
1400

Copyright © 2020 by Asian-Australasian Journal of Animal Sciences 
This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited. www.ajas.info

Asian-Australas J Anim Sci  
Vol. 33, No. 9:1400-1410 September 2020
https://doi.org/10.5713/ajas.19.0411
pISSN 1011-2367 eISSN 1976-5517

A genome-wide association study of reproduction traits in four 
pig populations with different genetic backgrounds

Yao Jiang1, Shaoqing Tang2, Wei Xiao2, Peng Yun2, and Xiangdong Ding1,*

Objective: Genome-wide association study and two meta-analysis based on GWAS per
formed to explore the genetic mechanism underlying variation in pig number born alive 
(NBA) and total number born (TNB).
Methods: Single trait GWAS and two meta-analysis (single-trait meta analysis and multi-
trait meta analysis) were used in our study for NBA and TNB on 3,121 Yorkshires from 4 
populations, including three different American Yorkshire populations (n = 2,247) and one 
British Yorkshire populations (n = 874). 
Results: The result of single trait GWAS showed that no significant associated single nucleo
tide polymorphisms (SNPs) were identified. Using single-trait meta analysis and multi-trait 
meta analysis within populations, 11 significant loci were identified associated with target 
traits. Spindlin 1, vascular endothelial growth factor A, forkhead box Q1, msh homeobox 
1, and LHFPL tetraspan submily member 3 are five functionally plausible candidate genes 
for NBA and TNB. Compared to the single population GWAS, single-trait Meta analysis 
can improve the detection power to identify SNPs by integrating information of multiple 
populations. The multiple-trait analysis reduced the power to detect trait-specific loci but 
enhanced the power to identify the common loci across traits.
Conclusion: In total, our findings identified novel genes to be validated as candidates for 
NBA and TNB in pigs. Also, it enabled us to enlarge population size by including multiple 
populations with different genetic backgrounds and increase the power of GWAS by using 
meta analysis.

Keywords: Genome-wide Association Study; Total Number Born; Number Born Alive; 
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INTRODUCTION 

China produces more than 50 million tons of pork each year, accounting for over 50% of 
the total global production [1]. Even a slight increase in Chinese pork production will have 
a significant impact on the global pork market. Reproductive traits, such as total number 
born (TNB) and number born alive (NBA), have been considered as the most important 
index included in the selection indices of pig breeding programs for evaluating sow pro-
ductivity [2]. Up to the present, selection based on traditional breeding methods using 
best linear unbiased prediction has been successful in improving maternal reproductive 
traits [3]. However, the genetic architecture of reproductive traits is very complicated due 
to low heritability, minor genes, maternal effects and environmental factors [4], resulting 
in the difficulty deciphering the genetic architecture of reproduction traits. Over the past 
20 years, the dense genome coverage provided by high-throughput chip genotyping makes 
it possible to exploit the linkage disequilibrium (LD) between single nucleotide polymor-
phisms (SNPs) and quantitative trait locus (QTL) through genome-wide association study 
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(GWAS) to identify genes related to traits of interest. Several 
GWAS have been revealed significant associations for eco-
nomically important traits such as reproduction traits [5], 
growth traits [6], meat traits [7], and feed conversion [8]. 
  Exploring the loci and genes affecting sow reproduction 
performance is necessary for understanding the genetic char-
acteristics of these traits and increasing the speed of genetic 
improvement [9]. On one hand, genes such as estrogen re-
ceptor 1 [10], insulin-like growth factor 2 [11], and aryl 
hydrocarbon receptor [12] had been identified as important 
candidate genes positively associated with reproduction. But 
these genes explain only a relatively small proportion of the 
genetic variance. On the other hand, limited by the size of the 
population and other factors, only small number of genes were 
detected in association analysis. According to the pig QTLdb 
(https://www.animalgenome.org/cgi-bin/QTLdb/SS/index), 
until now, there are 2,135 QTLs reported for overall traits 
linked to reproduction including 6 QTLs for endocrine, 1,013 
for litter traits, 668 for reproductive organs, and 448 QTLs 
for reproductive traits. Among them, 522 QTLs identified 
for TNB (350 QTLs) and NBA (172 QTLs) compared with 
8,962 QTLs for fatness or 1,745 for growth traits.
  Most of those studies mainly utilize one pure breed or an 
intercross population, with the result only reflecting one 
specific breed’s linkage disequilibrium character. As the most 
popular commercial pig breed, Yorkshire is usually used as 
terminal dam line in pig hybrid production, and the improve-
ment on their reproduction traits is therefore very important. 
There were two main objectives in our study. The first one 
was to detect significant SNPs and candidate genes in four 
populations from different genetic backgrounds using con-
ventional single-trait GWAS respectively. The second one 
is to improve the power of GWAS by enlarging population 
size through implementing a meta-analysis for multiple traits 
within a population or for same trait across populations. 

MATERIALS AND METHODS 

Ethics statement
The whole procedure for collecting ear tissue samples was 
carried out in strict accordance with the protocol approved by 
the Institutional Animal Care and Use Committee (IACUC) 
at the China Agricultural University. The IACUC of the China 
Agricultural University specifically approved this study (permit 
number DK996).

Animals and phenotype
A total of 3,121 Yorkshire pigs used in this study were sam-
pled from four pig breeding farms (abbreviated as LM, FJ, 
XD, ZX for convenience), including 2,247 progeny of three 
different American Yorkshire populations and 874 progeny 
of one British Yorkshire population (XD). Animals from LM 
and ZX are descendants of American Yorkshires but from 
different breeding companies, while LM and FJ came from 
the same breeding companies. The progeny of American 
Yorkshires were born in 2013 through 2018 and came from 
222 sire families (8 to 76 offspring in each family with an aver-
age of 15), and the progeny of British Yorkshires were born 
in 2007 through 2013 and came from 129 sire families (10 to 
71 offspring in each family with an average of 7). There was 
no genetic connectedness between LM, XD, and ZX accord-
ing to the pedigree information. Phenotypic records included 
two reproductive traits, TNB and NBA. The populations and 
phenotypes information are presented in Table 1.
  Breeding values for NBA and TNB were routinely esti-
mated by the breeding companies using a standard animal 
repeatability model which was separately implemented in 
each population, and were obtained from the National Swine 
Genetic Improvement Center of China (http:// cnsge.nahs.
org.cn/); afterwards, corrected phenotypic values were cal-
culated as EBV plus the estimated residual for each individual 
in each population.

Genotyping and quality control
Genomic DNA was extracted from blood samples using a 
TIANamp Blood DNA Kit (catalog number DP348; Tiangen, 

Table 1. Descriptive statistics of number of piglets born alive and total number of piglets born in 4 Yorkshire populations

Trait Population1) Source N Min Max Mean SD

NBA LM American line2) 931 5.46 12.78 9.30 2.112
FJ 545 6.60 14.38 10.70 2.295
XD British line 874 7.54 12.28 10.38 1.733
ZX American line3) 771 7.18 13.19 9.74 1.914

TNB LM American line2) 931 6.15 14.38 10.03 2.226
FJ 545 6.89 16.75 11.73 2.489
XD British line 874 8.06 13.59 10.88 1.810
ZX American line3) 771 7.62 15.00 11.04 2.155

NBA, number of piglets born alive; TNB, total number of piglets born; SD, standard deviation.
1) LM, FJ, XD, and ZX are Yorkshire populations from 4 elite Chinese pig breeding farms.
2),3) Animals from LM, FJ, and ZX are descendants of American Yorkshires but ZX was came from another breeding company.
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Beijing, China). Genotyping was performed using a Por-
cineSNP80 BeadChip (Illumina, San Diego, CA, USA), which 
includes 68,528 SNP across the entire pig genome. Genotype 
quality control was carried out using PLINK 1.9 software [13] 
separately for each population. First, individuals with call 
rates (CR) less than 90% were removed and then SNP with 
CR less than 90%, minor allele frequencies <3%, or significant 
deviation from the Hardy–Weinberg equilibrium (p<10× 
10–6) were removed. After genotype quality control, 3,121 
individuals and 49,839 SNP remained for further analysis.
  Population structure: Because the genetic backgrounds of 
four Yorkshire populations in this study are different, a prin-
cipal component analysis (PCA) was carried out to detect 
the population stratification using GCTA software [14]. In 
order to keep the independence of SNPs, the adjacent SNPs 
with r2 greater than 0.2 were further pruned after genotype 
quality control, and in total 29,229 SNPs were used in PCA. 
The linkage disequilibrium within each population was cal-
culated using PLINK software [13] as well. Meanwhile, a 
quantile-quantile (Q-Q) plot was generated to assess the in-
fluence of population stratification on the GWAS.

Statistical analysis
Single-population GWAS through linear mixed model was 
carried out in each pig population separately. Based on single-
population analysis, the meta-analysis within population 
and cross populations were conducted, respectively. 

Genome-wide association study for a single trait in a 
single-population
Linear mixed model: A linear mixed model was implemented 
to detect the association of SNP with growth and fatness traits. 
The model in this study is a single SNP regression model. 
The model includes a random polygenic effect to account 
for shared genetic effects of related individuals and to control 
population stratification. The statistical model is described 
below:

  yc = 1μ+bx+Zg+e,

in which yc is the vector of phenotypes (corrected phenotyp-
ic values); 1 is a vector of ones; μ is the overall mean; b is the 
average effect of the gene substitution of a particular SNP; x 
is a vector of the SNP genotype (coded as 0, 1, or 2); g is a 
vector of random polygenic effects with a normal distribu-
tion g ~ N(0, Gσa

2), in which σa
2 is the polygenic variance 

and G is the genomic additive relationship matrix and was 
constructed using all markers following VanRaden [15]; Z is 
an incidence matrix relating phenotypes to the correspond-
ing random polygenic effects; and e is a vector of residual 
effects with a normal distribution N(0, Iσe

2), in which σe
2 is 

the residual variance. The software GCTA [14] was used to 

fit the model.
  Afterwards, Bonferroni correction at a significance level of 
0.05 was used to identify significant SNP. There were 52,173, 
52,804, 52,526, and 52,267 qualified SNPs in the four popu-
lations (LM, FJ, XD, and ZX), respectively. The p values of 
the 5% genome-wide and suggestive significant thresholds 
were equal to 0.05/SNPs number and 1/SNPs number, re-
spectively, in four populations.

Meta-analysis of GWAS for a single trait across 
populations (MS-GWAS) 
Based on the results of GWAS separately in four populations 
through single-population analysis, and the meta-analysis 
based on Fisher’s method was carried out to combine P-value 
probabilities from each test into one test statistic (X2) using 
the formula:
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growth and fatness traits. The model in this study is a single SNP regression model. The model includes 133 

a random polygenic effect to account for shared genetic effects of related individuals and to control 134 

population stratification. The statistical model is described below: 135 

 136 

yc = 1μ+bx+Zg+e, 137 

 138 

in which yc is the vector of phenotypes (corrected phenotypic values); 1 is a vector of ones; μ is the 139 

overall mean; b is the average effect of the gene substitution of a particular SNP; x is a vector of the 140 

SNP genotype (coded as 0, 1, or 2); g is a vector of random polygenic effects with a normal distribution 141 

g ~ N(0, Gσa
2), in which σa

2 is the polygenic variance and G is the genomic additive relationship matrix 142 

and was constructed using all markers following VanRaden [15]; Z is an incidence matrix relating 143 

phenotypes to the corresponding random polygenic effects; and e is a vector of residual effects with a 144 

normal distribution N(0, Iσe
2), in which σe

2 is the residual variance. The software GCTA [14] was used 145 

to fit the model. 146 

Afterwards, Bonferroni correction at a significance level of 0.05 was used to identify significant 147 

SNP. There were 52,173, 52,804, 52,526, and 52,267 qualified SNPs in the four populations (LM, FJ, 148 

XD, and ZX), respectively. The p values of the 5% genome-wide and suggestive significant thresholds 149 

were equal to 0.05/SNPs number and 1/SNPs number, respectively, in four populations. 150 

 151 

Meta-analysis of GWAS for a single trait across populations (MS-GWAS)  152 

Based on the results of GWAS separately in four populations through single-population analysis, and 153 

the meta-analysis based on Fisher’s method was carried out to combine P-value probabilities from each 154 

test into one test statistic (X2) using the formula: 155 

 156 

𝑋𝑋2 = −2∑ ln(𝑃𝑃𝑡𝑡)𝑇𝑇
𝑡𝑡=1 , 157 

 158 in which pi is the raw p-value of tth study for t = 1, …, T, in 
which T is the number of independent studies. When all the 
null hypotheses are true, this combined test statistic follows 
a χ2 distribution with 2T of degree of freedom. Therefore, the 
new p-value from the meta-analysis was calculated using:
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studied traits, ti′ was a transpose of the vector ti, V
–1 was an 

inverse of the correlation matrix where the correlation be-
tween a pair of traits was estimated from the correlation of 
summary statistics over the SNPs in the analysis. Afterwards, 
Bonferroni correction at a significance level of 0.05 was used 
to identify significant SNP as same as genome-wide association 
study for a single trait in a single-population (SS-GWAS).

Identification of candidate genes 
To identify functionally plausible candidate genes near the 
significant SNP, the genes located in or overlapping the re-
gion between the 0.5 Mb upstream and 0.5 Mb downstream 
of the significant SNP were obtained using Ensemble (http://
www.ensembl.org/Sus_scrofa/Info/Index; Sscrofa 11.1 ge-
nome version). Gene ontology analysis was carried out using 
the DAVID bioinformatics resource (https://david.ncifcrf.gov/). 
Pathway analysis was conducted using the online KEGG 
(http://www.kegg.jp/kegg/pathway.html) and GeneCards 
(http://www.genecards.org/) tools.

RESULTS 

Population structure
To identify the population structure of the four Yorkshire 

populations involved in this study, a PCA was performed 
using the chip data. As shown in Figure 1, the four Yorkshire 
populations from four farms can be clearly identified through 
PCA. The genetic backgrounds of the LM and FJ populations 
were classified nearly into one cluster implying no significant 
genetic differentiation among them. Meanwhile, both LM 
and FJ populations were divergent from ZX population, as 
they came from different American Yorkshires breeding com-
panies. Likewise, XD was distantly related to FJ, LM, and ZX 
due to its British origins. 

SNPs identified by SS-GWAS for TNB and NBA in four 
populations
All significant SNPs associated with TNB and NBA traits in 
single population analysis are illustrated in Table 1. For SS-
GWAS, the p values of the 5% (suggestive) genome-wide 
significant threshold were equal to 9.58×10–7 (1.92×10–5), 
9.47×10–7 (1.89×10–5), 9.52×10–7 (1.90×10–5), 9.57×10–7 (1.91 
×10–5) in these four populations (LM, FJ, XD, and ZX), re-
spectively. A total of 13 SNPs, of which six SNPs reached 
the genome-wide suggestive level for NBA and seven SNPs 
reached the genome-wide suggestive level for TNB, as shown 
in Table 2. Among that, six suggestive SNPs for XD, one for 
FJ, six for ZX and no SNPs for LM. The results of single pop-

Figure 1. The statistics of population structure in 4 Yorkshire populations. PCA, principal component analysis for 4 Yorkshire populations. XD, FJ, LM, and ZX represent 4 
Yorkshire populations from 4 elite Chinese pig breeding farms. pc1 = first principal component; pc2 = second principal component.
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ulation GWAS are in Supplementary Figure S1. No significant 
SNP was found in the single population GWAS results.

SNPs identified by MS-GWAS for NBA and TNB across 
populations
Manhattan plots for meta-analysis across populations are 
presented in Figure 2, while the summary of significant SNPs 
for TNB and NBA in the meta-analysis across populations 
is listed in Table 3. In total, 19 significant SNPs were detected 
for the traits analyzed in the meta-analysis across populations: 
11 for TNB and 8 for NBA. Among them, 5 significant SNPs 
which were detected in TNA or NBA were also reached a 
suggestive level in another trait. In addition, the number of 
significant SNPs identified in meta analysis across popula-
tions were larger and more significant than in single-trait 
analysis. Ten suggestive SNPs which detected in SS-GWAS 
reached the higher level of significance in meta analysis across 
populations. Besides that, 11 SNPs that were significant in 
meta analysis across populations became more significant 
in multi-traits meta in the next analysis.

SNPs identified by MM-GWAS within population
Genomic correlation matrices between TNB and NBA were 
constructed in four populations, respectively. The absolute 
of genomic correlation was 0.89, 0.85, 0.87, and 0.89 for each 
population of LM, FJ, XD, and ZX, respectively. Manhattan 
plot for MM-GWAS within four populations are presented 
in Figure 3. In LM population (Figure 3a), the MM-GWAS 

revealed 42 SNPs associated with both TNB and NBA, includ-
ing 13 with genome-wide significance and 29 with suggestive 
significant level. There were 60 SNPs identified for FJ popu-
lation (Figure 3b), including 13 genome-wide significant loci 
and 47 genome-wide suggestive loci. For XD population 
(Figure 3c), 24 reached the significant level and 42 reached 
suggestive significant level. For ZX population (Figure 3d), 
16 significant and 35 suggestive loci were identified. Com-
pared the results of four populations, only 11 SNPs reached 
the significant or suggestive significant level in each popu-
lation (Table 4). Besides that, these 11 significant/suggestive 
SNPs were all overlapped in the result of meta-analysis of 
GWAS (MS-GWAS). The significant/suggestive SNPs de-
tected using the multi-trait meta-analysis within population 
are listed in Table 4.

Identification of candidate genes
Based on 11 common significant SNPs associated with TNB 
and NBA identified by two meta-analysis methods, 11 genes 
which located within the region between the 0.5 Mb upstream 
and 0.5 Mb downstream of the significant/suggestive SNP 
were found and annotated (Tables 2 to 4). While Go ontology 
analysis revealed that, there were five annotated genes had a 
highlight biology function with TNB and NBA. All these 
annotated genes were selected based on the Sus scrofa 11.1 
genome assembly. Further function annotation was carried 
on based on the NCBI database (https://www.ncbi.nlm.nih.
gov/). 

Table 2. The result of single population analysis for total number of piglets born and number of piglets born alive traits across populations

SSC SNP name
Location 

(bp)
Populations1) p(NBA)-value2) p(TNB)-value3) Associated 

gene4)
Distance5) 

(bp)
Gene function

17 ALGA0094112 27,884,015 XD 1.160E-05 3.770E-05 RIN2 In Signal transduction
1 WU_10.2_1_11153176 9,032,844 XD 1.686E-05 3.314E-05 SYNJ2 In Inositol phosphate dephosphorylation
6 MARC0081527 80,617,330 XD 1.859E-05 1.780E-05 C1QB Down Complement activation, classical pathway
4 WU_10.2_4_80076056 73,428,123 XD 2.188E-05 1.336E-05 CA8 Down Phosphatidylinositol-mediated signaling
2 ALGA0113046 12,842,137 XD 2.132E-05 1.346E-05 OR10Q1 Up G protein-coupled receptor signaling pathway
5 H3GA0015463 9,863,427 XD 3.220E-05 1.760E-05 PICK1 In Intracellular protein transport
4 WU_10.2_4_80076056 73,428,123 FJ 1.807E-05 2.313E-05 CA8 Down Phosphatidylinositol-mediated signaling
12 WU_10.2_12_17971455 41,032 ZX 1.080E-05 7.546E-04 ZNF750 Down
7 WU_10.2_7_130172562 537,474 ZX 1.675E-05 1.040E-05 FOXQ1 Up Cell differentiation
1 WU_10.2_1_11153176 9,032,844 ZX 6.517E-05 1.110E-05 SYNJ2 In Inositol phosphate dephosphorylation
7 H3GA0021245 38,823,945 ZX 2.478E-05 1.125E-05 VEGFA Down Regulation of signaling receptor activity
1 MARC0022141 0 ZX 1.172E-04 1.644E-05 NA NA NA
1 DRGA0000439 30,456,989 ZX 1.918E-04 1.674E-05 EYA4 In Protein dephosphorylation

SSC, Sus scrofa chromosome; SNP, single nucleotide polymorphism; NBA, number of piglets born alive; TNB, total number of piglets born; RIN2, Ras and Rab interactor 2; 
SYNJ2, synaptojanin 2; C1QB, complement C1q B chain; CA, carbonic anhydrase 8; OR10Q1, olfactory receptor family 10 subfamily Q member 1; PICK1, protein interacting 
with PRKCA 1; ZNF750, zinc finger protein 750; FOXQ1, forkhead box Q1; VEGFA, vascular endothelial growth factor A; EYA4, EYA transcriptional coactivator and phos-
phatase 4; NA, not available; GWAS, genome-wide association study. 
1) The results of significant SNPs from different populations.
2) p(NBA)–value =  p-value from sing population GWAS for NBA. 
3) p(TNB)–value =  p-value from sing population GWAS for TNB. The bold data in this column represent the SNP at suggestive genome-wide significant level.
4) The associated gene in bold in this column represent these genes were associated with traits based on annotation.
5) down/up =  the location of SNP in downstream/upstream of the nearest gene.
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Quantitative traits locus overlapped with SNPs 
Until now, there were 522 pig QTLs identified for reproduc-
tion traits TNB (350 QTLs) and NBA (172 QTLs) in the pig 
QTL database (https://www.animalgenome.org/cgi-bin/
QTLdb/SS/index). After comparing these QTL with the re-
gions of 11 common significant SNPs, 6 SNPs were identified 
located in 5 QTLs which were identified before in Sus scrofa 
chromosome 6 (SSC6), SSC7, and SSC9 for TNB and NBA 

traits (https://www.animalgenome.org/cgi-bin/QTLdb/SS/
traitmap?trait_ID=157 or trait_ID=156). This implies the 
functional genes such as msh homeobox 1 (MSX1), vascular 
endothelial growth factor A (VEGFA), forkhead box Q1 
(FOXQ1), and LHFPL tetraspan submily member 3 (LHFPL3) 
around these SNPs are likely candidates for TNB and NBA 
traits.

Figure 2. Manhattan plot of different analyses methods for total number born (TNB) and number born alive (NBA). The x-axis represents the chromosomes and the y-axis 
represents the −log10(p-value). The dotted line indicates the significance threshold for the (a) the result of MS-GWAS in the 4 populations for NBA, (b) the result of MS-
GWAS meta-analysis in the 4 populations for TNB.

(a)

(b)
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DISCUSSION 

According to the results of genes annotated, a total of 11 genes 
of which five are relevant with two traits of reproduction, 
these candidate genes could regulate or influence TNB and 
NBA through different kinds of biological processes and 
pathways. MSX1, spindlin 1 (SPIN1), VEGFA, FOXQ1, and 
LHFPL3 are highlighted as promising biological candidate 
genes for reproduction traits. Except MSX1 and VEGFA, 
SPIN1, FOXQ1, and LHFPL3 are reported as related to re-
production in pigs for the first time. MSX1 is associated with 
the utero embryonic development and some classical pathways 
in embryo development such as Wnt/Hedgehog/Notch path-
way. Daikoku et al [17] and Nallasamy et al [18] found that 
Msx1 was expressed in the preimplantation mouse uterus, 
and are critical for fertility in mice. Cha et al’s research [19] 
suggested that these transcription factors have cell-specific 
functions in the pregnant uterus, and its subsequent mor-
phological and functional changes. MSX1 had been already 
reported relevant with NBA and TNB in pigs [20]. SPIN1 
is necessary for normal meiotic progression in mammals 
[21]. In a previous study, Choi et al [22] revealed that SPIN1 
may play an important role in meiosis II (MII) arrest as well 

as in the regulation of early embryonic development. As to 
VEGFA, has key function in uteroplacental vasculogenesis 
during embryonic implantation and provides the vascular 
network to the placenta [23]. In previous pig GWAS studies, 
the VEGFA gene has been reported to be associated with 
TNB and NBA [20,24], and our study confirmed the previous 
investigations. Also, LHFPL3, a member of the family of 
LHFP-like genes. A direct link between LHFPL3 and re-
productive traits has not been reported before, but Ptacek 
et al [25] reported that it was closely related to uterine leio-
myoma and highly expressed in the uterus. As we all known, 
uterus is important to embryonic development. So, LHFPL3 
might have a key function in conceiving and maintaining 
pregnancy. FOXQ1 has not been defined in pigs, whereas in 
mice, it is involved in patterning the early embryonic meso-
derm [26] and expressed at embryo day 8.5 [27]. Our findings 
will be helpful for a better understanding of the role of FOXQ1 
for embryo development in pig reproduction.
  Population stratification is a major factor in false positives 
in GWAS for significant SNPs [28]. At present, there are 4 
popular methods to resolve the problem of population strat-
ification, genomic control, structured association, PCA, and 
linear mixed model which can deal with population stratifi-

Table 3. The results of meta-analysis for total number of piglets born and number of piglets born alive traits across populations

SNP name SSC Location (bp) p(meta-TNB)–value1) p(meta-NBA)–value2) Associated 
gene3)

Distance4) 
(bp)

Gene function

ALGA0012964 2 32,799,355 9.23E-05 6.41E-09 LIN7C In Morphogenesis of an epithelial sheet
ALGA0054421 9 104,625,702 1.17E-08 1.29E-05 LHFPL3 In Self reported educational attainment
ASGA0037579 8 5,703,865 0.000156302 9.82E-07 MSX1 Down In utero embryonic development
ASGA0082366 9 47,037,744 9.84E-07 0.000189917 NECTIN1 Down Lens morphogenesis in camera-type eye
ALGA0113046 2 12,842,137 2.29E-07 0.000193931 OR10Q1 Up G protein-coupled receptor signaling pathway
ASGA0104976 12 116,492,539 2.44E-08 0.000203328 NA
DRGA0000439 1 30,456,989 2.86E-08 2.37E-05 EYA4 In Protein dephosphorylation
H3GA0042513 14 126,349,106 0.000299386 2.80E-07 GFRA1 In Nervous system development
WU_10.2_7_130172562 7 537,474 2.88E-05 3.27E-07 FOXQ1 Up Cell differentiation
H3GA0021245 7 38,823,945 3.95E-08 3.11E-05 VEGFA Down Regulation of signaling receptor activity
MARC0022141 1 0 4.11E-08 0.000318796 NA NA NA
WU_10.2_4_80076056 4 73,428,123 0.00116 2.62E-07 CA8 Down Phosphatidylinositol-mediated signaling
WU_10.2_1_11153176 1 9,032,844 3.51E-07 0.001559 SYNJ2 In Inositol phosphate dephosphorylation
WU_10.2_3_129122235 3 120,870,358 7.72E-07 0.060399 FAM49A Up NA
MARC0081527 6 80,617,330 0.000432722 3.20E-07 C1QB Down Complement activation, classical pathway
WU_10.2_14_389214 14 217,583 5.23 E-08 8.22E-06 SPIN1 Up Wnt signaling pathway
WU_10.2_2_12776809 2 13,143,791 0.000571848 3.33E-07 CTNND1 Up Negative regulation of canonical Wnt signaling pathway
WU_10.2_6_85867859 6 92,797,244 6.21E-07 0.000352248 GRIK3 Up Glutamate receptor signaling pathway
ALGA0012962 2 32,757,436 0.00064956 4.23E-07 LIN7C In Morphogenesis of an epithelial sheet

SNP, single nucleotide polymorphism; SSC, Sus scrofa chromosome; TNB, total number of piglets born; NBA, number of piglets born alive; LIN7C, lin-7 homolog C; LHFPL3, 
LHFPL tetraspan submily member 3; MSX1, msh homeobox 1; NECTIN1, nectin cell adhesion molecule 1; OR10Q1, olfactory receptor family 10 subfamily Q member 1; EYA4, 
EYA transcriptional coactivator and phosphatase 4; GFRA1, GDNF family receptor alpha 1; FOXQ1, forkhead box Q1; VEGFA, vascular endothelial growth factor A; CA8, car-
bonic anhydrase 8; SYNJ2, synaptojanin 2; FAM49A, family with sequence similarity 49 member A; C1QB, complement C1q B chain; SPIN1, spindlin 1; CTNND1, catenin delta 1; 
GRIK3, glutamate ionotropic receptor kainate type subunit 3; VA, not available.
1) p(meta-TNB)–value =  p-value from the meta analysis. The bold data in this column represent the significant SNP at genome-wide significant level; otherwise at the chromo-
some-wide significant level.
2) p(meta-NBA)–value =  p-value from the meta analysis. The bold data in this column represent the significant level.
3) The associated gene in bold in this column represent these genes were associated with traits based on annotation.
4) down/up =  the location of SNP in downstream/upstream of the nearest gene.
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cation by taking polygenic effects into account. In general, a 
genomic inflation factor λ of <1.05 indicates no population 
stratification [29]. Our values were 1.788 to 3.24 for TNB and 

NBA in four populations before using genomic relationship 
matrix G. According to Janss et al [30], inclusion of principle 
components in model to account for population structure 

Figure 3. Manhattan plot of GWAS for multi-traits meta analysis within four populations. (a) the result of Meta-analysis of multiple traits within LM population; (b) the 
result of Meta-analysis of multiple traits within FJ population; (c) the result of Meta-analysis of multiple traits within XD population; (d) the result of Meta-analysis of 
multiple traits within ZX population. The x-axis represents the chromosomes and the y-axis represents the −log10(p-value). The first dotted line indicates the significance 
threshold of genome-wide level for multi-traits meta analysis. The second dotted line indicates the significance threshold of chromosome-wide level for multi-traits meta 
analysis.

(a) (b)

(c) (d)

Table 4. The results of multi-trait meta-analysis within four populations

SNP name SSC Location (bp) p(meta- LM)–value1) p(meta- FJ)–value2) p(meta- XD)–value3) p(meta- ZX)–value4) Associated 
gene5)

Distance6) 
(bp)

Gene function

ALGA0012964 2 32,799,355 1.04E-06 2.68E-06 1.08E-05 2.65E-08 LIN7C In Morphogenesis of an epithelial sheet
ALGA0054421 9 104,625,702 1.24E-07 6.30E-08 4.47E-08 1.14E-05 LHFPL3 In Self reported educational attainment
ASGA0037579 8 5,703,865 3.01E-06 3.75E-08 1.53E-06 1.37E-07 MSX1 Down In utero embryonic development
DRGA0000439 1 30,456,989 3.74E-07 3.93E-07 3.74E-07 6.60E-08 EYA4 In Protein dephosphorylation
H3GA0021245 7 38,823,945 1.37E-07 7.92E-06 3.82E-07 6.41E-09 VEGFA Down Regulation of signaling receptor activity
H3GA0042513 14 126,349,106 2.31E-07 2.35E-06 4.84E-07 1.07E-05 GFRA1 In Nervous system development
MARC0081527 6 80,617,330 3.34E-08 1.45E-07 7.55E-09 7.35E-06 C1QB Down Complement activation, classical pathway
WU_10.2_14_389214 14 217,583 4.59E-06 3.02E-08 1.06E-05 1.64E-06 SPIN1 Up Wnt signaling pathway
WU_10.2_2_12776809 2 13,143,791 1.57E-08 2.52E-06 1.99E-06 3.78E-06 CTNND1 Up Negative regulation of canonical Wnt 

signaling pathway
WU_10.2_6_85867859 6 92,797,244 5.78E-07 2.26E-06 4.41E-06 1.53E-06 GRIK3 Up Glutamate receptor signaling pathway
WU_10.2_7_130172562 7 537,474 1.96E-07 4.10E-06 1.88E-06 4.09E-09 FOXQ1 Up Cell differentiation

SNP, single nucleotide polymorphism; LIN7C, lin-7 homolog C; LHFPL3, LHFPL tetraspan submily member 3; MSX1, msh homeobox 1; EYA4, EYA transcriptional coactivator and phosphatase 4; VEGFA, vascular 
endothelial growth factor A; GFRA1, GDNF family receptor alpha 1; C1QB, complement C1q B chain; SPIN1, spindlin 1; CTNND1, catenin delta 1; GRIK3, glutamate ionotropic receptor kainate type subunit 3; 
FOXQ1, forkhead box Q1.
1)-4) p(meta-XX)–value =  p-value from the multi-traits meta analysis for four populations LM, FJ, XD, and ZX. The bold data in this column represent the significant SNP at genome-wide significant level; otherwise at 
the chromosome-wide significant level.
5) The associated gene in bold in this column represent these genes were associated with traits based on annotation.
6) down/up =  the location of SNP in downstream/upstream of the nearest gene.
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is not required, mainly because of the genetic variation ac-
counted for after the genomic relationship matrix G has been 
considered in the model. Thus, PCA is incorporated in in-
dividual population analyses. Here, population stratification 
was adjusted through a constructed relationship matrix using 
genotype data in the linear mixed model. Genomic relation-
ship can more accurately reflect the actual existing relationship 
between animals compared to pedigree-based relationships. 
By using G matrix (genomic additive relationship matrix) 
instead of A matrix (additive genetic relationship matrix), 
genomic inflation factor λ reduced to 1.02 to 1.04 for TNB 
and NBA which implied the genomic relationship matrix 
adequately controlled population stratification, as the Q-Q 
plot indicated (Supplementary Figure S2). This made the 
GWAS results more reliable.
  In our study, two meta-analysis were conducted to explore 
the genomic loci for TNB and NBA based on the results of 
single trait GWAS in four pig populations. The results of 
GWAS for a single trait in a single population showed that 
no common significant SNPs were detected in the four popu-
lations (Table 1, Supplementary Figure S1) for TNB and NBA. 
Most of suggestive SNPs detected in XD did not appear in the 
ZX population. Only two SNPs (WU_10.2_4_80076056 and 
WU_10.2_1_11153176) were repeated in FJ and XD. These 
observations further reflected the complex genetic architec-
ture of pig reproduction traits. The low consistency of findings 
from single population is similar with other investigations in 
GWAS. Many researches [31] performed a GWAS on differ-
ent pig populations and revealed SNPs and candidate genes 
related target traits. But no overlapped significant results 
were identified in multiple populations. A possible reason 
for lack of genome-wide significant SNP is that small sam-
ple size, different population structures or the complexity 
of traits [32]. Liu’s et al research [33] confirmed that a large 
population size is important for GWAS in traits with low 
heritability. Combining different populations could reveal 
hidden or unclear associations that may not be detected by 
an independent study [32]. Novel significant SNPs could be 
detected in GWAS due to the greater power with increased 
sample size [34]. Our results indicated that meta-analysis 
could be efficient tool to improve the power of GWAS by 
combining different populations. Moreover, meta-analysis 
can increase statistical power especially for a locus with small 
effect by collectively using information from multiple inde-
pendent studies [34]. 
  No locus was identified significant by single population 
GWAS for TNB and NBA, with most significant SNPs de-
tected across the two meta analysis approaches. In addition, 
compared to GWAS, 11 novel significant SNPs were detected 
using meta-analysis. Besides that, meta-analysis made the p-
value smaller and more significant which were also consistent 
with Guo et al [35] and Le et al [36]. 

  Significant SNPs were not found in single population 
GWAS, which showed the enhanced capacity of multi-trait 
approaches for detecting SNPs, particularly when the phe-
notypes are correlated [37]. Our finding that SNPs, which 
cannot be detected at a genome-wide significance level in 
GWAS, can be uncovered in a multi-trait approach corrob-
orates the findings of Willer et al [32]. The joint association 
analysis of multiple phenotypes might be a more powerful 
approach to detect SNPs that underlie correlated traits than 
the multi-trait test statistic applied in our study [38].
  In summary, we conducted GWAS separately in four York-
shire populations, which have distinct genetic backgrounds, 
to identify genomic loci for reproduction traits of TNB and 
NBA. Based on results of GWAS, two kinds of Meta-analysis 
were implemented to improve the power of gene identifica-
tion. Compared to the single population GWAS, single-trait 
meta analysis can improve the detection power to identify 
SNPs in a larger multiple population. The multiple-trait analy-
sis reduced the power to detect trait-specific loci but enhanced 
the power to identify the common loci across traits. In total, 
11 significant loci were identified associated with target traits. 
SPIN1, VEGFA, FOXQ1, MSX1, and LHFPL3 are five func-
tionally plausible candidate genes for TNB and NBA. Our 
findings further revealed that the meta-analysis and the multi-
trait method can be used to increase the power of GWAS to 
identify genes relevant with important traits of interest.
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