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ABSTRACT

Studies have reported that flavonoids inhibit xanthine oxidase (XO) activity; however, poor solubility and
stability in lipophilic media limit their bioavailability and applications. This study evaluated the kinetic
parameters of XO inhibition and partition coefficients of flavonoid esters biosynthesised from hesperidin,
naringin, and rutin via enzymatic acylation with hexanoic, octanoic, decanoic, lauric, and oleic acids cata-
lysed by Candida antarctica lipase B (CALB). Quantitative determination by ultra-high performance liquid
chromatography-mass spectrometry (UHPLC-MS) showed higher conversion yields (%) for naringin and
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rutin esters using acyl donors with 8C and 10C. Rutin decanoate had higher partition coefficients (0.95),
and naringin octanoate and naringin decanoate showed greater inhibitory effects on XO (IC5, of 110.35
and 117.51 uM, respectively). Kinetic analysis showed significant differences (p <.05) between the flavo-
noids before and after acylation regarding K, values, whereas the values for V,,,, were the same, implying

the competitive nature of XO inhibition.

Introduction

Many in vitro and in vivo experiments in animals and humans
have reported the biological activity of the flavonoids especially
that related to their antioxidant action in the prevention and/or
combat of chronic degenerative diseases, and as anti-inflammatory
and anti-microbial agents and modulators of the activities of
enzymes such as xanthine oxidase (XO)'.

Xanthine oxidase is an enzyme widely distributed in many spe-
cies ranging from bacteria to human beings and is present in vari-
ous mammal tissues®. XO catalyses the oxidation of hypoxanthine
into xanthine and uric acid during the metabolic processes of
purines®, producing superoxide radicals (O,7) and hydrogen per-
oxide (H,0,)*. Thus, XO is one of the main enzymatic sources of
reactive oxygen species (ROS)°. Various inflammatory stimuli regu-
late XO such as lipopolysaccharides, hypoxia, and cytokines and
elevated levels of this enzyme can lead to an excessive formation
of EROs and consequently oxidative processes that can result in
tissue damage®.

Some flavonoids have been described as effective XO inhibitors
but the low absorption of flavonoids in vivo is a limiting factor for
their bioavailability”®. The presence of various hydroxyl groups in
the flavonoid molecules endows the compound with some degree
of polarity and reduces its lipophilicity®'®. Their low solubility in
lipophilic systems also limits the applications of flavonoids in the
food, pharmaceutical, and cosmetic industries’.

Enzymatic synthesis of acylated derivatives of flavonoids cata-
lysed by lipases has been considered as an effective and

promising strategy for improving the liposolubility of these com-
pounds''. The great interest in using enzymatic processes to mod-
ify molecules is due to their selectivity, especially of the lipases'?
and the lesser number of stages required in comparison with the
classical chemical methods'>.

Enzymatic acylation of glycosylated flavonoids, catalysed by
Candida antarctica lipase B (CALB), is highly regioselective; it pro-
ceeds exclusively on the primary alcoholic group of the sugar moi-
ety, and the mild conditions of this reaction do not interfere with
the flavonoids structures'®. Some authors have investigated the
regioselectivity of CALB in the acylation of rutin and isoquercetin
by molecular modelling. According to their reports, the aglycon
portion of flavonoids is stabilised at the entrance of the enzyme-
binding site by hydrogen bonds and hydrophobic interactions,
locating its glycoside residue near the centre of the site. Only the
primary 6”-OH of the isoquercetin glucose and the secondary 4”-
OH of the rutin rhamnose are acylated, as they stabilise close to
the catalytic sites'®.

Flavonoid selectively acylated with different aliphatic or aro-
matic acids may not only alter physicochemical properties of these
molecules but also improve bioavailability and biological proper-
ties compared to the maternal compounds'®. These include
increased capacity to inhibit microsomal lipoperoxidation of iso-
quercitrin acylated esters'', increased antiproliferative activity of
long chain acylated esters of quercetin-3-O-glucoside'’, improved
antiangiogenic and antitumor properties of silybin'®, rutin and nar-
ingin esters'®, and inhibition of the sarco/endoplasmic reticulum
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Ca®"-ATPase (SERCA1) by rutin derivatives*®. On the other hand,
the results obtained for the antioxidant capacity of acylated fla-
vonoid derivatives are contradictory. Literature reports found that
the acylation of rutin with unsaturated fatty acids, such as oleic,
linoleic, and linolenic acid, increased the antioxidant potential of
the initial compound®'?2. The acylation of isoorientin and isovi-
texin significantly improved their lipophilicity, but reduced their
antiradical activity?>. This data is in accordance with another
report about the antioxidant activity of isoorientin-acylated deriva-
tives, which shows that the derivatives exhibited lower DPPH rad-
ical scavenging activity than their parental form isoorientin®*. A
recent study showed that lipophilization of rutin esters (rutin lau-
rate and rutin palmitate) did not improve capacity in bulk oil and
in an o/w emulsions compared to untreated rutin®>.

There has been little work to demonstrate the inhibitory effects
of acylated flavonoid derivatives on XO. Acylation of 3-OH group
of a new isomer of mesquitol (2,3-trans-3',4’,7,8-tetrahydroxyfla-
van-3-ol) isolated from Dichrostachys cinerea significantly enhanced
the a-glucosidase inhibition and displayed xanthine oxidase inhibi-
tory potential®®. Similarly, acylation of isoquercitrin increased the
antioxidant properties, including a higher XO inhibition?’. Also the
acylation of isorhamnetin-3-O-glicoside extracted from Nitraria
retusa using ethyl laurate and ethyl butyrate, catalysed by CALB,
increased the XO inhibitory capacity of the compound albeit there
was a decrease in radical neutralizing potential®®. The structural
differences, such as the number and position of hydroxyl groups,
the nature of saccharidic moieties, as well as the position of glyco-
sidic bonds affect overall conversion yield. For naringin molecule,
which possesses primary hydroxyl group on glucose, the acylation
takes place on the 6”-OH?' since the primary hydroxyl is favoured
by CALB. On the other hand, rutin, which has no primary hydroxyl,
either the 3”-OH of glucose or the 4”-OH of rhamnose can be
acylated'*"%?,

Our research group previously reported the enzymatic acylation
of hesperidin using as acyl donor a medium chain fatty acid
(decanoic acid) catalysed by CALB in a two-phase system contain-
ing [bmim]BF, and acetone?®. However, the XO inhibitory capacity
of these compounds had not been assessed. Accordingly this
study set out to synthesise new acylated derivatives of the flavo-
noids rutin, naringin, and hesperidin with various monocarboxylic
acids (hexanoic, octanoic, decanoic, lauric, and oleic acids) with
Candida antarctica lipase B (CALB) as the catalyst, in a bid to
obtain compounds with greater capacity to inhibit XO than the
untreated flavonoids. The partition coefficients and the kinetic
parameters of the XO inhibition (Vh.x and K,,) were assessed for
both the untreated flavonoids and their acylated derivatives.

Materials e methods
Enzymes and reagents

CALB immobilised in acrylic resin (EC 3.1.1.3, 10,000 U/qg)
(Novozyme 435), xanthine oxidase from bovine milk, xanthine,
allopurinol, hesperidin, naringin, and rutin standards and hexanoic,
octanoic, decanoic, lauric, and oleic acids were obtained from the
Sigma-Aldrich Chemical Co., St. Louis, MO. All the solvents and
reagents were of analytical, spectrometric, or chromatographic
quality.

Enzymatic synthesis of acylated derivatives of flavonoids with dif-
ferent fatty acids

The enzymatic synthesis of acylated derivatives of flavonoids
was performed according to a previously described method?®3°
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with some modifications. The reaction medium consisted 5ml
of acetone, previously treated with 100mg/ml 4A molecular
sieves activated by being kept for 1h at 100°C, 12h prior to
the reaction. The molar mass ratio used between the flavonoid
and the fatty acid was 1:5 (0.575mmol of flavonoid and
2.875mmol of fatty acid). After the solubilisation of the
reagents in the reaction medium, 0.65g of CALB was added for
the experiment. The tests were incubated in sealed flasks in a
shaker at 45°C set at 100rpm and the aliquots were removed
after 12 and 24h of incubation. Purification of the acylated fla-
vonoid derivatives was based on partition between hexane/
water (4:1, v/v) system as previously described®'. After each
rinse the mixture was centrifuged (2800 rpm for 2min) and the
organic phase containing the free fatty acids was discarded.
The samples were lyophilized, frozen at —20°C and forwarded
for ultra-high performance liquid chromatography-mass spec-
trometry (UHPLC-MS) analyses to determine the conversion rates
of the acylated derivatives.

Conversion yields of acylated derivatives of flavonoids determined
by UHPLC-MS

The chromatographic separation was achieved using an Acquity
UPLC system (Waters, Milford, MA) equipped with a Waters UPLC
BEH column (2.1 x 50 mm, particle size 1.7 um) at a temperature of
30°C. A 3l of each sample was injected and the gradient applied
used two mobile phases - (A) ultrapure water with 1% of formic
acid and (B) methanol, starting with 5% of B, increasing to 100% B
in 8 min, maintained until 8.50 min, and finally returning to the ori-
ginal conditions and stabilising at 10 min. Detection was in nega-
tive ions mode using an Acquity TQD electrospray ionization-mass
spectrometer (Micromass Waters, Milford, MA) in the following
conditions: capillary — 3000V, cone - 30V, source temperature
150°C, and desolvation temperature 350 °C. Quantification of the
compounds was achieved using standard curves obtained by
injecting standards of the flavonoids in concentrations of ranging
from 30 to 300 ug/ml. The conversion yields were calculated from
the ratio between the concentration of the acylated derivatives
and the initial concentration of flavonoids before the acylation
reaction. Calibration curves for each flavonoid were obtained
using standards in methanol. The calculations were based on the
following equations: hesperidin concentration (ug/ml)=(4 x 107°)
(peak area)+112.28 and rutin/naringin concentration (ug/ml) =
(6 x 107°) (peak area)+256.71 and the data were expressed in
percentage yields (%).

Partition coefficient determination in octanol/water (k)

The partition coefficients of the untreated flavonoids in octanol/
water (k) were analysed to determine their degrees of lipophilic-
ity. In test tubes, 2.0ml of a solution of the sample with a con-
centration of 50 uM were added to 2.0ml of octanol saturated
with water. The mixture was shaken for 1 min and then centri-
fuged for 15min at 3000rpm. After filtering through 0.22pum
polyethylene filter with a PTFE membrane (Merck Millipore,
Billerica, MA), the compound concentration was determined for
each phase by UHPLC-MS. The partition coefficient was obtained
using the equation:

J— Co .
T Caxr’

where Co=test compound concentration in octanol, Ca=test
compound concentration in aqueous solution, r=ratio of the vol-
umes of the oily and the aqueous phases.
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Inhibition of xanthine oxidase (XO) activity by flavonoids and
acylated derivatives

Inhibition of XO activity was assessed by measuring the uric acid
formed from the xanthine substrate. Solutions of xanthine in vari-
ous concentrations in a 0.1 M, pH 7.4 phosphate buffer were incu-
bated together with 100 ul of ethanol and the same volume of
samples of the solutions with different concentrations (45 and
90 uM in a 0.1 M, pH 7.4 phosphate buffer). The samples were pre-
incubated at 37°C for 10 min. The XO solution (0.3 ml, 0.1 U/ml)
was added to the reaction mixture and the flasks were incubated
at 37°C for 20min. The enzymatic reaction was interrupted by
adding 25pul of 3.2% HCl. The absorption of the samples was
measured using an ELISA reader Epoch, BioTek (Winooski, VT) at
290 nm. The uric acid production was calculated from the differen-
tial absorbance with a blank solution without xanthine oxidase.
The control was a solution containing xanthine and XO.
Allopurinol, a specific XO inhibitor, was used as a positive control.
XO inhibitory activity was expressed as the percentage inhibition
of XO (XOlI, %) by using the following equation:

Absam
0, — .
XOlI (/O) = (1 s ) X 'IOO7

where Absc and Absam = absorbance values for the control reac-
tion and for the test samples, respectively.

Measurement of the kinetic constants

The enzymatic kinetics trials were made with those compounds
that showed the highest percentage inhibition (XOI) of XO activity.
Vmax (Maximum reaction rate) and K., (Michaelis—Menten constant,
that is the substrate concentration at 1/2 the maximum reaction
rate) were calculated and the type of inhibition kinetics was identi-
fied using the Origin 8.6 program and the rectangular hyperbola
model.  The  Michaelis—-Menten  equation linearized by
Lineweaver-Burk was used to determine V.« and K, by plotting
a graph, that is 1/V against 1/[substrate concentration], and esti-
mated by the intercept and slope respectively. Reaction rate
(expressed as uric acid concentration in umol/min) was obtained
from the wuric acid standard curve (y=0.024x—0.1242,
R?>=0.9786). Those concentrations associated to 50% inhibition
(ICs0) were also calculated.

Statistical analysis

The experiments were performed in triplicate ANOVA one way
was used to analyse statistical significance followed by Turkey
(Bonferroni) test using Origin Pro 8 (OriginLab, Northampton, MA)
statistics software. The results are presented as mean +SD and sta-
tistics were considered significant when the p values was .05 or
less.

Results and discussion
Enzymatic synthesis of the acylated derivatives of flavonoids

Table 1 shows the conversion yields derivatives of naringin,
hesperidin, and rutin acylated using hexanoic, octanoic, decanoic,
lauric, and oleic acids.

The highest conversion yields were obtained for hesperidin,
followed by rutin and naringin. Acylation of rutin and naringin
was more favourable with the shorter chain hexanoic (6C), octa-
noic (8C), and decanoic (10C) fatty acids. Lauric (12C) and oleic
(18C) acids are poor substrates for the acylation of rutin and

Table 1. Conversion yields (%) of acylated flavonoid derivatives with monocar-
boxylic acids (hexanoic, octanoic, decanoic, lauric, and oleic acids).

Untreated Flavonoid acylated Conversion
flavonoids derivatives Time (h) yields (%)
Naringin Naringin hexanoate 12 27.30
24 13.66
Naringin octanoate 12 38.40
24 28.89
Naringin decanoate 12 9.22
24 24.32
Naringin laurate 12 -
24 -
Naringin oleate 12 -
24 -
Hesperidin Hesperidin hexanoate 12 33.00
24 31.00
Hesperidin octanoate 12 44.00
24 44.70
Hesperidin decanoate 12 23.50
24 24.60
Hesperidin laurate 12 3240
24 41.90
Hesperidin oleate 12 31.80
24 64.20
Rutin Rutin hexanoate 12 24.90
24 20.27
Rutin octanoate 12 37.95
24 51.29
Rutin decanoate 12 34.65
24 28.71
Rutin laurate 12 -
24 9.34
Rutin oleate 12 -
24 1.53

naringin albeit they efficiently esterified the hesperidin molecule.
Earlier studies have reported that the highest CALB-catalysed bio-
synthesis yields of acylated derivatives of naringin and rutin are
obtained using fatty acids with up to 10C%'32 Any further
increase of the number of C in the fatty acid chain seems to
impede esterification and reduce the efficiency of enzymatic con-
version®3. According to a recent study, isoquercitrin (quercetin-3-
O-B-p-glucopyranoside) can be efficiently substituted at 6”-OH by
acetate or by C4- to Cl6-aliphatic acids by CALB. Shorter dicar-
boxylic acids (C2 to C4) were not substrates for the lipase and
did not react at all, while the enzyme has accepted C5- to C12-
dicarboxylic acid'’.

Kinetics of xanthine oxidase (XO) inhibition

Figure 1 displays the percentages of XO inhibition (XOI) obtained
for the respective compounds before and after 12h of enzymatic
acylation.

There was a considerable increase in the inhibitory effect on
XO activity associated to three of the acylated derivatives, narin-
gin octanoate, naringin decanoate, and hesperidin decanoate
(28.80+5.76, 25.61 +2.85, and 16.42 +3.21, respectively), compared
to the untreated flavonoids (14.78 +4.80 and 8.24+2.10 for narin-
gin and hesperidin, respectively). Compared to allopurinol, which
strongly inhibited XO (89.67%), the derivatives biosynthesised with
naringin and hesperidin showed a moderate, but rather promis-
ing, activity. For the rutin derivatives, however, the acylation reac-
tion did not enhance the inhibition of XO activity. In the light of
those results, the three acylated compounds were selected to
assess the kinetic parameters involved in XO inhibition (Viax, K
and ICso) and to determine their partition coefficients in octanol/
water (k).

Two concentrations (45 and 90 uM) of the inhibitors hesperidin
decanoate, naringin octanoate, and naringin decanoate and three
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Figure 1. Xanthine oxidase inhibition (XOI %) by different untreated flavonoids and their acylated derivatives at 45 uM using 250 UM of xanthine substrate. *p < .05,

**p <.01 compared with similar untreated flavonoid.

concentrations of xanthine (250, 500, and 750 uM) were used to
determine the kinetic parameters. The reactions were performed
in the presence and absence of the inhibitor to obtain the
Michaelis—Menten curves and the Lineweaver-Burk double recipro-
cal plots as shown in Figure 2.

The response of the acylated flavonoids naringin octanoate,
naringin decanoate, and hesperidin decanoate in inhibiting XO
activity is directly proportional to their concentrations and 90 pM
is the concentration with the greatest effect in reducing the reac-
tion rate (uric acid concentration formed/minute). The results were
analysed by means of the Lineweaver-Burk double reciprocal plots
and the K, and V,,,ax values obtained (Table 2) by graphic extrapo-
lation. The Vi,./Km ratio was also calculated to determine catalytic
efficiency. The double reciprocal graph (B), expressed as 1/V, (y)
plotted against 1/[S] (x) produces a straight line for which the
slope gives the value of K.,/Vma the intercept on the 1/V, axis
is equal to 1/Vhax and the intercept on the 1/[S] axis is equal
to —1/Kn.

Given that the V. values show no significant alterations and
that the K, (called the apparent K, and expressed as the [S] in
which V, =1/2Vimax) were higher in the presence of inhibitors when
compared to the control, then it can be supposed that there is a
competitive, reversible inhibition reaction mechanism of the
untreated and acylated flavonoids. The competitive inhibitors are
those most similar to the substrate and they, therefore, occupy
the active site. The occupation by the inhibitor thus prevents the
substrate from connecting to the active site of the enzyme.
Whenever [S] greatly exceeds [/], the probability of an inhibitory
molecule connecting to the enzyme is minimized and the reaction
will show a normal V.« value. That effect on the increase in the
apparent K., together with the absence of any effect on the V.
is the diagnosis for competitive inhibition and it is readily revealed
in the double reciprocal plots. To compare the inhibitory efficiency
of the compounds in regard to XO, the V,,,,/Kn ratios provide bet-
ter evidence. As seen in the results, the V,,,,/K, ratios were higher
when acylated flavonoid derivatives were used as inhibitors com-
pared to similar untreated flavonoids.

That finding is in agreement with an earlier study that eval-
uated the inhibitory effect of apigenin, quercetin, myricetin,

genistein, and isovitexin on XO activity and reported that they all
performed as competitive inhibitors>*. The presence of sugar units
in flavonoid structures also reduces their inhibitory power so that
an aglycone form such as quercetin is a more efficient inhibitor
than the glycosylated form, rutin®3,

The XOI (%) as a function of flavonoid concentration and the
ICso values are displayed in Table 3 and Figure 3. For each
equation corresponding to the straight lines of the graph, calcu-
lations were made to obtain the value of x when y=50 (ICs).
It can be seen that the acylation reaction led to a reduction in
the 1C5, for the three acylated derivatives. Naringin octanoate
showed the greatest inhibitory effect on XO activity
(IC50=110.35 uM), followed by naringin decanoate
(ICso=117.51uM) and hesperidin decanoate (ICso=198.96 uM),
whereas the standard inhibitor of xanthine oxidase (allopurinol)
had an ICsgvalue of 14.67 uM.

Higher inhibition activities were reported for isoquercitrin ole-
ate (C18:1), which presents an unsaturation in the acyl group,
when compared to its saturated analogue (ICso values of 27 and
61 uM, respectively)®®. The authors observed an increase in the
ICso values of saturated esters with the decrease in the carbon
chain length (from 61 to 144 uM for isoquercitrin stearate and
butyrate, respectively)zs.

Based on the structure of flavonoids, a method for predicting
ICso values of XO by calculating the contribution of each hydroxyl
moiety towards inhibition of this enzyme was described®®. The
group with the strongest negative contribution to inhibition of XO
is the 2’-hydroxyl moiety as can be concluded from comparing
kaempferol with morin in which the ICs5y increases from 2.5 to
40 uM, respectively. The flavones (lutein and apigenin) and the fla-
vonols (like quercetin, kaempferol, and miricetin) are capable of
inhibiting the activity of this enzyme even when they are only pre-
sent in low concentrations®*—%. Hydroxyl groups at C-5 and C-7
and the double bond between C-2 and C-3 were described as
essential for high inhibitory activity against XO*°. The planar struc-
ture of flavones and flavonols and the C2=C3 double bonds of
flavonoids were considered advantageous for XO inhibition®*.
Unfortunately those authors did not assess hesperidin, naringin, or
any other acylated flavonoid derivative.
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Figure 2. XO inhibition kinetics using Michaelis—Menten curve and Lineweaver—Burk double reciprocal plots for hesperidin decanoate (A), naringin octanoate (B), and

naringin decanoate (C) at 45 and 90 uM.

Table 2. Kinetic parameters of the enzymatic reaction catalysed by xanthine oxi-
dase in the absence (control) and presence of the inhibitors (45 and 90 pM).

Inhibitor [Inhibitor] (M)  Viax (mmol/min) Ky, (MM)®  Vipax/Kin
Control 0 5.19+0.15 0.17 30.52
Naringin 45 4.43+0.07 0.20** 22.15
920 3.68+£0.03 0.18 20.44
Naringin octanoate 45 3.94+0.91 0.19% 20.74
90 3.11+0.18 0.17 18.29
Naringin decanoate 45 3.94+0.63 0.19% 20.74
920 3.30+0.70 0.20%* 16.50
Hesperidin 45 4.74+0.67 0.20%* 23.70
90 437 +0.27 0.19%* 23.00
Hesperidin decanoate 45 447 +045 0.20%* 22.35
920 3.91+0.78 0.22** 17.77
*p<.01.
**p <.001 compared with control (without inhibitor).
2SD <0.002.

Table 3. 1C5 (uM) of untreated flavonoids and acylated derivatives.

Inhibitor Straight line equation R? value ICs0 (M)
Naringin y=2.55+0.23x 0.90 206.30
Naringin octanoate y=5.86+ 0.40x 0.84 110.35
Naringin decanoate y=4.17 +0.3% 0.89 117.51
Hesperidin y=0.15x 0.99 333.33
Hesperidin decanoate y=2.25+0.24x 091 198.96
Allopurinol - - 14.67

Partition coefficients of acylated derivatives of flavonoids in
1-octanol/water

Partition coefficient in 1-octanol/water (k) was measured for all
prepared compounds as a basic empirical determination of hydro-
or lipophilicity (Table 4). This value is a parameter that relates sin-
gle-solute partitions between polar (water) and nonpolar (octanol)
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Figure 3. Effect of concentrations of untreated flavonoids and acylated derivatives on xanthine oxidase inhibition (XOI %).

Table 4. Partition coefficient in octan-1-ol/water (k) of untreated
flavonoids and their acylated derivatives.

Compound Partition coefficient (k)®
Quercetin 1.46
Naringin 0.37
Rutin 0.48
Hesperidin 0.42
Naringin octanoate 0.86
Naringin decanoate 0.86
Rutin decanoate 0.95
Hesperidin decanoate 0.83

SD <0.01.

phases, which determines in vitro solubility in appropriate pharma-
ceutical and cosmetic preparations.

Among the flavonoids and their acylated derivatives that have
been analysed, the aglycone form, quercetin, is the one that
presents the highest partition coefficient and therefore the highest
degree of lipophilicity (1.46). That high partition coefficient of
quercetin in an octanol/water system when compared to its glyco-
sylated form has already been reported®**°. The derivatives bio-
synthesised with decanoic acid had partition coefficients of 0.95,
0.83, and 0.86 for rutin decanoate, hesperidin decanoate, and nar-
ingin decanoate, respectively. Those values were higher than the
coefficients obtained for the untreated flavonoids, 0.48, 0.42, and
0.37 for rutin, hesperidin, and naringin, respectively. The same K
values were obtained for the naringin derivatives whether they
were acylated with 8C chains or 10C chains.

The variety of substituents on the flavonoid molecules largely
influence their physicochemical properties such as dipole moment
or hydrophobicity, and thus determine the partitioning into lipid
membranes*'. Flavonoid acylated derivatives are expected to
exhibit a higher affinity for phospholipidic membranes and so to
be transferred into cells?®. The result indicated that the degree of
lipophilicity played a major role in improving enzyme inhibitory
activity. These results are in alignment with reports in the litera-
ture which indicate that increasing the lipophilicity of the flavon-
oid molecule enhances its inhibitory effect on XO, as has been
described for isoquercitrin®’, insofar as it increases the accessibility
of the compound to the active site of the enzyme?®.

Conclusion

Flavonoid acylation, as has been described, provides a useful tool
for flavonoid ester formation with improved characteristics. The
results suggest that selective enzymatic synthesis of acylated flava-
none derivatives catalysed by CALB lipase may represent a new
approach to the production of XO competitive inhibitors with
greater lipophilicity. The most potent XO inhibition was observed
in naringin derivatives with octanoic and decanoic acids (naringin
octanoate and naringin decanoate). The results provide the basis
of the kinetics of the interaction mechanisms of acylated flavonoid
derivatives with XO that may lead to the development of potential
new drugs for XO inhibition. This approach also enables the use
of flavonoid fatty acid esters in oil-based systems. Thus, these acy-
lated derivatives are promising candidates to be used in pharma-
ceutical, cosmetic, and nutritional preparations for preventive and/
or therapeutic purposes.
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