to

integrate the metabolomics data of different
industrial strains of E. coli

[97]

Thermodynamic EFM Combination of thermodynamic and EFM analysis [99]

Constraint-based model
Genome-scale thermodynamic CBM applied to

integrate metabolomics of E. coli to research aerobic
and anaerobic metabolism

[98]

Time-series metabolomics
data integration Stoichiometric MFA stMFA of carbon central metabolism in mammalian

cell culture [101]

Dynamic stoichiometric MFA Dynamic stMFA of carbon central metabolism used
to study the effect of the temperature shift on CHO [103]

FBA Genome-scale FBA for cancer cell line
metabolism analysis [104]

dFBA dFBA at a genome scale used to study diauxic
growth in E. coli [46]

MetDFBA dFBA variation used to integrate time-series
metabolomics data [108]

uFBA
dFBA variation used to integrate time-series

metabolomics data and study the metabolism of
red blood cells

[110]

M-DFBA
dFBA variation to integrate time-series

metabolomics data to study myocardial metabolism
under normal and ischemic conditions

[107]
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Table 1. Cont.

Integrated Omics Data Model Type (FBA, MFA,
Kinetic Model, etc.) Comment Reference

R-DFBA dFBA variation to integrate time-series
metabolomics data [106]

FBA with flux activity coefficients
FBA with time-course metabolomics measurement
cues for altered flux activity around a metabolite to

study the metabolism of pluripotent stem cells
[111]

Kinetic model (Michaelis–Menten
laws). Parameters known

(sampled across the literature
values to account for uncertainty)

Kinetic models used to find key regulations
in the metabolism to study the response of

metabolism on oxidative stress in E. coli
[112]

Kinetic model
Kinetic model of central carbon metabolism of

long-stored red blood cells to describe
the metabolism changes at not-standard temperature

[113]

Multiomics data integration Kinetic model Kinetic model used to find new regulators [114]

Kinetic model Kinetic model used to find new regulators [69]

Kinetic model
Integration of metabolomics and phosphoproteomics
into a kinetic model to characterize the response to

the insulin on the signaling and metabolic level
[118]

Kinetic model and
constraint-based model

Flux estimation from single-point unlabeled data by
integrating it into a model which consists of a kinetic

and constraint-based model
[119]

FBA with regulatory Boolean logic
and kinetic model

Genome-scale FBA modification that captures
metabolism, regulation and signaling in E. coli [121]

FBA and other
constraint-based methods

GIM3E, an approach to develop
condition-specific models [122]

ME model Thermodynamically consistent ME model [123]

TREM-Flux

dFBA variation used to integrate time-series
metabolomics and transcriptomics data to study

the response of Chlamydomonas to
rapamycin treatment

[109]

Multicellular, multitissue
and community modelling DFBA dFBA for co-cultures to study the metabolic

interactions in microbial community [133]

13C-MFA A peptide-based 13C-MFA approach for co-cultures [134]
13C-MFA 13C-MFA for co-cultures [135]

FBA
FBA approach to study plant on the organismal level,

highlighting differences in tissue-specific
metabolic networks

[136]

FBA

Cell-specific metabolic models are combined within
single model allowing the study of complex

physiological processes such as a Cori or
alanine cycle

[137]

FBA

A modelling study accounting for the interactions
between cell types found in the brain is validated

with experimental data and demonstrates metabolic
interplays and activities that less detailed models

are missing

[138]

FBA + FPM (functional
plant model, special kind

of kinetic model)

Integration of dynamic FPM and static FBA allowed
for a whole-plant time-resolved analysis [139]

dFBA Combination of dFBA with resource allocation
prediction applied to the whole-plant model [140]

dFBA within PBPK Application of multiscale modelling to hepatocyte
metabolism and physiology [141]

13C-MFA
13C-MFA on whole-body level to trace the fate of

lactate in human lung tumors
[142]
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