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Abstract

Rhabdomyolysis (RM) may cause kidney damage and results primarily in acute kidney

injury (AKI). Complement is implicated in the pathogenesis of renal diseases and ischemia-

reperfusion injury (IRI), but the role of complement, especially its activation pathway(s) and

its effect in RM-induced AKI, is not clear. This study established a rat model of AKI induced

by RM via intramuscular treatment with glycerol. Cobra venom factor (CVF) was adminis-

tered via tail vein injection to deplete complement 12 h prior to intramuscular injection of

glycerol. We found that the complement components, including complement 3 (C3), C1q,

MBL-A, factor B(fB), C5a, C5b-9, and CD59, were significantly increased in rat kidneys after

intramuscular glycerol administration. However, the levels of serum BUN and Cr, renal tubu-

lar injury scores, and the number of TUNEL-positive cells decreased significantly in the CVF

+AKI group. These results suggest that complement plays an important role in RM-induced

AKI and that complement depletion may improve renal function and decrease renal tissue

damage by reducing the inflammatory response and apoptosis.

Introduction

Rhabdomyolysis (RM) is characterized by the breakdown of skeletal muscle and the release of

intracellular muscle contents into the circulatory system. These cell contents include muscle

enzymes, such as creatine phosphokinase (CK), lactate dehydrogenase (LDH), and glutamic

oxalacetic transaminase (GOT), the heme pigment myoglobin, electrolytes, such as potassium

and phosphate, and purines [1,2]. The spectrum of the syndrome ranges from an asymptom-

atic elevation of serum muscle enzymes to life-threatening extreme enzyme elevations, electro-

lyte imbalances, and acute kidney injury (AKI) [3]. AKI is the primary and most severe

complication of RM, and approximately half of RM patients present with AKI. Rhabdomyoly-

sis accounts for an estimated 8% to 15% of AKI cases, and it is associated with a mortality rate

of 5–8% [4,5]. The mortality rate is highly dependent upon the rapidity of access to medical

support, with more prompt treatment corresponding to a lower mortality rate. The mortality

rate of rhabdomyolysis induced by earthquakes and other natural disasters is significantly
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higher than that of rhabdomyolysis that occurs in the hospital due to an inability to be treated

quickly.

Different mechanisms are associated with RM-induced AKI, including hypovolemia, intra-

luminal obstruction by myoglobin, direct myoglobin toxicity, renal ischemia secondary to

muscular vasoconstrictors, and free radical production [6–8]. Our recent work demonstrated

that the Nrf2/HO-1 pathway plays an important role in an RM-induced AKI rat model [9], but

the underlying mechanism is not clear. Several studies in animals have demonstrated that acti-

vation of the complement system was a critical cause of AKI and that inhibition of comple-

ment activation prevented many of the downstream inflammatory manifestations of AKI [10–

12]. The complement system consists of approximately 50 soluble and membrane-bound pro-

teins that are powerful components of innate immunity, and it is highly involved in the inflam-

matory response [13]. The liver is the primary source of complement production, but

increasing evidence from recent studies has demonstrated that many types of resident cells in

the kidney produce complement components [14–16].

We hypothesized that inappropriate complement activation is involved in the pathogenesis

of RM-induced AKI because of the well-known significance of the complement system in

renal injury [10]. We established a rat model of RM-induced AKI through intramuscular glyc-

erol injection into the hind limbs and measured the expression levels of various complement

factors: C1q to evaluate the classical pathway; factor B to evaluate the alternative pathway;

MBL-A to evaluate the MBL complement pathways; C5a to assess the anaphylatoxic compo-

nent of the complement system; CD59 to assess complement regulators; and the membrane

attack complex. We also evaluated expression changes in inflammation and renal apoptosis in

this model.

Materials and methods

Animal model and treatment

Male Sprague-Dawley rats weighing 210 ± 10 g were obtained from the Experimental Animal

Center of Hebei Medical University (Shijiazhuang, China). The rats were handled and treated in

accordance with the guiding principles of the National Institutes of Health for the Experimental

Care and Use of Animals, and the Chinese PLA General Hospital Animal Research Ethics Board

approved the study. The RM-induced AKI model was generated as previously described [9].

Rats were injected intramuscularly with equal volumes of 10 ml/kg of 50% glycerol into each

hind limb. Normal saline was administered instead of 50% glycerol for control rats. Cobra

venom factor (CVF) was used as a preventive treatment in this study to deplete complement.

We first demonstrated the ability of CVF to deplete complement and excluded its potential

impact on the kidney. Rats were randomly assigned to two groups (24 rats per group): the con-

trol group, which received tail vein injection (1 ml/kg) of 10 ml/kg of saline; and the CVF

group, which received tail vein injection (50 μg/kg) of CVF (Quidel Corporation, San Diego,

CA, USA). All rats received bilateral hind limb muscle injections of 10 ml/kg of saline 12 h

later. Six rats were randomly selected from each group and sacrificed via deep anesthesia with

pentobarbital (50 mg/kg, i.p.) at 2, 6, 24, and 73 h after injection. Blood samples were collected

to test 50% complement hemolysis (CH50) levels and renal function, and kidney tissues were

collected for H&E staining to observe morphological changes. After verifying the renal safety

of CVF and its efficacy in depleting complement, rats were randomly assigned to three groups

(24 rats per group): the control group, which received bilateral hind limb intramuscular injec-

tions of 10 ml/kg of saline and tail vein injection (1 ml/kg) of 10 ml/kg of saline 12 h earlier;

the AKI group, which received bilateral intramuscular injections of a 50% glycerol saline solu-

tion (10 ml/kg) and tail intraperitoneal injection (1 ml/kg) of 10 ml/kg saline 12 h earlier; and
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the complement-depleted group, in which complement was depleted via tail vein injection

(50 μg/kg) of CVF 12 h prior to intramuscular injection of glycerol. No rats died before the

samples were collected. Six rats were randomly selected from each group and sacrificed via

deep anesthesia with pentobarbital (50 mg/kg, i.p.) at 2, 6, 24, and 72 h after glycerol injection.

Venous blood and renal tissue samples were then collected.

Serum analysis

Renal function and C-reactive protein (CRP) levels were analyzed using a Hitachi 7170 auto-

mated biochemistry analyzer (Tokyo, Japan). Rat CH50 levels in serum were measured using

ELISA kits (MyBioSource, MA, USA) following the manufacturer’s instructions. Optical den-

sity was measured using a microplate reader (Infinite F50, TECAN, Salzburg, Austria) at 450

nm. A standard curve was drawn using Magellan software (TECAN), which calculated the

CH50 level in each sample.

Renal morphology

Kidneys were removed, and sagittal sections were fixed in a 4% paraformaldehyde solution

overnight, embedded in wax, and sectioned at a thickness of 4 μm. Kidney tissues were stained

with hematoxylin-eosin (H&E) and periodic acid-Schiff (PAS). Tubular injuries were evalu-

ated blindly and scored semi-quantitatively using a previously reported scoring system [17].

Tubular injury in the outer medulla and corticomedullary junction was defined by tubule dila-

tion, necrotic lysis, cast formation, sloughing of cellular debris into the tubule lumen, or the

presence of a naked tubule basement membrane. Tubular injury was scored as follows: 0, no

injury; 1, <20%; 2, 21–50%; 3, >50%; and 4, total destruction of all epithelial cells.

Immunofluorescence

Cryostat sections (4-μm) of frozen kidneys were stained for complement 3 (C3), C1q, and

complement factors B (fB), MBL-A, C5a, C5b-9, and CD59. Slides were air-dried, fixed with

methanol/acetone for 10 min, and treated with the following FITC-conjugated anti-rat anti-

bodies (Abs): rabbit anti-rat C3 Ab (Abcam, Cambridge, MA, USA); rabbit anti-rat C1q Ab

(Abcam); rabbit anti-rat MBL-A Ab (Abcam); rabbit anti-rat factors B Ab (Santa Cruz, USA);

rabbit anti-rat C5a Ab (ABBIOTEC, USA); and rabbit anti-rat CD59 Ab (Santa Cruz). At least

10 high-powered fields in the outer medulla and corticomedullary junction were assessed and

scored as follows [18]: Grade 0, negative; Grade 1,<25% positive staining; Grade 2,<50%;

Grade 3,<75%; or Grade 4,>75%.

Immunohistochemistry

Four-micrometer-thick sections were incubated with 0.3% H2O2 for 20 min and 10% goat

serum for 1 h to reduce non-specific background staining. The sections were incubated in a

100˚C water bath for 10 min and blocked with 2% BSA for 30 min. The sections were then

incubated with the following anti-rat antibodies overnight at 4˚C: anti-rat IL-6 Ab (1:100,

Santa Cruz) and anti-rat CD68 Ab (1:100, Santa Cruz). At least 5 high-powered fields in the

outer medulla and corticomedullary junction were observed and semi-quantified using Image-

Pro Plus 6.0 software (Media Cybernetics, USA).

Western blot analysis

Briefly, tissues between the renal cortex and medulla were homogenized with RIPA lysis buffer

on ice and centrifuged at 12,000 rpm and 4˚C for 10 min. Protein concentrations for all

Complement in acute renal injury induced by rhabdomyolysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0192361 February 21, 2018 3 / 20

https://doi.org/10.1371/journal.pone.0192361


samples were determined using a BCA Protein Assay Kit (Bioword Technology, St. Louis

Park, USA). Protein (50 μg) from each sample was resolved using electrophoresis with a 10%

Bis-Tris polyacrylamide gel (Millipore, Billerica, USA) and transferred to a nitrocellulose

membrane. Membranes were blocked with 5% fat-free milk in TBST buffer and incubated

with polyclonal anti-rat C1q Ab (1:1,000, Abcam), MBL-A Ab (1:500, Abcam), f B Ab (1:500,

Santa Cruz), C5a Ab (1:500, ABBIOTEC, USA), CD59 Ab, IL-6 Ab (1:1000, Santa Cruz), and

GAPDH (1:5,000, Bioword Technology, St. Louis Park, USA) at 4˚C overnight. The results

were densitometrically quantified using Image-Pro Plus 6.0 software.

Real-time qPCR

Kidney tissues between the renal cortex and medulla were obtained from rats at the indicated

time points. Total RNA was extracted using TRIZOL (TianGen Biotech, Beijing, China) and

reverse transcribed into cDNA using a ReverTra Ace qPCR RT kit with a gDNA Eraser

(TaKaRa Biotechnology, Otsu Shiga, Japan). The cDNA was amplified using PCR. Quantita-

tive PCR with SYBR Green Real-time PCR Master Mix-Plus (Toyobo) was performed using a

Prism 7500 Sequence Detection System (Life Technologies, CA, USA). The mRNA levels were

normalized to the housekeeping gene GAPDH. The following DNA sequences were used for

the primer pairs: C3 forward 5- GCATCAGTCACAGGATCAGGTCA -3’ and C3 reverse

5’- ATCAAAATCATCCGACAGCTCTATC -3’; C1q forward 5- GATGGCTGGTGGCTTGT
GT-3’ and C1q reverse 5’- CAGATTCCCCCATGTCTCCTT -3’; MBL-A forward 5- CTAT
GCCGAGACCTTAACCGA -3’ and MBL-A reverse 5’- CTTTTGGTCCCGTTGCTCC -3’;

fB forward 5- AGAAAGGCGGTGATTATTACAAGC -3’ and fB reverse 5’- GGTGGAACAG
GACCTCTTCAATC -3’; IL-6 forward 5- GATTGTATGAACAGCGATGATGC -3’ and IL-6

reverse 5’- AGAAACGGAACTCCAGAAGACC -3’; GAPDH forward 5- TGGAGTCTACT
GGCGTCTT -3’ and GAPDH reverse 5’- TGTCATATTTCTCGTGGTTCA -3’. Quantita-

tive PCR assays were conducted in triplicate, and quantification was performed using the

F = 2−ΔΔct method.

Assessment of apoptosis using TUNEL staining

TUNEL staining was performed using an apoptosis detection kit (Roche Diagnostics, GmbH-

Mannheim, Germany) according to the manufacturer’s instructions. Rat spleen sections were

used as positive controls. Two blinded observers independently analyzed the results using

Image-Pro Plus 6.0 software.

Statistical analysis

All statistical analyses were performed using SPSS 17.0 for Windows. The data are expressed as

the means ± standard error of the mean. P<0.05 was accepted as statistically significant. Renal

function, renal complement protein expression levels, and renal mRNA expression levels were

compared between the treatment arms via one-way ANOVA. The S-N-K test was used for post

hoc multiple comparisons.

Results

CVF can efficiently deplete complement and has no effect on the rat

kidneys

CH50 represents total complement activity. To detect the ability of CVF to deplete comple-

ment, we detected the CH50 in rat serum. Rat serum CH50 levels decreased significantly to

less than 10% of the levels in the control group after intravenous CVF administration and
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remained at a very low level for a long time (Table 1, Fig 1). The results indicated that CVF

depleted rat serum complement.

To verify the renal safety of CVF, we tested rat serum creatinine (Cr) and urea nitrogen

(BUN) levels, and the results showed that the renal function of the rats did not change during

the observation period after CVF administration (Fig 2& Table A in S1 File). Renal H&E stain-

ing also revealed that the CVF group’s kidney structure did not change over time (Fig 3).

These results indicate that CVF had no effect on the kidneys of rats.

The complement system may influence RM-induced AKI

Rat serum CH50 levels in the CVF+AKI group decreased significantly compared with those in

the control group and the AKI group (Table 2, Fig 4). The results reaffirmed that CVF depleted

rat serum complement.

Table 1. Levels of serum CH50 in the two groups (u/ml, means±SD, n = 6).

Group 2 h 6 h 24 h 72 h

Control 67.24±6.02 65.74±5.58 68.62±4.84 67.32±5.81

CVF 5.24±0.49� 5.69±0.92� 4.94±0.66� 6.17±0.52�

� P<0.01 vs. control

https://doi.org/10.1371/journal.pone.0192361.t001

Fig 1. Levels of serum CH50. Each bar represents the mean±SD. $ P<0.01 vs. control.

https://doi.org/10.1371/journal.pone.0192361.g001
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We used CVF to deplete rat serum complement to investigate the role of complement in

this model by observing renal function and morphological changes. After intramuscular injec-

tion of glycerol, rat serum markers of renal function increased over time. If CVF was given

prior to the injection of glycerol, the increase in the renal function index was significantly

diminished. BUN levels were decreased from 143.55±8.30 mg/dl at 72 h in the AKI group to

46.16±7.6 mg/dl at the same time point in the CVF+AKI group, and Cr levels decreased from

4.84±0.18 mg/dl to 0.99±0.11 mg/dl. The results demonstrated that complement depletion

markedly improved kidney function. (Table 3, Fig 5).

We previously demonstrated that RM induced injury based on renal morphology [9]. Renal

H&E and PAS staining revealed that the AKI group exhibited an obvious and progressive

injury pattern over time. Mild lesions were observed at 2 h, primarily degeneration of tubular

epithelial cells, renal tubular epithelial cells exhibited granular and vacuolar degeneration, and

Fig 2. Levels of Serum BUN and Cr.▲ P>0.05 vs. control.

https://doi.org/10.1371/journal.pone.0192361.g002

Fig 3. Evaluation of renal histopathology changes. No change in renal morphology was observed at four time points in the CVF group compared with that in the

control group.

https://doi.org/10.1371/journal.pone.0192361.g003
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homogeneous red-staining protein casts appeared in individual renal lumens of the outer

medulla and corticomedullary junction. Large cell debris in the renal tubules and lumen, mul-

tiple protein casts in the renal lumen, tubular dilatation, and inflammatory cell infiltration

appeared at 6 h. Renal tubules lost their normal structure, and epithelial cell necrosis, a bare

basement membrane, dissolution, and epithelial cell shedding were observed at 24 h. More

renal tubular epithelial cell shedding, necrotic cell debris in the lumen, and cell tube types were

observed at 72 h, but partial repair phenomena and naked basement membrane rearrange-

ment also appeared (Fig 6A). Depletion of complement ameliorated rat kidney tissue damage

(Fig 6B) and lowered tubular injury scores (Fig 6C).

These results demonstrated that complement was involved in RM-induced AKI, and com-

plement depletion significantly reduced renal damage in this model. We also examined renal

C3 to confirm these observations. C3 is the most abundant complement protein, and its con-

tent increases after complement activation. Immunofluorescence demonstrated that kidneys

in the control group did not express C3, but C3 expression in the AKI group was significantly

enhanced. Fluorescence was positive at 2 h, primarily along the tubular basement membrane

in the outer medulla and corticomedullary junction, and it was stronger at 6 h. The signal

strength weakened, but it was still significantly stronger than that in the control group at the

subsequent time points. Real-time qPCR revealed reduced C3 mRNA in the renal tissues of

complement-depleted rats (Fig 7).

Complement may be activated via three pathways in RM-induced AKI

Complement normally circulates in the peripheral blood as an inactive zymogen that may be

activated by exogenous or endogenous stimuli to initiate a cascade reaction. Complement

Table 2. Levels of serum CH50 in the three groups (u/ml, means±SD, n = 6).

Group 2 h 6 h 24 h 72 h

Control 76.05±6.28 78.24±3.87 74.35±3.41 77.24±5.21

AKI 61.28±5.64� 54.64±4.26� 49.64±4.29� 65.21±3.46�

CVF+AKI 5.75±0.38�# 6.12±0.74�# 7.03±1.04�# 6.55±0.78�#

� P<0.01 vs. control

# P<0.01 vs. AKI

https://doi.org/10.1371/journal.pone.0192361.t002

Fig 4. Levels of serum CH50. $ P<0.01 vs. control;◆ P<0.01 vs. AKI.

https://doi.org/10.1371/journal.pone.0192361.g004
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plays a role only when activated. Complement activation produces proteolytic cleavages, struc-

tural rearrangements, and lytic complexes. Complement is omnipresent in an inactive form

but becomes activated locally. There are three ways to activate the complement pathway: the

classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). We also

investigated the possible activation routes of complement in this model.

C1q is the initiating protein of the CP. Positive C1q staining was observed along the tubular

basement membrane 2 h after intramuscular glycerol injection. Fluorescence intensity

decreased at 6 and 24 h, but it increased again at 72 h. fB is an essential component of the AP.

We used western blotting to analyze fB protein in rat kidneys. The results demonstrated a pro-

gressive elevation in fB levels after intramuscular glycerol injection. We also detected MBL-A

mRNA in rat kidneys. MBL-A mRNA levels increased 2 h after intramuscular glycerol injec-

tion and peaked at 6 h (Fig 8 & Figures A-C in S2 File).

How does activated complement affect RM-induced AKI?

We measured renal C5a, C5b-9, and CD59 to examine the roles of complement components

in RM-induced AKI. The results revealed no C5a or C5b-9 fluorescence and weak CD59 fluo-

rescence in the control group. However, fluorescence increased significantly in the renal

tubules, primarily along the tubular basement membrane, after intramuscular glycerol injec-

tion. The strongest fluorescence intensities of C5a and C5b-9 were observed at 24 h, but the

Table 3. Levels of serum BUN and Cr in the three groups (means±SD, n = 6).

Group Time BUN (mg/dl) Cr (mg/dl)

Control 2 h 17.72±1.85 0.25±0.02

6 h 18.43±1.98 0.32±0.02

24 h 17.95±1.59 0.31±0.02

72 h 18.57±1.34 0.32±0.02

AKI 2 h 27.19±5.09� 0.69±0.09�

6 h 45.23±6.75� 1.61±0.09�

24 h 102.02±7.12� 3.97±0.16�

72 h 143.55±8.30� 4.84±0.18�

CVF+AKI 2 h 19.38±1.75●# 0.46±0.05�#

6 h 24.43±5.15�# 0.74±0.12�#

24 h 34.23±6.54�# 0.97±0.14�#

72 h 46.16±7.6�# 0.99±0.11�#

Abbreviations: BUN, urea nitrogen; Cr, creatinine.

� P<0.01
● P>0.05 vs. control

# P<0.01 vs. AKI

https://doi.org/10.1371/journal.pone.0192361.t003

Fig 5. Levels of serum BUN and Cr. $ P<0.01▲ P>0.05 vs. control;◆ P<0.01 vs. AKI.

https://doi.org/10.1371/journal.pone.0192361.g005

Complement in acute renal injury induced by rhabdomyolysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0192361 February 21, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0192361.t003
https://doi.org/10.1371/journal.pone.0192361.g005
https://doi.org/10.1371/journal.pone.0192361


strongest CD59 fluorescence was observed at 72 h. Western blotting revealed that renal protein

levels decreased significantly in the complement-depleted rats compared with those in the AKI

rats at all time points (Fig 9).

Complement is a major component of the body’s immune defense, and it significantly

influences the inflammatory response. We examined inflammatory-related factors, including

CRP levels in serum and CD68 and IL-6 expression in kidneys, to elucidate the effects of com-

plement on the inflammatory response. The serum CRP concentration in the AKI group in-

creased significantly compared with that in the control group at the first time point (P<0.01)

and then increased gradually (P<0.01). The serum CRP concentration in the CVF+AKI group

also increased significantly compared with that in the control group, except at the first time

point, but the concentration decreased significantly compared with that in the AKI group at

every time point. We used immunohistochemistry to observe CD68 and IL-6 expression in the

kidneys, and the results demonstrated an obvious increase after glycerol injection, primarily in

the renal interstitium, blood vessel or the lumen of the renal tubules for CD68 and in the cyto-

plasm of renal tubular epithelial cells for IL-6, which were stained with yellowish-brown gran-

ules. All expression was greatest at 24 h and weakened with the depletion of complement prior

to glycerol injection (Figs 10 and 11 & Figures D and E in S2 File).

Complement activation also triggers apoptosis signaling. Previous studies using a brain

ischemia-reperfusion (I/R) model found increased expression levels of complement, and NF-

Fig 6. Evaluation of renal histopathology changes. (A) Renal injury in the AKI group was aggravated over time. a.

AKI at 2 h, renal tubular epithelial cell degeneration (H&E, ×200); b. AKI at 6 h, inflammatory cell infiltration (H&E,

×400); c. AKI at 24 h, the black arrow indicates the bare basement membrane, and the white arrow indicates the

myoglobin tube type (H&E, ×200); d. AKI at 72 h, large patchy necrosis, normal structures disappear (H&E, ×200). (B)

The pathological renal changes in the AKI+CVF group were more moderate than those in the AKI group (PAS, ×200).

(C) Tubular injury scores of each group. The score of the control group was zero. $ P<0.01 vs. control;◆ P<0.01 vs.

AKI.

https://doi.org/10.1371/journal.pone.0192361.g006
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κB was associated with enhanced cerebral apoptosis [19,20]. We used the TUNEL assay to

evaluate the level of renal tubular epithelial cell apoptosis and to further investigate the role of

complement in RM-induced AKI. Positively stained nuclei were occasionally observed in the

renal tissues of the control group. TUNEL-positive cells increased significantly after glycerol

injection, primarily in the renal tubules of the outer medulla and corticomedullary junction.

Half of the cell nuclei were strongly stained at 24 h in the AKI group. The number of apoptotic

cells in renal tissues also increased in the complement-depleted group, but this number was

significantly decreased compared with that in the AKI group (Fig 12 & Table B in S1 File).

Discussion

Intramuscular injection of glycerol efficiently reproduces the clinical syndrome of RM-

induced AKI in humans. Our previous research revealed that serum myoglobin was obviously

increased during the very early stages of renal injury [9], and the results of the present study

revealed associated renal dysfunction. BUN and Cr levels increased steadily and significantly,

and renal histology revealed damaged tissue. The normal structure at the junction of the cortex

and medulla disappeared at 72 h. RM-induced AKI is a complex process, and the exact patho-

logical mechanism is not clear. Research has demonstrated that complement plays a pathologi-

cal role in a variety of renal diseases [21–24]. For example, uncontrolled AP activation within

the kidney is the primary cause of scleroderma renal crisis (SRC) [25]. The complement system

is also the primary cause of atypical hemolytic uremic syndrome (aHUS), with uncontrolled

activation within the microvasculature [26]. Complement is activated via the AP during the

early phase of reperfusion in renal IRI. These results suggest that the kidney may be intrinsi-

cally susceptible to complement-mediated injury.

We used CVF to deplete complement prior to intramuscular glycerol injection to elucidate

the role of complement. CVF is a nontoxic protein found in cobra venom that forms an inacti-

vator-resistant convertase of C3/C5 and continuously activates C3 and C5. The complement

elimination function of CVF is efficient and long-lasting. Only a single injection of CVF at 6.8

nmol/kg reduced the complement content in mouse serum to trace amounts, and this effect

lasted for 2–4 days [27]. Our results also showed that after intravenous CVF administration,

Fig 7. Evaluation of renal C3 changes. (A) Immunofluorescence staining for C3. C3 was deposited along the renal

tubular basement membrane in the experimental groups, but not in the control group. (B) C3 mRNA expression levels

in the different groups. $ P<0.01 and▲ P>0.05 vs. control;◆ P<0.01 vs. AKI.

https://doi.org/10.1371/journal.pone.0192361.g007
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rat serum complement levels were very low within 84h. Other complement antagonists include

sCR1, C1 Inhibitor, and eculizumab. Eculizumab, a monoclonal anti-C5 antibody, has been

reported to be effective in controlling thrombotic microangiopathy and improving renal func-

tion, and is used in clinical practice to treat paroxysmal nocturnal hemoglobinuria (PNH) and

atypical hemolytic-uremic syndrome (aHUS). Eculizumab as a C5 blocker is a terminal cas-

cade blocking agent, and C3 convertase initially remains active. Therefore, we chose CVF as a

tool to deplete complement. Our results confirm that there was no change in renal function or

morphology after intravenous CVF injection in rats. Because CVF depletion of complement is

efficient and safe, CVF has been used as a tool to study the biological functions of complement

and the pathogenesis of some diseases [28]. CVF pre-treatment in the RM-induced AKI model

improved renal function and significantly reduced serum BUN and Cr levels and renal tissue

damage. These results indicate that complement plays a key role in RM-induced AKI.

C3 is the most abundant complement protein in the body, and it exhibits a certain degree

of complement activation. C3 content is increased significantly in some cardiovascular dis-

eases [29], and cleavage of C3 is the main step in the complement activation cascade. In the

RM rat kidney, the expression of C3 along the renal tubular basement membrane increased

significantly, and this site of expression is consistent with tissue injury. Renal C3 expression

Fig 8. Evaluation of C1q, fB, and MBL-A changes in kidneys. (A) Immunofluorescence staining for three

complement activator-associated proteins. (B) C1q, fB, and MBL-A protein levels were measured using western blot

analysis; the ratio of complement expression to that of GAPDH was determined using densitometry (n = 6). (C) The

mRNA expression levels of these proteins in the different groups. Protein and RNA levels in the kidneys of AKI rats

were higher than those in the control group, but the amplitude of this increase was lower after the depletion of

complement. $ P<0.01,▲ P>0.05 vs. control;◆ P<0.01 vs. AKI.

https://doi.org/10.1371/journal.pone.0192361.g008
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increased despite CVF-induced depletion of complement in the peripheral blood. These results

suggest that renal tissue synthesizes C3 and that the complement system is activated in RM.

The expression level of C3 protein peaked 6 h after glycerol treatment and then decreased to a

level that remained significantly higher than normal, suggesting that C3 decomposition was

faster than C3 synthesis.

The AP is the major, or only, route of complement activation in kidney disease. In a model

of acute renal injury induced by ischemia-reperfusion and sepsis in mice, decreased or defec-

tive fB or fP activity can reduce renal injury and inflammatory responses [30–32]. Explana-

tions for this observation include the following: the immunoglobulin and complement

proteins in plasma cannot pass through the glomerular filtration membrane; the ammonia

synthesized by the renal tubule promotes AP activation; and the acidic environment of the

damaged renal tissue is conducive to AP activation [33,34]. This study investigated the com-

plement activation pathway in RM-induced AKI. Our data demonstrated that the expression

of fB, as a representative of the AP, was elevated in the kidney after intramuscular glycerol

injection. The progressive increase in fB is also related to the release of cellular microparticles

by necrotic cells due to the aggravation of kidney injury, which could also induce AP activation

[35]. In the CP and LP approaches to acute kidney damage, the results from different labs are

inconsistent. Some studies suggest that the CP does not participate in acute kidney damage,

and in a renal ischemia-reperfusion model, C1q deposits were not found in renal tissues [30].

Fig 9. Evaluation of C5a, C5b-9, and CD59 changes in the kidney. (A) Immunofluorescence staining of three

complement proteins. (B) C5a, C5b-9, and CD59 protein levels were measured using western blot analysis, and the

ratio of these proteins to that of GAPDH was determined using densitometry. $ P<0.01 and▲ P>0.05 vs. control;◆
P<0.01 and▼ P>0.05 vs. AKI.

https://doi.org/10.1371/journal.pone.0192361.g009
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One study found that MBL gene knockout mice exhibited decreased plasma C3a levels and

reduced kidney damage after renal ischemia-reperfusion injury, and the injury could be recov-

ered by injection of recombinant MBL [33].Our data demonstrated elevated C1q and MBL-A

expression in the kidneys of RM rats. C1q is an initiating protein of the CP. The structure of

MBL-A is highly homologous to that of C1q, and it is one of two different forms of MBL

(MBL-A and MBL-C) in rats. Rat MBL-A is dominant and exhibits 66.7% homology with

human MBL. Elevation of these factors suggests that the complement system was activated via

the CP and LP in RM-induced AKI. We previously found that reperfusion injury of ischemic

skeletal muscle invoked complement activation primarily via the CP and LP [36–38]. Earlier

injury to skeletal muscle in our model was the predisposing factor for kidney injury. Elevated

C1q and MBL-A during early kidney injury may be related to complement activation in skele-

tal muscle. Complement was activated in skeletal muscle during RM via the CP and/or LP, and

some activated complement proteins reached the kidney via blood circulation and were depos-

ited in the kidneys. These complement proteins activated the renal complement pathway via

the CP and/or LP. C1q also initiates the complement activation program in conjunction with

CRP and apoptotic bodies [39–41]. Our experimental results demonstrated that serum CRP

levels and the apoptotic rate in renal tissues gradually increased after glycerol injection and

peaked in the late stage of injury. The second increase in C1q content that occurred at 72 h

may be related to this finding.

Complement is the most important immune defense system in the body. Complement

defends against pathogenic microorganisms, maintains homeostasis, and prevents

Fig 10. Evaluation of CRP and IL-6 changes in the kidney. A. CRP levels in serum. B. (A) immunohistochemical

staining for IL-6 (×400). (B) IL-6 protein levels obtained by western blot analysis. (C) mRNA expression levels of IL-6

in rat kidney tissues. $ P<0.01 vs. control;◆ P<0.01 vs. AKI.

https://doi.org/10.1371/journal.pone.0192361.g010
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autoimmunity. Complement also has an obvious promoting effect in aseptic inflammation.

Serum CRP concentrations increased significantly in RM, and this elevation decreased signifi-

cantly after CVF treatment. These results suggest that the increase in serum CRP was partially

related to complement activation. CRP exhibits a good correlation with acute inflammation,

and its levels reflect the inflammatory level to some extent [42–44]. We also observed

Fig 11. Immunohistochemical staining for CD68. CD68+ macrophages are located in the renal interstitium indicated by white arrow, blood vessels indicated by black

arrow or the lumen of the renal tubules indicated by red arrow (×400).

https://doi.org/10.1371/journal.pone.0192361.g011
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neutrophil infiltration in the rat kidneys after glycerol treatment. The results showed that the

expression of CD68 in the kidney increased significantly after glycerol injection. CD68 is con-

sidered the most widely used marker for macrophages. Macrophages, as critical immune effec-

tor cells, are derived from blood monocytes and can be divided into M1 (classically activated)

and M2 (alternatively activated) subpopulations according to their functional phenotypes [45].

Enhanced CD68 expression reflects an increase in the number of macrophages in injured kid-

ney tissues, and CVF could inhibit its expression. These results indicate that inflammation was

involved in RM-induced AKI, and this inflammation was partially related to complement

activation.

The expression of C5a in the kidney increased significantly after glycerol injection, and the

highest expression occurred at 24 h. C5a is the product of C5 activation, and it exerts potent

proinflammatory effects. C5a must combine with C5aR to exert its effects. C5aR is expressed

in the kidney, primarily in renal mesangial cells and proximal and distal tubule epithelial cells.

C5a is an anaphylatoxin and a potent chemotactic agent, and it promotes the adhesion and

activation of leukocytes, including macrophages [46]. Neutralizing antibodies against C5a

exhibited protective effects in experimental sepsis [47]. Treatment with a small molecule

Fig 12. TUNEL assessment of renal tubular epithelial cell apoptosis. (A) Renal tissue sections underwent TUNEL

staining (200× magnification). The nuclei of TUNEL-positive cells are stained brown. (B) The level of apoptosis is

indicated as the percentage of TUNEL-positive cells with respect to the total number of cells.

https://doi.org/10.1371/journal.pone.0192361.g012
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inhibitor of C5aR to block C5a signaling protected mice from injury in a renal I/R model [11].

Studies have shown that C5a can enhance the induction of macrophages and T cells indirectly

through the production of IL-6 and TNF-α [48]. In our results, IL-6 mRNA and protein

expression increased in the AKI group compared with that in the control group. The highest

expression of CD68 and IL-6 occurred at 24 h, and CVF inhibited this increase, suggesting

that these factors are relevant to complement activation. C5a is involved in the activation of

monocytes, macrophages, and Th2 cells, resulting in an increase in IL-6 secretion. These cells

interact and induce the production of more cytokines and inflammatory mediators and

amplify the inflammatory response, causing renal tissue damage directly and indirectly in RM-

induced AKI. C3a is also an anaphylatoxin, but it is not as potent a chemotactic agent as C5a.

Mice with targeted genetic deletion of the C3a receptor are protected from AKI [49].

As mentioned above, complement-mediated inflammation is mainly due to the production

of complement anaphylotoxins C5a and C3a. In addition, it has been reported that the mem-

brane attack complex (MAC; C5b-9) induces macrophages to release IL-1β and IL-18 to pro-

mote the inflammatory immune response [50]. The MAC is the final product of complement

activation, and it forms lytic pores in the outer membrane of target surfaces to lyse microor-

ganisms and abnormal host cells. C5b-9 also activates cells in sublytic quantities. The proin-

flammatory consequences of sublytic MAC have been reported in many cell types [51,52].

Small molecule MAC blockers inhibit inflammation in various models [53]. One study showed

that renal epithelial cells exposed to sublytic MAC released IL-6, IL-8, MCP-1, and VEGF [54].

Our data demonstrated that MAC expression in the kidney increased after glycerol injection,

and CD68 expression also increased. Sublytic MAC may trigger macrophages to release of

inflammatory cytokines, including IL-6, from host cells [52].

The MAC creates pores in the cell membrane, allowing Ca2+ to enter the cell, which leads

to intracellular calcium overload, and exacerbating ATP depletion in hypoxic cells [55]. The

ultimate result of these processes is apoptosis. Apoptosis is another important biological effect

of complement. Many complement activation products, such as C5a, C1q, and CD59, affect

apoptosis. Sepsis-associated apoptosis has been linked to a C5a-C5a receptor interaction,

which leads to organ dysfunction, immunosuppression, and lethality [56]. C5a induced apo-

ptosis in IR-induced acute lung injury by initiating Bcl-2 degradation [57]. Our study demon-

strated that complement depletion down-regulated apoptosis in renal tissues of rats with RM.

Our previous study showed that apoptosis was a prominent feature in RM-induced AKI [9].

The expression of complement components, including C5a, C1q, MAC, and CD59, which

induce apoptosis, was enhanced in the present study. Apoptosis may be another important

mechanism of complement in RM-induced AKI.

Complement activation is not unlimited, and complement regulatory proteins play impor-

tant roles in preventing damage to normal cells caused by complement activation, with the

role of cell-membrane-anchored proteins, such as CD55, CD59, CD46, and CD35, being par-

ticularly critical [58]. CD59 is attached to the cell surface by a glycosylphosphatidylinositol

(GPI) anchor, which prevents C9 units from binding to the C5b-8 complex. Loss of CD59

increases the amount of C5b-9 complexes and leads to more functional transmembrane pores.

CD59 knockout mice suggest that CD59 protects against ischemic brain damage [59]. The

results of the present study demonstrate that CD59 expression in the renal tissues of normal

rats increased gradually after intramuscular glycerol injections, but CVF significantly reduced

this increase. These results indicate that increased CD59 expression was also related to comple-

ment activation. The early increase in CD59 expression in RM-induced AKI may inhibit MAC

formation and reduce the inflammatory response and apoptosis, which increase initially as

part of the body’s own defense. This increase in CD59 expression was partially related to the

stimulation of TNF-α, IL-1, and IL-6 [60], which increased passively. In conclusion, our results
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provide direct evidence that complement plays a critical role in RM-induced AKI in rats. Com-

plement may be activated via multiple pathways, and activated complement exerts numerous

biological effects that induce and/or aggravate kidney damage.

The longest observation time in this study was 72 h. Inhibition of complement can diminish

the early inflammatory response and achieved a longer time benefit[61]. Over a longer obser-

vation time, damaged tissue may begin to repair, regenerate, or develop fibrosis, and whether

complement continues to play a role requires further study. Most of the conclusions in this

study were determined based on complement depletion via CVF injection prior to intramus-

cular injection of glycerol, which is not clinically feasible. To establish clinical applications,

including post-treatment with CVF, further studies are required.
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