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Excitotoxicity: Still Hammering the
Ischemic Brain in 2020
Dennis W. Choi*

Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States

Interest in excitotoxicity expanded following its implication in the pathogenesis of
ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-
D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there
has been steady progress in elucidating underlying mechanisms. This review will outline
the historical path to current understandings of excitotoxicity in the ischemic brain,
and suggest that this knowledge should be leveraged now to develop neuroprotective
treatments for stroke.
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INTRODUCTION

It has now been 63 years since Lucas and Newhouse (1957) discovered the ability of parenterally
administered glutamate to kill central neurons in the rodent retina, and 51 years since Olney (1969)
extended this observation to neurons in the hypothalamus and hippocampus. Subsequently finding
that a series of structurally related neuroexcitatory amino acids exhibited similar neurotoxicity,
with potencies corresponding to known neuroexcitant potencies, Olney et al. (1974) proposed that
the “necrotizing effect is, in essence, an exaggeration of the excitatory effect” and coined the term
“excitotoxic amino acids”. These seminal observations remained relatively fallow until the 1980s,
when advances in excitatory amino acid (EAA) pharmacology led to widespread recognition of
glutamate’s neurotransmitter function and scientific interest in EAAs burgeoned. Over the next
two decades, the subfield of excitotoxicity likewise expanded, driven most prominently by its
implication in the pathogenesis of ischemic brain damage, and several pharmaceutical companies
developed glutamate receptor antagonists as candidate treatments for stroke. By the early 2000s
these drugs had failed in clinical trials and excitotoxicity research lost substantial momentum.
A reflection of the excitotoxicity research boom and subsequent slowdown can be found in the
number of relevant publications indexed by PubMed (Figure 1).

However, implication of excitotoxicity as an agent of human diseases has not gone away. The
current issue of Frontiers in Neuroscience is timely, marking a half-century of active excitotoxicity
research. I thank the editors for my invitation to contribute, and will provide here a brief, semi-
chronological, and at times personal, overview of this research, focusing on the still extant path
forward for developing an anti-excitotoxic neuroprotective treatment for stroke. Recent reviews
on the topic have appeared (Wu and Tymianski, 2018; Fern and Matute, 2019; Hardingham,
2019; Ge et al., 2020). Other articles in this issue will likely discuss the possible contribution of
excitotoxicity to neurodegeneration in chronic diseases such as amyotrophic lateral sclerosis or
Alzheimer’s disease.

Frontiers in Neuroscience | www.frontiersin.org 1 October 2020 | Volume 14 | Article 579953

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.579953
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.579953
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.579953&domain=pdf&date_stamp=2020-10-26
https://www.frontiersin.org/articles/10.3389/fnins.2020.579953/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-579953 October 20, 2020 Time: 19:42 # 2

Choi Excitotoxicity and Brain Ischemia

EXCITOTOXICITY – EARLY DAYS (UP TO
EARLY 1990s)

Brain tissue contains high concentrations of free glutamate, in
the 5–15 mmol/kg range (Schousboe, 1981), but until the 1970s
this glutamate was widely assumed to be serving purely metabolic
functions. Hayashi (1954) speculated that glutamate might be a
neurotransmitter based on convulsant activity on motor cortex,
an idea that was strongly supported by direct demonstration
of neuroexcitatory properties (Curtis et al., 1960). Subsequent
research on the topic of glutamate signaling proceeded gently
for nearly two decades – a lull Watkins and Jane (2009) have
dubbed “the dark ages”. But evidence for synaptic synthesis,
Ca2+-dependent release and rapid cellular uptake accrued (Fagg
and Lane, 1979), and pharmacological tools were developed that
enabled critical testing of the transmitter hypothesis. Glutamate
receptors were classified into N-methyl-D-aspartate (NMDA)
and non-NMDA types, the latter subsequently further divided
into kainite and quisqualate receptors (Watkins and Evans, 1981),
and then later, kainate, α-amino-3-methyl-4-isoxazoleproprionic
acid (AMPA), and G protein-coupled metabotropic receptors
(mGluRs) (Krogsgaard-Larsen et al., 1980; Sugiyama et al.,
1987; Hollmann and Heinemann, 1994); molecular subunit
nomenclature is still evolving (Collingridge et al., 2009).
Glutamate antagonists blocked endogenous neural signaling in
multiple pathways, identifying glutamate as a neurotransmitter
at insect and crustacean neuromuscular junctions, and then
throughout the mammalian CNS (Nistri and Constanti, 1979;
Cotman et al., 1981; McLennan, 1983).

Olney’s initial considerations of how excitotoxicity might
contribute to human disease focused on the possible dangers
of exogenous agonists, especially the monosodium glutamate
added to food as a flavor enhancer (Olney, 1982). Recognition
of ubiquitous glutamate neurotransmission elevated interest
in the possible pathophysiological importance of endogenous
stores, and excitotoxicity gained further attention as a laboratory
tool, useful for creating “axon-sparing” lesions in brain. These
threads came together when injection of kainate into the rat
striatum was found to reproduce some of the anatomical and
biochemical features of Huntington’s disease, raising speculation
that progressive excitotoxic damage might contribute to its
pathogenesis (Coyle and Schwarcz, 1976; Mcgeer and Mcgeer,
1976). Further, the convulsant properties of kainate and the
dependence of kainate neurotoxicity in vivo upon intact
glutamatergic afferents supported a role for excitotoxicity in
epileptic brain injury (Ben-Ari et al., 1980; Meldrum, 1985).
Thus, the stage was well set for three breakthrough studies
that leveraged newly available receptor antagonists to implicate
endogenous excitotoxicity in ischemic brain damage.

1. Rothman (1984) showed that the glutamate antagonist γ-
D-glutamylglycine (DGG) could block glutamate-induced
depolarization and cell swelling, as well as anoxic injury in
cultured rat hippocampal neurons. This key study followed
up on his earlier demonstration that 10 mM MgCl2 could
protect the neurons against damage induced by cyanide
exposure (Rothman, 1983).

2. Simon R. et al. (1984) found that direct hippocampal
injection of the selective NMDA antagonist, 2-amino-
7-phosphonoheptanoic acid (APH), reduced pathological
changes in nearby neurons 2 h after transient global
ischemia (TGI) in rats. In retrospect, the study assessed
neuronal morphology too soon to determine lasting
survival, as it was just becoming recognized that selective
neuronal death after TGI can occur days later (Kirino,
1982). Regardless, it demonstrated a neuroprotective
effect of NMDA receptor (NMDAR) blockade against a
component of ischemic injury in vivo.

3. Wieloch (1985) injected APH into the rat caudate, and
observed markedly improved survival of nearby neurons
1 week after 30 m exposure to hypoglycemia, further
implicating NMDARs in acute brain injury.

Additionally, microdialysis measurements revealed that brain
ischemia induced within minutes a large increase in extracellular
glutamate emanating from depolarized nerve terminals and
astrocytes (Benveniste et al., 1984), indicating that neurons in
the ischemic brain would inevitably be exposed to elevated
glutamate concentrations.

It is worth pausing here. The entire cell death field was then
a shadow of what it would become. (PubMed papers retrieved by
“cell death” and published in 1985 are about 2% of the 14,000 such
papers published in 2019). Few people considered either acute or
chronic neurodegeneration a worthwhile research topic – cells
die, right – and the neurologists of the day managed patients
presenting with Alzheimer’s disease or stroke nihilistically,
attending mainly to accompanying medical conditions. Early
excitotoxicity studies truly changed “normal science” (Kuhn,
1962), suggesting that some ischemic neuronal cell death
occurred consequential to specific events and pathways accessible
to therapeutic interdiction.

Inspired by Rothman’s in vitro studies, I set out to investigate
glutamate neurotoxicity in the mouse cortical cell culture system
I had going at the time. Having worked during the 1970s as
a graduate student on γ-aminobutyric acid (GABA) signaling
and benzodiazepines, I was emerging from clinical training as
a neurologist and setting up my own laboratory at Stanford,
newly funded to study the electrophysiology of glutamate
receptors. Shifting research focus on the fly was entirely feasible –
thank you, NIH.

I found that bath exposure to 500 µM glutamate caused
cultured cortical neurons to swell immediately and then
proceed to disintegrate, similar to the “intracellular edema
and neuronal necrosis” observed by Olney (1969) in mouse
brains after glutamate injection. However, I wondered if leaving
glutamate in the bath, as Rothman had done, might not
exaggerate cell swelling and attendant damage over what would
occur in vivo within a three-dimensional brain and closed
skull. I decided therefore to terminate the bath exposure
after 5 m, an exposure still widely lethal by the next
day. Replacing extracellular Na+ with an impermeant cation
eliminated acute neuronal swelling, but most neurons still
went on to degenerate over the next hours. In contrast,
removing extracellular Ca2+ increased early cell swelling, and
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FIGURE 1 | Research articles on the topic of excitotoxicity indexed in PubMed, by year 1975-present. The search was for articles indexed under a MeSH term of
“acid, excitatory amino”, containing “excitotoxicity” OR “neurotoxicity” in any field. For shape comparison, the inset show total indexed papers over the same period
with a peak in 2019 of 1.39 million papers.

yet most cells recovered and survived (Choi, 1985). This and
other experiments (Choi, 1987; Choi et al., 1987) suggested
that glutamate neurotoxicity at lower exposure levels was
predominantly driven by delayed, Ca2+ -dependent processes
rather than by the immediate entry of Na+ responsible for
neuroexcitation and, together with Cl− and water, immediate
excitotoxic swelling.

A Ca2+ -dependent death fit with observations of EAA-
induced Ca2+ movement into brain tissue (Heinemann
and Pumain, 1980; Berdichevsky et al., 1983), and aligned
excitotoxic death with a larger theme of Ca2+ overload
in other types of cell death, including the toxin-induced
death of hepatocytes (Schanne et al., 1979) and agonist- or
mechanical injury-induced muscle cell death (Bloom and
Davis, 1972; Fleckenstein et al., 1975; Leonard and Salpeter,
1979). It also meshed with prior implications of Ca2+ overload
in the neuronal death induced by ischemia (Siesjö, 1981;
Simon R.P. et al., 1984) or prolonged seizures (Griffiths et al.,
1982). Measurements with newly available Ca2+-sensitive
microelectrodes revealed a rapid and large drop in brain
extracellular Ca2+ after the onset of ischemia (Harris et al.,
1981). The toxic EC50 for glutamate with 5 m exposure was
50–100 µM in mixed astrocyte + neuron cultures (Choi
et al., 1987), dropping to 5 µM with 30 m exposure in

astrocyte-poor cultures lacking protective cellular uptake
(Rosenberg et al., 1992).

The exciting discovery that NMDA but not kainate gated
Ca2+-permeable channels (MacDermott et al., 1986) suggested
that NMDARs would play a foreground role in glutamate
neurotoxicity. This was borne out. The selective NMDA
antagonist 2-amino-5-phophonovalerate (APV) only modestly
reduced the neuroexcitation or acute neuronal cell swelling
induced by brief glutamate exposure, but markedly reduced later
cell death (Choi et al., 1988). Selective NMDAR block was also
effective in reducing the neuronal death induced by hypoxia
(Weiss et al., 1986; Goldberg et al., 1987), glucose deprivation
(Monyer et al., 1989) or mechanical trauma (Tecoma et al., 1989).

Non-NMDA agonists were also potently neurotoxic on
cortical neurons, but prolonged exposures of several hours was
required to produce widespread cell death. Consistent with
the effects of glutamate + APV, kainate induced immediate
excitotoxic neuronal swelling, but if exposure was terminated at
5 m, most cells recovered and survived (Koh et al., 1990). We
considered it likely that this more slowly triggered neurotoxicity
mediated by kainate or AMPA receptors (KARs, AMPARs)
was mediated by slower Ca2+ overload secondary to excessive
Na+ entry, involving voltage-gated Ca2+ channels and reverse
operation of the electrogenic Na+/Ca2+ exchanger, NCX (Choi,
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1988). In that mode, favored under conditions of membrane
depolarization, high internal [Na+] and low external [Na+],
NCXs provide high capacity transport for 3 Na+ ions out coupled
to 1 Ca2+ ion in. The importance of NCXs to excitotoxicity was
supported by implication in anoxic optic nerve injury (Stys et al.,
1992). Later we showed that net cellular 45Ca2+ accumulation
induced by NMDA or glutamate was much larger/faster than that
induced by high K+, kainate, or AMPA (Hartley et al., 1993), and
Hyrc et al. (1997) found a similar relationship for [Ca2+]i.

Identification of excessive Ca2+ entry as the primary mediator
of excitotoxicity, likely augmented by Ca2+ release from
endoplasmic reticulum (ER, triggered by mGluR activation; see
below), also bridged to prior studies implicating free radical
generation in the pathogenesis of ischemic brain injury (Siesjö,
1981). Multiple Ca2+-dependent enzymes including calpains,
endonucleases and lipases, were known to be capable of damaging
cells, and Ca2+ overload would impair mitochondrial energy
production and perturb Ca2+-dependent signaling pathways
(Cheung et al., 1986; Orrenius et al., 1989). But the generation
of free radicals seemed especially well positioned to drive
lethal cytodegeneration. Consequent to cellular Ca2+ overload,
breakdown of lipid membranes into fatty acids mediated by
phospholipase A2 and further metabolism via prostaglandin
and leukotriene pathways, damage to mitochondrial electron
transport and conversion of xanthine dehydrogenase to xanthine
oxidase all generate free radicals, promoting lipid peroxidation
and membrane failure (Chan et al., 1985; Traystman et al., 1991;
Halliwell, 1992). Testing the hypothesis, 21-aminosteroid lipid
peroxidation inhibitors attenuated both glutamate neurotoxicity

and oxygen-glucose deprivation (OGD)-induced neuronal death
(Monyer et al., 1990). Toxic NMDA exposure increased
superoxide formation in cultured cerebellar neurons, and
trapping this superoxide was neuroprotective (Lafon-Cazal
et al., 1993). Subsequent studies used electron paramagnetic
resonance spectroscopy and oxidation state-sensitive fluorescent
dyes to detect mitochondrial production of reactive oxygen
species (ROS) after NMDAR-mediated Ca2+ overload, and
demonstrated that this production could be substantially reduced
by inhibition of mitochondrial electron transport or dissipation
of the mitochondrial membrane potential (Dugan et al., 1995;
Reynolds and Hastings, 1995). Figure 2 shows a diagram of
excitotoxicity mechanisms as we saw it in 1988.

The discovery that NMDAR-mediated Ca2+ influx activated
neuronal nitric oxide synthase (NOS) suggested that nitric
oxide (NO) might be both a normal neuronal signaling
molecule and a free radical mediator of glutamate neurotoxicity
(Garthwaite et al., 1988; Bredt et al., 1990). Freely diffusible
through membranes, NO released from neurons activates
soluble guanylate cyclase in neighboring cells including smooth
muscle. Cytotoxicity at higher concentrations was harnessed
by macrophages to kill target cells, with NO reacting with
superoxide to form the highly reactive nitrogen species (RNS),
peroxynitrite, and promoting destructive hydroxyl radical
formation (Halliwell and Gutteridge, 1984; Beckman et al.,
1990). Pivotal experiments were carried out by Dawson et al.
(1991), demonstrating that inhibition of neuronal NOS (nNOS)
selectively attenuated NMDAR-mediated neurotoxicity but
not kainate neurotoxicity. Later, they would show that a

FIGURE 2 | Mechanisms underlying glutamate neurotoxicity as of 1988. Reprinted from Choi (1988).
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major toxic consequence of NMDA-induced NO formation
was the hyperactivation of poly(ADP-ribose) polymerase
(PARP), likely consequential to peroxynitrite-induced DNA
damage and resulting in cellular energy depletion and nuclear
translocation of apoptosis-inducing factor (AIF), triggering
a caspase-independent death (“parthanatos”). Subsequent
studies from other labs would raise a possible role for
oxidative intracellular Zn2+ release in connecting NO to
PARP overactivation (see below).

As a sidebar, inhibiting nNOS did not reduce glutamate
neurotoxicity in the cortical cultures my lab was using in the
1990s. We came to regard this as an idiosyncrasy, likely reflecting
low baseline nNOS expression and/or a large astrocyte presence
sopping up NO. Raising inducible NOS (iNOS) expression in
the astrocyte layer did add a NOS-dependent component to
NMDAR-mediated toxicity in the cultures (Hewett et al., 1994).
In any case, this culture system difference illustrates that more
than one potentially lethal downstream cascade can be triggered
in parallel by glutamate receptor overactivation and robustly kill
neurons. A messy “and”, not an “or”: a race to death. Whether a
specific cascade ends up directly responsible for cell death such
that its inhibition improves survival, and the exact features of
that death, may depend on where that cascade lies in an injury
hierarchy, as well as on the identity and closeness of competitive
injury pathways that may leave behind their own incomplete
molecular and morphological signatures.

NMDA ANTAGONISTS, STROKE, AND
APOPTOSIS

Demonstration of the neuroprotective effects of glutamate
antagonists against hypoxia/ischemia/hypoglycemia in vivo and
in vitro, together with identification of NMDAR overactivation
and Ca2+ overload as primary mediators of acute glutamate
toxicity, encouraged global efforts to test NMDA antagonist
drugs in various animal models of brain ischemia and develop
drugs suitable for human use. The first drug candidate out of
the gate was Merck’s MK-801, a potent and selective NMDA
antagonist with excellent brain penetrance. Gill et al. (1987)
reported that pretreatment with MK-801 reduced neuronal
death in gerbil brains subjected to either bilateral or unilateral
forebrain ischemia. Benefits of NMDA antagonists later proved
variable in models of TGI, in some cases perhaps confounded
by hypothermia (Buchan and Pulsinelli, 1990), but reduction
of infarction or disability was robustly observed with NMDA
antagonists given up to 2 h after focal brain ischemia in rodents
or larger animals (Gotti et al., 1988; Kochhar et al., 1988; Ozyurt
et al., 1988; Park et al., 1988; Steinberg et al., 1988). By 1992
close to 20 published studies reported this finding. AMPA/kainate
antagonists also were neuroprotective in brain ischemia studies,
especially after TGI (Sheardown et al., 1990). In 1994, Huang et al.
reported that mice lacking nNOS exhibited reduced infarcts after
permanent occlusion of the middle cerebral artery (pMCAO)
(Huang et al., 1994).

However, the NMDA antagonist drug candidates brought into
development by several companies for use in stroke all failed in

clinical testing. Some were abandoned because of side effects;
others lacked efficacy. In two cases (CNS-1102, CGS 19755), there
were worrisome trends toward worse outcome in the treated
group (Hoyte et al., 2004; Ginsberg, 2008; Lai et al., 2014). As
those reviewers noted, clinical studies did not match up well
with the earlier animal studies. Some drug dosing was too low
(limited by mechanism-associated behavioral side effects such as
hallucinations) or too late (most dosing was > 3 h post stroke
onset, and in some trials up to 48 h post onset, as enrolling
patients at earlier time points was not practical at that time). A
smaller number of pilot studies with AMPA antagonists were also
disappointing, in one case (ZK20075) unsurprisingly depressing
consciousness (Ginsberg, 2008).

The first wave of NMDA antagonist stroke trials was followed
by two significant improvements, but these second-generation
efforts also failed. The first improvement, informed by insights
into the molecular biology and subunit composition of glutamate
receptors, was the use of antagonists selective for NR2B/GluN2B.
The predominant expression of NR2B in forebrain vs. cerebellum
and limbic areas raised hopes of achieving neuroprotection
with less dose-limiting side effects. Furthermore, as discussed
below, consideration of Ca2+ source specificity and NMDAR
signaling relationships suggested that NR2B contributes more
to excitotoxic death than the other major forebrain subtype,
NR2A. A older antagonist, ifenprodil, was discovered to be
conveniently NR2B selective, attractively use-dependent and
neuroprotective in multiple animal models of global and focal
brain ischemia (Wang and Shuaib, 2005; Gogas, 2006). New
molecular entity congeners of ifenprodil, SL-82.0715 and CP-
101,606 were developed by Synthélabo and Pfizer, respectively,
and exhibited reduced side effects compared to pan NMDAR
antagonists. But the former failed to show efficacy in a stroke
trial and the latter was felled by electrocardiographic toxicity
(QT prolongation) after showing some promise against severe
traumatic brain injury (Yurkewicz et al., 2005; Lai et al., 2014).

The second improvement was in stroke trial methodology.
Recognizing that treatment delay was problematic in prior
stroke neuroprotection trials, Saver et al. (2015) completed a
remarkable multicenter study (FAST-MAG) in which intravenous
magnesium sulfate was given to 1700 acute stroke patients
by paramedics within 2 h (and often within 1 h) of
stroke onset. Still no improvement in outcome measures
was observed. An earlier study of Mg2+ treatment for
stroke (IMAGES) with a 12 h treatment window was also
negative (Muir et al., 2004). While the methodological advance
represented by FAST-MAG is clear, direct relevance of FAST-
MAG and IMAGES to the hypothesis of NMDAR-mediated
excitotoxicity in human stroke is less so. Mg2+ has multiple
actions that might contribute to its modest neuroprotective
effects in animal stroke models, and it is likely that its
block of NMDA channels in the ischemic brain would be
substantially relieved by cellular depolarization (Mayer et al.,
1984; Nowak et al., 1984).

Enthusiasm for developing anti-excitotoxic therapies for
stroke was also progressively dampened by the lack of efficacy
in stroke trials demonstrated by several other drugs targeting
related mechanisms, including voltage-gated Ca2+ channels
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(nimodipine), free radicals (tirilazad mesylate, ebselen, NXY-
059), phospholipid hydrolysis (citicoline), and nitric oxide
synthase (lubeluzole). These trials also had shortcomings in
concept or design, commonly involving the use of doses and delay
time windows that were not supported by the enabling preclinical
studies (Ginsberg, 2008; Sutherland et al., 2012). Administration
of a lipophilic Ca2+/Zn2+ chelator, DP-b99, within 9 h of stroke
onset also failed in Phase III testing (Lees et al., 2013).

The free radical drugs tested would be considered less
than compelling candidates today in updated comparisons.
Neither tirilazad (Hall, 1997) nor NXY-059 (Kuroda et al.,
1999) penetrate well into brain parenchyma, and NYX-
059 exhibited little antioxidant activity on cultured neurons
(Antonic et al., 2018). Ebselen is a mimic of glutathione
peroxidase that would be expected to decompose only a subset
of harmful radicals (hydroperoxides); it has little aqueous
solubility and requires a thiol co-substrate like glutathione
to maintain activity. A fourth antioxidant drug, edaravone,
has a favorable chemical profile, being amphiphilic and able
to directly scavenge a range of harmful lipid- and water-
soluble radicals (Watanabe et al., 2018). It has protective
effects in multiple animal models of brain ischemia, and
showed sufficient evidence of neuroprotective efficacy in clinical
testing to gain approval for use in stroke in Japan (Lapchak,
2010). Available published data documented a just significant
(p = 0.048) beneficial effect on 90 d clinical outcome in
patients treated within 72 h of stroke onset; clear benefit was
suggested in an exploratory analysis including only patients
treated within 24 h (Edaravone Acute Infarction Study Group,
2003). Subsequent clinical trials demonstrating ability to slow
the progression of amyotrophic lateral sclerosis supported
the premise of human neuroprotective activity, and led to
US FDA approval in 2017 for that indication (Radicava)
(Cruz, 2018).

By 2001, I had moved to work in the pharmaceutical
industry and was in a position to champion an improved
NMDA antagonist/stroke trial, but I had become worried that
there was potentially a conceptual problem with hard blocking
NMDARs in the ischemic brain: apoptosis (Choi, 1995; Lee et al.,
1999; Ikonomidou and Turski, 2002; Papadia and Hardingham,
2007). Programmed cell death had come to center stage in
biological research, spearheaded by elegant genetic studies in
C. elegans (Ellis and Horvitz, 1986; Hengartner and Horvitz,
1994) and growing appreciation that apoptosis occurs in a
wide range of disease states outside of normal development.
Hypoxic-ischemic cell death was long considered to be a defining
example of a non-apoptotic, “accidental” death – necrosis –
triggered by “violent and non-physiological” environmental
changes (Wyllie et al., 1980). It, like classic excitotoxicity,
was associated with prominent cellular and organellar swelling
and membrane rupture, in contrast to the controlled cellular
condensation characteristic of apoptosis. Yet evidence was
steadily emerging suggesting that some neurons underwent
apoptosis after ischemia, in particular selectively vulnerable
neurons dying in delayed fashion after TGI (Goto et al., 1990;
Shigeno et al., 1990); but also after focal ischemia (Linnik
et al., 1993; MacManus et al., 1994), especially threshold insults

triggering “very delayed infarction” days later (Du et al., 1996;
Endres et al., 1998).

As expected, intense excitotoxic death appeared typically not
to be apoptotic (Ignatowicz et al., 1991; Dessi et al., 1993;
Choi, 1996). However, slowly triggered AMPAR/KAR-mediated
neuronal death was associated with internucleosomal DNA
cleavage, consistent with incomplete activation of apoptosis
pathways (Gwag et al., 1997), and neuronal apoptosis occurred
after mild excitotoxic insults, either in young cultures with
limited EAA receptor expression (Kure et al., 1991) or with
lower concentrations of NMDA (Bonfoco et al., 1995). These
studies fit with findings that apoptosis could be induced by Ca2+

overload (Wyllie et al., 1984) or oxidative stress (Lennon et al.,
1991), including NO (Albina et al., 1993). More recent studies
have indicated that Ca2+ and oxidative surges can interact at
the ER-mitochondrial signaling interface to trigger mitochondrial
membrane permeabilization, permitting cytochrome c and AIF
release, and the activation of caspase-dependent or caspase-
independent apoptosis pathways (Tajeddine, 2016; Hempel and
Trebak, 2017; Humeau et al., 2018). Or resulting in necrosis, if
mitochondrial and cellular failure is fulminant.

Together, these observations suggested that excitotoxicity,
like many other insults, has the potential to trigger regulated
cell death programs; but when intense, membrane, energy
and protein synthesis failure destroy neurons before these
programs can complete. Ca2+ ionophores likewise can induce
neuronal apoptosis at low concentrations, and necrosis at high
concentrations (Gwag et al., 1999). A death race hierarchy
was already apparent in cultured cortical neurons deprived of
oxygen and glucose: blockade of rapidly triggered NMDAR-
mediated death was necessary to reveal AMPAR/KAR-dependent
death. Blocking both NMDAR and AMPAR/KAR-mediated
neurotoxicity rendered neurons resistant to prolonged OGD, but
then a further increase in OGD duration (“blocked OGD”) drove
neurons into apoptosis (Gwag et al., 1995; Choi, 1996).

Consideration of ischemic apoptosis suggested that a
sustained high degree of NMDAR blockade could be harmful.
While presumably beneficial initially in reducing acute
excitotoxic necrosis and the triggering of ischemic apoptosis,
sustained blockade risks keeping [Ca2+]i below a necessary
survival “set-point” (Koike et al., 1989). U-shaped curves are
ubiquitous in cell and organismal biology, with deleterious effects
induced by both too little and too much of many metabolites,
messengers, drugs, etc. Apoptosis of young sympathetic neurons
induced by nerve growth factor (NGF) withdrawal can be
attenuated by raising [Ca2+]i from a basal level of 90 nM to
about 240 nM, the same higher basal level found in older neurons
capable of surviving without NGF (Koike and Tanaka, 1991).
This survival-promoting level of [Ca2+]i is considerably lower
than the levels associated with excitotoxic exposure to glutamate,
which can exceed 10 µM (Stout and Reynolds, 1999) and are
associated with much larger amounts of net cellular calcium
loading than that induced by survival-promoting activation of
voltage-gated Ca2+ channels (Hartley et al., 1993). Lowering
extracellular Ca2+ or reducing membrane Ca2+ channel opening
induces apoptosis in a wide range of cell types [reviewed in
Canzoniero et al. (2004)]. Many signaling pathways transduce
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the ability of moderate Ca2+ levels to promote cell survival,
including the activation of PI3K/Akt/mTOR, Ras/Raf/ERK, and
AMPK pathways, as well as modulation of gene expression by
CREB and NFAT family transcription factors downstream of
Ca2+ / calmodulin (Pinto et al., 2015; Feldmann et al., 2018;
Varghese et al., 2019).

Supporting the premise of Ca2+ starvation in neurons
undergoing ischemic apoptosis, [Ca2+]i was abnormally low in
neurons dying after exposure to blocked OGD, and normalizing
[Ca2+]i with the voltage-gated Ca2+ channel opener, S)-(-)-
BayK-8644, or even low concentrations of kainate improved
neuronal survival (Canzoniero et al., 2004). 1–2 days NMDAR
blockade alone reduced cultured neuronal [Ca2+]i below baseline
levels and triggered / enhanced apoptosis (Takadera et al., 1999;
Snider et al., 2002; Yoon et al., 2003); injection of a single
dose of MK-801 induced neuronal apoptosis within hours in the
developing rat brain (Ikonomidou et al., 1999). Consistent with a
benefit of low level glutamate receptor activation in vivo, delayed
administration of the partial NMDA agonist, D-cycloserine,
improved functional outcome in rats after traumatic brain
injury (Adeleye et al., 2010) or focal ischemia (Dhawan et al.,
2011). Figure 3 illustrates in broad brush strokes how neuronal
[Ca2+]i, apoptosis and necrosis might interrelate after excitotoxic
/ ischemic insults.

In sum, whether NMDA antagonists are beneficial or harmful
in the ischemic brain may depend on multiple insult and
treatment specifics, with key issues being the relative proportion
of necrosis vs. apoptosis taking place; and the timing, location
and amount of [Ca2+]i lowering induced by the drugs. A
dynamic that might slow excitotoxic necrosis and thus increase
the overall contribution of apoptosis to ischemic brain damage is

a reduction of extracellular Na+ and Ca2+, as documented with
ion-sensitive electrodes (Hansen, 1985); also see below under
Potassium). Furthermore, ischemic apoptosis might be expected
to be more prominent in human stroke, with its sometimes
stuttering onset and potentially large penumbral areas across
complex gyral anatomy, than after surgical artery occlusion in
some lissencephalic rat stroke models. Another reason why early
subtype-unspecific NMDA antagonists might have disappointed
in human stroke, despite their routine effectiveness in rat stroke.

EXPANSION AND REFINEMENT OF
EXCITOTOXICITY CONCEPTS

NMDARs and Ca2+ Source Specificity
Returning to the excitotoxicity story, the next major advance
in the 1990s was appreciating that Ca2+ source makes a
difference. Noting that elevations of [Ca2+]i mediated by
voltage-gated Ca2+ channels lacked the toxicity associated with
NMDAR activation, Tymianski et al. (1993) proposed that
NMDARs were preferentially linked to downstream mediators
of excitotoxic injury. The discovery that the PDZ domains of
both NR2B (Moon et al., 1994) and nNOS (Brenman et al.,
1996) interacted with PDZ domains of the postsynaptic density
protein, PSD-95, fit the bill, and furthermore placed NR2B in
the foreground of excitotoxicity. Suppressing PSD-95 protein
expression in cultured neurons attenuated both NMDA-induced
NO production and neuronal death, without affecting NMDA
currents or NMDA-induced Ca2+ loading (Sattler et al., 1999).

Extension of the Ca2+ source specificity hypothesis was
pursued in studies assessing the relative contributions of

FIGURE 3 | Old but possibly still useful concept diagram illustrating relationships among insult severity, net [Ca2+]i and the survival-apoptosis-necrosis continuum. A
single insult might lead either to apoptosis or necrosis, depending on insult severity and [Ca2+]i , with low [Ca2+]i or milder insults favoring apoptosis. Optimal Ca2+

setpoints may also apply to neurite outgrowth and nerve growth cone movements (Mattson and Kater, 1987). Reprinted from Choi (1995).
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extrasynaptic and synaptic subpopulations of NMDARs to
excitotoxic death. Synaptic and extrasynaptic NMDA receptors
exhibit similar single channel properties (Clark et al., 1997)
but have been reported to trigger different transcription factor
and gene expression changes; activation of extrasynaptic but
not synaptic NMDARs caused rapid loss of mitochondrial
membrane potential and neuronal death (Hardingham et al.,
2002; Karpova et al., 2013). Mediation of excessive Ca2+

influx into mitochondria was postulated to be favored by
extrasynaptic NMDAR activation, possibly due to spatial
proximity (Bading, 2017). However, the distinction between
synaptic and extrasynaptic receptors may not be sharp, as burst
stimulation of inputs to hippocampal CA1 neurons activates
both populations (Harris and Pettit, 2008). And arguing against
synaptic localization per se altering NMDAR contributions to
excitotoxicity, delocalizing synaptic NMDARs by depolymerizing
F-actin did not alter NMDAR-induced current, Ca2+ loading,
or cell death. The delocalization did attenuate death after OGD,
consistent with synaptic localization increasing exposure to the
glutamate released by nerve terminals (Sattler et al., 2000).

Comparing cell death after intense activation of extrasynaptic
vs synaptic NMDARs, some investigators have proposed that
these subpopulations have opposing effects on excitotoxic death:
extrasynaptic receptors promoting death, and synaptic receptors
promoting survival (Hardingham et al., 2002; Hardingham,
2009; Lai et al., 2011; Parsons and Raymond, 2014; Wu and
Tymianski, 2018). Consistent with that proposal, synaptic activity
repressed expression of the mitochondrial Ca2+ uniporter,
Mcu and reduced neuronal vulnerability to excitotoxic death,
a plausible neuroprotective adaptive mechanism (Qiu et al.,
2013). However, while supported by careful experiments, the
receptor location hypothesis is best considered to be still
under test. It does not fit easily with the prominence of PSD-
95/nNOS signaling in NMDAR-mediated excitotoxicity, since
association with PSD-95 is a hallmark of synaptic localization.
Furthermore, as outlined above, the ability of NMDAR activation
to reduce apoptosis at lower levels and yet drive excitotoxic
apoptosis or necrosis at higher levels can be explained in
terms of net Ca2+ fluxes and Ca2+ setpoints, without invoking
this additional level of source specificity. The experimental
necessity of utilizing different paradigms to activate synaptic
vs extrasynaptic receptors (eg, bicuculline + 4-aminopyridine
to stimulate the former, bath glutamate + prior MK-801 to
stimulate the latter) leaves open the possibility that outcome
differences primarily reflect differences in ionic current envelopes
or even just overall Ca2+ influx, rather than differences in the
fundamental properties of extrasynaptic vs. synaptic receptors.
The equivalence of cellular Ca2+ loading achieved by the
extrasynaptic vs. synaptic activation paradigms is not assured
by measuring peak [Ca2+]i, especially if high affinity indicators
like Fluo-3 are used, as these may saturate below micromolar
excitotoxic elevations (Hyrc et al., 1997; Stout and Reynolds,
1999). Additionally, modulatory influences present differentially
at synapses vs elsewhere, e.g., pH changes or Zn2+ released
by nerve terminals (see below), or differential levels of cell
injury may affect outcomes. The receptor location hypothesis
might not matter much in stroke anyway, as a large buildup

of extracellular glutamate would probably overstimulate both
synaptic and extrasynaptic receptors.

In the strongest formulation of Ca2+ source specificity,
NMDAR subtypes have been assigned both to distinct locations
and opposing roles, with NR2A assigned to synaptic locations
and pro-survival roles, and NR2B assigned to extrasynaptic
locations and pro-death roles (Liu et al., 2007). However,
electrophysiological examination of ifenprodil sensitivity in
cultured hippocampal neurons suggested that NR2A and
NR2B can both be located in either synaptic or extrasynaptic
compartments (Thomas et al., 2006). This formulation will also
need adjustment to accommodate other subunit compositions
of NMDARs, as many are likely triheteromeric, containing both
NR2A and NR2B subunits (Tovar et al., 2013).

Additional to activation of nNOS, other NR2B-linked
signaling pathways have been proposed to be mediators of
excitotoxic death, including death-associated protein kinase 1
(DAPK1) (Nair et al., 2013), phosphatase and tensin homolog
deleted on chromosome 10 (PTEN) (Ning et al., 2004) and
NOX2 (see below). DAPK1 was recruited to the NR2B
protein complex after transient middle cerebral artery occlusion
(tMCAO), binding to a unique region of the NR2B C-terminal
region, phosphorylating NR2B and upregulating channel current;
administration of a peptide uncoupling DAPK1 from NR2B or
genetic deletion of DAPK1 reduced infarction after tMCAO and
selective neuronal death after TGI (Tu et al., 2010). However,
another study did not find evidence of DAPK1 modifying NR2B
after excitotoxic insults, or reduced neuronal death after TGI in
Dapk1−/− mice (McQueen et al., 2017). Downregulating PTEN
expression with antisense oligodeoxynucleotides enhanced Akt
signaling and reduced the death of vulnerable hippocampal CA1
neurons after TGI (Zhang et al., 2007).

Likely many signaling pathways affecting cell death are
triggered by glutamate receptor overactivation, not only via
direct signaling linkages, but also unspecifically consequent to
cellular damage. Example of the latter are ROS/RNS-induced
DNA single strand breaks activating PARP, or mitochondrial
damage releasing ROS and cytochrome c. Another example of
an unspecific link would be damage to ER and accumulation
of misfolded proteins, activating the PERK/eIF2 pathway,
increasing levels of ATF4 and CHOP, and promoting apoptosis
(Sokka et al., 2007; Almanza et al., 2019). Furthermore, whether
a given downstream signaling pathway or event is ultimately
responsible for excitotoxic death, or even whether it promotes
death vs survival, may depend on quantitative specifics and
cellular state. As discussed above, raising [Ca2+]i can be either
survival-promoting or death-promoting, depending. PI3K/Akt
signaling is often survival promoting, but in some settings
can enhance apoptosis (Los et al., 2009), and cytoplasmic
PI3K activation enhances superoxide production by NOX2 (see
below). JNK signaling is usually pro-apoptotic but anti-apoptotic
functions have been described (Liu and Lin, 2005); and Jnk3 −/−

mice exhibited reduced kainate-induced and ischemic apoptosis
(Yang et al., 1997; Kuan et al., 2003). Yet another example of
context-dependent pathway effects on cell survival would be
upregulation of BDNF expression by glutamate receptor-induced
Ca2+ influx or ischemia (Lindvall et al., 1992; Zafra et al., 1992;
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Favaron et al., 1993; Hardingham et al., 2002). While BDNF
is classically anti-apoptotic, it accentuated excitotoxic neuronal
necrosis (Koh et al., 1995) and glutathione depletion-induced
death of immature neurons (Ratan et al., 1996).

NADPH Oxidase
NADPH oxidase (NOX) comprises a family of 7 membrane-
active protein complexes, NOX1 through NOX5, DUOX1, and
DUOX2, that catalyze the transfer of electrons from NADPH
to molecular oxygen, primarily generating superoxide (Bedard
and Krause, 2007). While long recognized as a key component
of neutrophil antimicrobial defenses, NOX was later found in
many tissues, including brain, and implicated in acute and
chronic neurodegeneration (Infanger et al., 2006; Sorce and
Krause, 2009). NOX1, NOX2 and NOX4 are the main brain
isoforms, and mice with genetic deletion of the gp91phox catalytic
unit of NOX2 exhibited reduced brain infarction after tMCAO,
even if neutrophil NOX2 was rescued with a bone marrow
transplant (Walder et al., 1997; Tang et al., 2011). Subsequent
studies showed that ischemia raised the expression of NOX2 and
NOX4 in multiple brain cell types over ensuing hours-days, and
that amelioration of ischemic infarction could also be achieved
by genetic disruption of NOX4 (Radermacher et al., 2013; Ma
et al., 2017). Increased expression of endothelial and neuronal
NOX4, which is constitutively active, likely contributes to blood-
brain barrier (BBB) breakdown and neuronal death, respectively
(Casas et al., 2017).

Brennan et al. (2009) identified NOX2 as a specific source
of ROS production after NMDAR overactivation, demonstrating
that both NMDA-induced ROS production and neuronal death
in cortical cultures were blocked by the NOX2 inhibitor,
apocynin, the hexose monophosphate pathway inhibitor, 6-
aminonicotinamide (reducing NADPH), or deletion of the NOX2
subunit gene, p47phox, as well as by removal of extracellular Ca2+

or inhibition of PKCζ, the latter responsible for phosphorylating
and activating p47phox (Heinecke et al., 1990; Bedard and Krause,
2007). Subsequent study implicated NR2B and phophoinositide-
3 kinase (PI3K) upstream of PKCζ (Brennan-Minnella et al.,
2013). PI3K activation is likely mediated by Ca2+ / calmodulin
(Joyal et al., 1997), as well as possibly through the NR2B
C-terminal / PSD-95 signalosome (Chen et al., 2015; Minnella
et al., 2018). Another way this signalosome might facilitate
NOX2 activation is via Src and Panx1 channel opening; loss of
Zn2+ homeostasis may also contribute (see below). Importantly,
the NR2B/NOX2 pathway is strongly inhibited by small drops
in intracellular pH (Lam et al., 2013), so its contribution to
ischemic injury may be limited to onset, the outer penumbra and
reperfusion (see Protons, below).

AMPA Receptors
As noted above, AMPA receptors (AMPARs) mediate Na+ influx
and hence can contribute to excitotoxic Ca2+ overload and
neuronal death. Although these receptors lack direct linkage
to NOS/NOX, they participate substantially in brain damage
after focal and global ischemia, in the latter setting typically
contributing more than NMDARs to the delayed death of
selectively vulnerable neurons (Sheardown et al., 1990; Buchan
et al., 1991; Hicks et al., 1999). This prominent contribution

to delayed selective neuronal death may be largely due to
upregulated expression of Ca2+-permeable AMPA receptors.

The Ca2+ (and Zn2+, see below) permeability of central
AMPARs during development and in response to synaptic
activity is regulated by the expression of an RNA-edited form of
AMPA subunit GluR2 that contains an arginine residue instead
of the genetically-coded glutamine in a key position within
the second transmembrane domain (Burnashev et al., 1992;
Liu and Zukin, 2007). While most central AMPARs contain
such edited GluR2 subunits and exhibit low Ca2+ permeability,
certain telencephalic and cerebellar neurons, including aspiny
interneurons and neurons with high levels of nNOS, express
Ca2+-permeable AMPARs and are highly vulnerable to AMPA-
induced neuronal death (Hope et al., 1991; Weiss et al., 1994).
Ischemia enhances the expression of Ca2+-permeable AMPARs
in vulnerable neuronal populations (Pellegrini-Giampietro et al.,
1992), which then constitute a dominant route for toxic
Ca2+/Zn2+ entry, limiting the protective reach of NMDA
antagonists. This enhancement is mediated by turning on
expression of the gene silencer REST, reducing GluR2 promoter
activity (Calderone et al., 2003).

Kainate Receptors
While less studied than other glutamate receptor due to a
historical paucity of selective pharmacological tools, kainate
receptors (KARs) are expressed postsynaptically at glutamatergic
synapses and presynaptically on glutamatergic and GABAergic
nerve terminals, modifying transmitter release (Jane et al., 2009;
Traynelis et al., 2010). Postsynaptic KARs contribute to synaptic
excitation, more at some synapses, such as mossy fiber inputs to
hippocampal CA3 neurons, than others; and likewise participate
variably in synaptic plasticity. Analogous to AMPARs, a minority
of KARs containing unedited GluK1 or GluK2 subunits can
be Ca2+ permeable and convey heightened vulnerability to
glutamate excitotoxicity where heavily expressed, for example
on somatostatin-containing interneurons (Sun et al., 2009).
Administration of the GluK1R antagonist, LY377770, 2 h after
endothelin-1-induced focal ischemia in rats reduced infarction
and produced a surprisingly large reduction in extracellular
glutamate levels in ipsilateral striatum (O’Neill et al., 2000).

Metabotropic Glutamate Receptors
Glutamate released from nerve terminals and astrocytes will
activate G-protein coupled mGluRs on neurons and glia
concurrently with ionotropic glutamate receptors. There are
8 major mGluRs and several splice variants, divided into 3
groups based on structure, function, and pharmacology: Group
I (mGluR1, mGluR5) linked to activation of phospholipase C
(PLC); and Groups II (mGluR2, mGluR3) and III (mGluR4,
mGluR6, mGluR7, mGluR8) linked to inhibition of adenylate
cyclase (Schoepp et al., 1990; Pin and Duvoisin, 1995). mGluRs
modulate synaptic transmission and plasticity; although they
probably do not play a primary role in mediating acute
excitotoxic brain injury, they influence this injury and are
thus worth keeping in view for possible secondary therapeutic
targeting in stroke (Sun et al., 2019).

Group I mGluR-activated PLC generates inositol 1,4,5-
trisphosphate, triggering Ca2+ release from ER, and
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diacylglycerol, which together through PKC can enhance
excitotoxic Ca2+ entry through NMDARs, NCXs and NHEs
(see below) (Benquet et al., 2002; Lipp and Reither, 2011); and
activate phospholipase A2, promoting ROS formation and lipid
peroxidation (Bonventre, 1997; van Rossum and Patterson,
2009; Guemez-Gamboa et al., 2011). Possibly through PLC
/ diacylglycerol signaling, mGluR1 also opens plasmalemmal
TRP (TRPC3) cation channels (see below) (Kim et al., 2003;
Hartmann et al., 2011). As expected from these actions, and the
typically net excitatory effects of Group I agonists on neural
circuits, activation of Group I mGluRs enhanced NMDA-induced
neuronal death; and inhibition, especially of mGluR1, reduced
that death in vitro (Bruno et al., 1995b, 1999; Strasser et al., 1998)
as well as ischemic injury in vivo (Pellegrini-Giampietro et al.,
1999; Li et al., 2013). Besides canonically activating PLC, Group
I mGluRs could potentially have neuroprotective effects through
G-protein mediated downmodulation of NMDARs (Yu et al.,
1997; Bertaso et al., 2010) and neuroprotective Akt signaling
via Homer, PIKE-L and nuclear PI3K (Rong et al., 2003; Xu
et al., 2007). However at least the latter action may be quickly
abrogated by calpain (Xu et al., 2007). Surprisingly though,
interfering with the C-terminal interactions between mGluR1
and NR2A with cell-permeable peptides was recently reported to
attenuate NMDA-induced neuronal death in vitro and infarction
after tMCAO (Lai et al., 2019).

In contrast, Group II and III mGluRs most often have
inhibitory effects on neural circuits. and anti-excitotoxic effects
of Group II or Group III agonists have been observed in vitro
(Bruno et al., 1995a). The Group III agonist ACPT-1 reduced
infarction in rats after tMCAO (Domin et al., 2018). Within
Group II however, neuronal mGluR2 activation has been
proposed to enhance excitotoxicity, perhaps by limiting GABA
release (Corti et al., 2007). A novel selective mGluR2 negative
allosteric modulator, ADX92639, reduced selective neuronal
death after TGI (Motolese et al., 2015).

Protons
In addition to Na+ and Ca2+, another cation participating in
excitotoxicity is H+. Rapid local changes in extracellular pH
accompany physiological neuronal activity and modulate the
behavior of many receptors, channels and transporters (Chesler,
1990), including NMDARs, which are inhibited by H+ around
physiological pH (Tang et al., 1990). In the ischemic brain, tissue
and extracellular pH typically drops within minutes toward 6.5 or
lower, due to reliance on anerobic glycolysis for ATP resynthesis
(Ljunggren et al., 1974; Kraig et al., 1985; Dennis et al., 1991;
Katsura et al., 1991), an increase in extracellular H+ sufficient
to attenuate NMDAR channel openings (Tang et al., 1990)
and NOX2 activity (see above). Expectedly NMDAR-mediated
excitotoxicity is also reduced (Giffard et al., 1990b; Tombaugh
and Sapolsky, 1990).

Despite reducing NMDAR and NOX activation, acidosis is
still likely a net contributor to ischemic brain damage as long
postulated, as movements of H+ or H+ equivalents amplify
excitotoxicity. Ischemic acidosis enhances neurotoxic Ca2+

overload via the gating of acid-sensing ion channels (ASICs –
see below). Furthermore, several studies have shown that

glutamate- or NMDA-induced Ca2+ influx into hippocampal
neurons is accompanied by rapid intracellular acidification,
in part due to Ca2+ displacement of H+ from intracellular
binding sites (Hartley and Dubinsky, 1993; Irwin et al., 1994;
Koch and Barish, 1994). NOX2 activity (Lam et al., 2013)
and electroneutral operation of the plasma membrane calcium
ATPase (PMCA) may also contribute, the latter importing
2 H+ ions for every Ca2+ ion exported (Stawarski et al.,
2020). Intracellular pH dropped initially to around 6.5 during
excitotoxic glutamate exposure (500 µM × 5 m) before
progressively recovering and overshooting to pH 7.5–8.0 as
a result of acid-extrusion mechanisms, especially membrane
Na+/H+ exchangers (NHEs) (Raley-Susman et al., 1991; Rathje
et al., 2013). Sustained operation of NHEs loads intracellular
Na+, which then raises intracellular Ca2+ via NCXs. Consistent
with this sequence contributing to excitotoxicity, inhibition
of NHE-1 with cariporide reduced glutamate-induced cortical
neuronal death, as well as three predicted intermediate steps:
a later increase in [Ca2+]i, loss of mitochondrial membrane
potential, and intracellular production of ROS (Lee and Jung,
2012). NHE−/− mice exhibited reduced infarction after tMCAO
(Luo et al., 2005).

In addition, ischemic acidosis is likely itself cytotoxic.
Exposure to pH 6.5 for 6 h is lethal to both neurons and glia
(Nedergaard et al., 1991). Astrocytes are especially vulnerable
to proton-induced death (Goldman et al., 1989; Giffard et al.,
1990a), and can be killed after only 15–20 m exposure to pH 6.6
if other extracellular ions are altered to levels found in ischemic
brain (low Ca2+ and Na+, high K+, hypoxia), conditions
likely to impair cellular pH homeostasis (Swanson et al., 1997;
Bondarenko and Chesler, 2001). Sustained intracellular acidity
likely becomes lethal due to myriad disturbances in protein
conformation and essential cellular processes (Nedergaard et al.,
1991), including energy failure (Swanson et al., 1997). If cellular
H+ favors release of ferrous iron (Kraig et al., 1987), the
Fenton reaction (Jung et al., 2009) may facilitate hydroxy
radical formation, lipid peroxidation, and a “ferroptosis” form
of regulated cell death (Xie et al., 2016; Ratan, 2020) if necrosis
does not supervene. Proton-induced death of cerebellar neurons
is accompanied by an increase in [Zn2+]i and reduced by Zn2+

chelation, raising the possibility that disturbance in Zn2+ storage
or other homeostatic mechanisms may also contribute to H+
cytotoxicity (Isaev et al., 2010).

Potassium
A core property of the cation channels gated by ionotropic
glutamate receptors, besides permeability to Na+, and in certain
cases Ca2+/Zn2+, is high permeability to K+ (Nowak et al.,
1984). Although glutamate receptor-mediated K+ movement has
received less attention than Na+ or Ca2+ movement, it may
contribute significantly to excitotoxic apoptosis after mild insults
or under other conditions where excitotoxic necrosis is blunted.

Noting that the hallmark cell volume loss occurring during
apoptosis would require K+ to exit, my laboratory examined
K+ currents in cortical neurons undergoing serum deprivation-
induced apoptosis and observed early enhancement of the
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delayed rectifier current, IK . Attenuating this current with
tetraethylammonium (TEA) or raising extracellular K+ inhibited
apoptosis, even if [Ca2+]i was kept at resting levels with
gadolinium (Yu et al., 1997). This implication of K+ efflux in
neuronal apoptosis converged with observations implicating that
efflux in other cell types (Bortner and Cidlowski, 2007), and
in particular two findings: 1) lymphocyte apoptosis required
enough K+ efflux to lower [K+]i to less than 50 mM (Bortner
et al., 1997); and 2) in those cells, activation of pro-caspase-3
by cytochrome c and apoptotic nuclease activity was [K+]i -
dependent, inhibited by normal [K+]i and released by lowered
[K+]i (Hughes et al., 1997).

Supporting the notion that K+ efflux may promote apoptosis
after mild excitotoxic insults, in a cortical culture model of
NMDA-induced neuronal apoptosis (achieved by using a low
concentration of NMDA, lowering extracellular Na+ and Ca2+

to levels found in the ischemic brain and extending exposure
time), NMDAR activation markedly reduced cellular K+ content
(Yu et al., 1999). Furthermore, intraventricular injection of TEA
reduced infarction in rats after tMCAO, a finding contrary to
prediction from a classic excitation / excitotoxicity standpoint,
but consistent with participation of K+ efflux in ischemic
apoptosis (Wei et al., 2003).

Zinc
Yet another less-studied cation that participates in excitotoxicity
is zinc (Choi and Koh, 1998; Frederickson et al., 2004; Sensi
and Jeng, 2004; Granzotto and Sensi, 2015). Zn2+ is a dietary
requirement and has many essential roles in cell biology
(Parisi and Vallee, 1969; Maret, 2017), including service as
a central neurotransmitter/neuromodulator regulating circuit
behavior and synaptic plasticity (Frederickson, 1989; Smart
et al., 1994; Frederickson et al., 2005). Reactive Zn2+ is stored
in presynaptic vesicles within a subset of glutamatergic nerve
terminals throughout CNS and co-released with glutamate in a
Ca2+-dependent fashion upon nerve terminal firing. Synaptically
released Zn2+ modifies the behavior of multiple moieties on
postsynaptic membranes, including voltage- and agonist-gated
channels, with primary signaling actions likely on NMDA and
AMPA receptors (Peters et al., 1987; Westbrook and Mayer,
1987; Kalappa et al., 2015). It can also enter (and likely leave)
postsynaptic target neurons though Ca2+ routes that might
equally well be called Ca2+/ Zn2+ routes, including voltage-
gated Ca2+ channels, NMDARs, Ca2+-permeable AMPARs, TRP
channels, ASIC1a and in depolarized cells, reverse operation of
NCXs (Sensi et al., 1997; Kerchner et al., 2000; Inoue et al.,
2015), the last augmented by intracellular H+ and NHE operation
(Kang et al., 2020). Ischemic acidosis may also favor Zn2+ entry
over Ca2+ entry through voltage-gated Ca2+ channels (Sheline
et al., 2002). Gating of unselective Panx1 channels, on neurons by
NMDAR-Src signaling, and on astrocytes and oligodendrocytes
by P2X7 signaling, might be another route for cellular Zn2+ entry
or egress (see below).

Once “translocated” from afferent terminals into postsynaptic
target cells, Zn2+ participates in myriad intracellular signaling
pathways including the activation of a metabotropic Zn2+

receptor, mZnR/GPR39, and inducing intracellular Ca2+ release

(Besser et al., 2009). Additional to translocated Zn2+, a major
source of intracellular signaling Zn2+ is mobilization from
intracellular stores, especially metallothioneins, by oxidation
reactions (Maret, 1994).

Cellular [Zn2+]i is normally tightly regulated, but in
ischemia this homeostasis is disrupted. Release from depolarized
nerve terminals and oxidized intracellular stores, together with
failure of energy dependent transport, produces increases in
extracellular and intracellular Zn2+ that can be cytotoxic,
especially to neurons (Yokoyama et al., 1986; Lobner et al., 2000;
Bozym et al., 2010). Zn2+ like glutamate induces apoptosis at
lower toxic exposures and necrosis at higher exposures (Manev
et al., 1997; Lobner et al., 2000). The parallel between glutamate
and Zn2+ neurotransmission (Frederickson, 1989) thus extends
to excitotoxicity: both are potential transmitter-killers in the
ischemic brain.

Evidence that Zn2+ dysregulation contributes to acute
brain injury was provided by observations of apparent Zn2+

translocation from afferent terminals to the cytoplasm of neurons
degenerating after sustained seizures or transient global ischemia
(Sloviter, 1985; Tønder et al., 1990), and supported by the finding
that intraventricular CaEDTA, which chelates extracellular Zn2+,
blocked both cytoplasmic Zn2+ accumulation and degenerative
changes in vulnerable neurons after TGI (Koh et al., 1996). At
the time we thought CaEDTA was only chelating Zn2+ released
from nerve terminals, but later studies indicated that CaEDTA
can also pull Zn2+ from intracellular stores (Frederickson et al.,
2002; Lavoie et al., 2007). Calderone et al. (2004) determined
that the major accumulation of Zn2+ in vulnerable hippocampal
CA1 neurons occurred more than 48 h after TGI, and that
early injection of CaEDTA attenuated later appearance of Ca2+-
permeable AMPARs, consistent with the possibility that loss of
cellular Zn2+ homeostasis constituted a trigger for reducing
GluR2 expression. Contribution of Zn2+ to infarction after
short duration tMCAO was similarly detected: intraventricular
CaEDTA reduced infarct volume 3 days later, but this protective
effect was lost after full maturation of the infarct 11 days
later, suggesting that an early Zn2+-triggered component of
ischemic infarction was eventually overtaken by other injuries
(Lee et al., 2002).

Zn2+ like Ca2+ also serves as a downstream mediator of
excitotoxicity – the latter’s shadow, unleashed and dysregulated
by glutamate receptor overactivation. The relationship between
Zn2+ and Ca2+ in mediating excitotoxicity is complex, with
target overlap and reciprocal influences; and delineating roles
has been further challenged by lack of specificity in historical
Ca2+ assay tools such as fura-2 (Cheng and Reynolds, 1998).
Studies with Zn2+ selective dyes indicated that OGD induced
an early increase in [Zn2+]i within hippocampal slice CA1
neurons; a Zn2+ chelator blocked this increase and attenuated
neuronal death (Stork and Li, 2006). Further examination
revealed that an OGD-induced increase in neuronal [Zn2+]i
preceded mitochondrial depolarization, Ca2+ deregulation and
membrane failure, with Zn2+ likely entering mitochondria
and contributing to loss of mitochondrial membrane potential
(Medvedeva et al., 2009). This meshed with earlier demonstration
that elevated intracellular Zn2+, like Ca2+, can enter and damage
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mitochondria, leading to their swelling, loss of membrane
potential and, at high levels of Zn2+, increased ROS generation
(Sensi et al., 2003; Clausen et al., 2013), the last likely a
consequence of disturbances in mitochondrial electron transport
as well as Zn2+ induction of p47PHOX and increased NOX activity
(Noh and Koh, 2000; Slepchenko et al., 2017). Downstream
ROS/RNS-induced release of Zn2+ from intracellular stores
(Berendji et al., 1997; Cuajungco and Lees, 1998; Aizenman
et al., 2000) thus drives further oxidative stress. Other injury-
promoting events linked to Zn2+ overload include activation of
nNOS, PARP (Kim and Koh, 2002) and cyclin-dependent kinase
5 (Cdk5 – Tuo et al., 2018; see Wang et al., 2003; Ko et al., 2019)
for links to excitotoxicity). Neuronal Zn2+ overload together with
Ca2+-activated CaMKII increase insertion of delayed rectifier
Kv2.1 channels into the plasma membrane, increasing K+
efflux and facilitating apoptosis (Aras et al., 2009; McCord and
Aizenman, 2013). Zn2+ may also upregulate NMDAR activity
through a Src-dependent mechanism (Manzerra et al., 2001).

In addition to promoting neuronal death, excitotoxic Zn2+

dysregulation may contribute to the death of adjacent non-
neuronal cells in the ischemic brain. Zn2+-induced death
of astrocytes was potentiated by concurrent hypoxia and
reduced by PARP knockdown (Pan et al., 2013). Intracellular
Zn2+ release was implicated in mediating peroxynitrite-induced
death of oligodendrocytes, through activation of ERK42/44,
12-lipoxygenase and further ROS generation, rather than
immediately through hydroxyl radical formation (Zhang et al.,
2006). OGD-induced death of cultured oligodendrocytes was
attenuated by Zn2+ chelation or PARP inhibition (Domercq
et al., 2013). Hydrogen peroxide-induced death of endothelial
cells (Wiseman et al., 2007) and astrocytes (Furuta et al., 2019)
was also attenuated by Zn2+ chelators At sublethal levels,
Zn2+ can upregulate ICAM-1 expression in vascular endothelial
cells, thereby promoting leukocyte attraction and microvascular
leakage (Sumagin et al., 2008; Yeh et al., 2011).

Together, these observations on glia and endothelial cells
suggest that reduction of downstream Zn2+ toxicity may help
account for the observed ability of glutamate antagonists to
reduce brain infarction, not just neuronal death, in animal
models of stroke.

Other Cation Channels
Several other membrane channels, likely activated in part
consequential to glutamate receptor overstimulation, can
contribute to toxic Ca2+/ Zn2+ overload and other ionic
derangements in the ischemic brain:

1. Transient receptor potential channels. These are variably
selective cation channels, subdivided into 7 groups
and including receptor-, second messenger- and store-
operated members (Venkatachalam and Montell, 2007).
Two members of the melastatin group, TRPM7 and TRPM2
are plasma membrane channels highly expressed in brain
and implicated in the pathogenesis of ischemic brain
damage. TRPM7 is activated in the ischemic brain by
ROS/RNS and augments Ca2+ overload and oxidative
stress (Aarts et al., 2003). Suppressing TRPM7 expression

in cortical cultures subjected to either OGD or blocked
OGD attenuated Ca2+ uptake and neuronal death, leading
Aarts et al. (2003) to suggest that TRPM7 might be a
foreground pathway for neuronal Ca2+ influx into anoxic
neurons. Notably, the divalent cation most permeable
through TRPM7 is Zn2+ (Monteilh-Zoller et al., 2003).

TRPM2 is opened by ADP-ribose accumulating secondary
to PARP activity downstream of oxidative DNA damage
(Kaneko et al., 2006; Li et al., 2015). Knockdown of TRPM2
expression or drug inhibitors protected male but not female
cortical neurons in culture from OGD-induced death, and
similarly reduced infarction after focal ischemia in male but
not female mice (Jia et al., 2011).

2. Acid-sensing ion channels are part of the Epithelial Na
channel/degenerin (ENaC/DEG) family of monovalent
plasma membrane cation channels widely expressed
throughout the nervous system and gated by extracellular
protons (Vullo and Kellenberger, 2020). Xiong et al. (2004)
found that pH 6.0 activation of ASIC1a, which is permeable
to divalent cations, mediated Ca2+-dependent neuronal
injury and augmented the neuronal death induced in
cortical cultures by blocked OGD. The ability of ischemic
acidosis to activate ASICs is potentiated by arachidonic acid
liberated by phospholipase A2 (Allen and Attwell, 2002),
as well as by NO, extracellular Zn2+, and Ca2+ signaling
through CaMKII (Gao et al., 2004; Leng et al., 2014). Mice
lacking ASIC1a or pretreated with blocking PcTX venom
developed smaller infarcts after tMCAO, and the protective
effect of PcTX added to that of the NMDA antagonist,
memantine (see below). In a combined pH 6.0 + blocked
OGD paradigm, reducing TRP7 activation by adding an
antioxidant or NOS inhibitor was not neuroprotective
(Xiong et al., 2004) – perhaps another example of one
pathway masking another in a parallel race to death.

3. Pannexin ion channels constitute 3 new members of the gap
junction superfamily, first cloned from mammalian tissue
20 years ago (Barbe et al., 2006; Yeung et al., 2020). Panx1
is widely expressed on the plasma membrane of central
neurons, glia, and endothelial cells. While constitutively
permeable to Cl−, when activated Panx1 becomes a large
conductance pore unspecifically permeable to ions as well
as to some larger molecules such as ATP and dyes. It can
be activated downstream of NMDARs, primarily through a
Src kinase signalosome, but possibly additionally through
Ca2+ or NO signaling (Zhang et al., 2008; Weilinger et al.,
2012). Panx1 can also be activated by P2X7 purinergic
receptors and irreversibly activated by C-terminal cleavage
via caspases, an event that likely contributes to the
execution of apoptosis.

NMDAR-Src activation of Panx1 contributes heavily
to anoxic depolarization (Thompson et al., 2006;
Weilinger et al., 2012). This linkage positions Panx1
as an excitotoxicity amplifier, operating in parallel with the
NMDA channel to augment disturbances in Ca2+, Zn2+,
Na+, and K+. Administration of a novel peptide interfering
with NMDAR-Src activation of Panx1, TAT-Panx308,
reduced OGD-induced elevation in neuronal [Ca2+]i,
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mitochondrial membrane permeabilization and neuronal
death in hippocampal cultures, as well as infarction after
tMCAO in rats (Weilinger et al., 2016).

4. Store-operated Ca2+ entry provides Ca2+ entry and
replenishment of ER Ca2+ stores in both non-excitable
cells and excitable cells, and has been implicated in
the pathogenesis of excitotoxicity and ischemic brain
damage (Li et al., 2015; Serwach and Gruszczynska-Biegala,
2019). The system consists of Orai1-3, plasma membrane
channels selective for Ca2+ [blocked by Zn2+ (Gore
et al., 2004)] and gated by the ER Ca2+ sensors, stomal
interaction molecule isoforms, STIM1-2. Release of ER
Ca2+ induces STIM oligomerization and migration to ER-
plasma membrane junctions, where these open Orai to
permit cytoplasmic Ca2+ entry, which is then taken up
by ER via SERCA ATP pumps. As noted above, Group
I mGluR activation likely contributes to excitotoxic Ca2+

overload by triggering ER Ca2+ release, placing SOCE in an
enabling role. STIM2 is prominently expressed in brain, and
stim2−/− mice exhibited reduced neuronal vulnerability
to hypoxia in vitro and infarction after tMCAO in vivo
(Berna-Erro et al., 2009).

Excitotoxic Glial Cell Death
Although excitotoxicity was originally described as specific to
neurons, oligodendrocytes express a full array of glutamate
receptors (Káradóttir and Attwell, 2007) and are highly
vulnerable to excitotoxic injury and death. Young cultured
oligodendrocytes can be killed by 24 h exposure to kainate
or glutamate; this toxicity was blocked by an AMPAR/KAR
antagonist and enhanced by cyclothiazide, which reduces
AMPAR desensitization (Yoshioka et al., 1995). Vulnerability
to a non-glutamate receptor-mediated mechanism involving
inhibition of cystine update by high concentrations of glutamate
was also demonstrated (Murphy et al., 1989; Oka et al.,
1993). More prominent AMPAR/KAR-mediated, extracellular
Ca2+-dependent excitotoxicity was demonstrated on cultured
optic nerve oligodendrocytes, and a 5–7 days infusion of
kainate destroyed optic nerve oligodendrocytes in vivo
(Matute et al., 1997). Similarly, after maturing 3–5 weeks
on a monolayer of astrocytes, oligodendrocyte vulnerability
to AMPAR/KAR-mediated excitotoxicity was comparable to
that of neurons, with death induced by exposure to as little
as 30 µM AMPA for 3 h (McDonald et al., 1998). OGD
triggered AMPAR/KAR-mediated oligodendrocyte death in
cultures (McDonald et al., 1998) or in adult brain slices (Tekkök
and Goldberg, 2001). Ca2+ -permeable AMPA receptors are
expressed on oligodendrocytes (Matute et al., 1997; Barron
and Kim, 2019) and may substantially mediate this excitotoxic
vulnerability. Loss of cellular Zn2+ homeostasis may contribute,
as oligodendrocytes exposed to OGD developed increased
[Zn2+]i and subsequent death was reduced by a Zn2+ chelator
(Domercq et al., 2013).

In the presence of AMPAR/KAR blockade, OGD induced
extracellular Ca2+-dependent damage to oligodendrocyte
myelinating processes (Salter and Fern, 2005), likely mediated
by process-specific expression of an unusual NR3-containing

NMDAR relatively insensitive to Mg2+ block (Káradóttir et al.,
2005). Another contributor to ischemic oligodendrocyte damage
may be the their Panx1 channels, possibly activated by P2X7
receptors and ATP released from nearby dying or permeabilized
cells (Domercq et al., 2010).

Most astrocytes express AMPARs and mGluRs, but NMDARs
and Ca2+-permeable AMPARs are generally not abundant
(Bradley and Challiss, 2012; Ceprian and Fulton, 2019;
Skowrońska et al., 2019). In contrast to oligodendrocytes,
astrocytes appear to be relatively insensitive to excitotoxicity,
although as noted above they are vulnerable to Zn2+ or H+-
induced damage, and they express Panx1 channels (Iglesias
et al., 2009). Hence their death could be enhanced secondary to
excitotoxicity occurring in nearby neurons or oligodendrocytes.

BLOCKING EXCITOTOXICITY IN THE
ISCHEMIC HUMAN BRAIN

It is time to get back in the water.
Failure of the first wave of NMDA antagonists in stroke

trials, viewed with the easy clarity of informed hindsight,
does not come close to excluding excitotoxicity as a major
driver of ischemic brain damage or the feasibility of reducing
that damage with anti-excitotoxic approaches. Those drugs
needed to be in the brain at sufficient levels to ameliorate
excitotoxicity at stroke onset, not > 3 h later when efficacy
can no longer be demonstrated in animal models. Patients
with slowly progressive vascular occlusions might still
have benefited, but in many patients the drugs would have
entered brain after cells were largely en route to death
in a glutamate receptor-independent fashion. Neurons
in the outer stroke penumbra with less severe NMDAR
overactivation would have been the slowest to die, but
there pan NMDA receptor blockade may have sometimes
lowered [Ca2+]i too far and exacerbated regulated cell deaths
(Fricker et al., 2018).

Over the last 25 years much has been added to the basic
NMDAR-Ca2+ overload scenario that served as the basis for
initial NMDA antagonist/stroke trials. Returning to an earlier
process framework for excitotoxicity (induction, amplification,
expression - (Choi, 1992), I would highlight the following events
in an updated four-stage working scenario:

1. Induction. Excitotoxicity in the ischemic brain is
predominantly triggered by overactivation of neuronal
NR2B receptors at stroke onset, and in the ischemic
penumbra later, raising [Ca2+]i, activating nNOS
and NOX2, and generating ROS/RNS. Concurrent
overactivation of other NMDARs, AMPARs, KARs,
and mGluR1 augments neuronal Ca2+ overload. Ca2+-
permeable AMPARs, KARs, and NR3-containing NMDARs
mediate Ca2+ overload in oligodendrocytes; reverse
operation of NCXs convert Na+ entry to Ca2+ overload in
axons. Zn2+ overload shadows Ca2+ overload everywhere.
Intracellular pH falls and intracellular K+ begins to leave.
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2. Amplification. Excitotoxic Ca2+/Zn2+ overload is
promoted by the activation of other plasmalemmal
channels, including TRPM7, TRPM2, ASIC1, Panx1 and
Orai; NCXs enhanced by Na+ import via NHEs; oxidative
Zn2+ release from intracellular metallothioneins; and
in some neurons, increasing expression of Ca2+/Zn2+-
permeable AMPARs. Astrocytic swelling and oxidative
stress activate the volume-regulated anion channel
(VRAC – see below), facilitating glutamate release and
intensifying excitotoxic induction.

3. Expression. An expanding array of concurrent injury and
signaling pathways, activated by Ca2+/Zn2+ overload,
K+ efflux, intracellular H+ and oxidative stress head
toward regulated cell deaths over the next hours to
days. DNA damage and PARP activation, membrane
ATPases, and mitochondrial failure deplete energy stores.
Catabolic enzymes, especially phospholipase A2 and
calpains (Markgraf et al., 1998), damage cellular structures
and promote ROS/RNS formation. Increasing intracellular
H+ synergizes with elevated [Zn2+]i to damage all cells. In
severely ischemic cells (core, inner penumbra), fulminant
energy and structural failure culminate in necrosis before
a regulated cell death can complete. Oxidative damage is
enhanced if reperfusion occurs (Traystman et al., 1991),
which it does with increasing frequency in human stroke
today due to interventions.

4. Later events. Excitotoxicity per se triggers and augments
subsequent inflammatory processes to continue destroying
brain tissue. The neurovascular unit (neurons, glia, vascular
elements) releases cytokines and chemokines, recruiting
leukocytes to the evolving infarct over hours to days,
advancing microvascular damage and oxidative stress
(Zoppo et al., 2000; Anrather and Iadecola, 2016; Jayaraj
et al., 2019). In particular, iNOS is expressed in infiltrating
neutrophils and endothelial cells 6–96 h after MCAO in
rats and in human cerebral infarcts (Forster et al., 1999),
adding NO fuel to the fire and synergizing oxidatively with
superoxide emanating from neutrophil NOX2 (Tang et al.,
2011) and endothelial NOX4. Remarkably, inhibition of
iNOS with aminoguanidine reduced infarct volume after
pMCAO in rats when given 24 h later (Iadecola et al.,
1995). Cellular release of lysosomal cathepsin B may also
contribute to remote cell damage and later secondary
degeneration (Zuo et al., 2018).

There have also been significant advances in relevant drug
development methodologies and clinical trial capabilities. In
the wake of the first NMDA antagonist failures, academic and
industry investigators met to devise guidelines for improving
the testing of candidate neuroprotective treatments in animal
models and human trials (Stroke Therapy Academic Industry
Roundtable, 1999; Fisher et al., 2009). Vitally, in the interim
stroke-is-untreatable nihilism has departed from medicine, as
both medical (tissue plasminogen activator, tPA) thrombolysis
and, more recently, endovascular thrombectomy improve
outcomes in selected patients, even if the latter is delayed up
to 24 h after stroke onset (Malik et al., 2020). Major hospitals

now deploy specialized stroke teams, capable of completing
brain imaging and delivering drugs within minutes of a patient’s
arrival, and emergency medical services are tuned to getting
patients to stroke centers as quickly as possible. In some
communities, mobile stroke vans can image and treat patients in
remote locations.

Neuroprotective treatment aimed at reducing ischemic
excitotoxicity could be in theory directed at points anywhere
along the causality chain from excessive extracellular
accumulation of glutamate to the downstream activation
of regulated cell death pathways and destruction of cellular
structures. Upstream targeting has the general advantage of
gaining leverage on multiple divergent downstream pathways
but requires early intervention and could be problematic in
terms of side effects or interference with beneficial downstream
events. Downstream targeting has the advantage of a potentially
longer therapeutic time window, greater specificity and less side
effects, but risks lower efficacy if unblocked pathways still reach
cell death.

Safely reducing glutamate release from depolarized/de-
energized neurons seems a stretch goal, although observations
noted above with a GluK1R antagonist are worth following up,
and reverse operation of neuronal transporters has been proposed
to be a major mediator (Rossi et al., 2000). Ischemic glutamate
release from astrocytes may be a more promising target, as this
appears substantially mediated by druggable volume-regulated
anion channels (VRACs). VRACs are activated by cell swelling
and oxidative stress, and permeable to certain organic anions
including glutamate (Haskew-Layton et al., 2005). Astrocyte-
specific deletion of the obligate VRAC subunit gene, Swell1,
reduced brain infarction in mice subjected to tMCAO (Yang
et al., 2019). This excitotoxicity amplification mechanism might
be specifically targeted by VRAC inhibitors, or unspecifically and
collaterally targeted by antioxidant approaches (Kimelberg, 2005;
Dohare et al., 2014).

Blocking all glutamate receptors at stroke onset would likely
have great anti-excitotoxic efficacy even against initial excitotoxic
necrosis, but widespread loss of fast synaptic excitation would
likely be poorly tolerated. Pan block of NMDARs could be tried
again, achieved with a short-acting drug that could be withdrawn
in time to avoid later Ca2+ starvation. However, as cells in an
evolving stroke are unlikely to be synchronously in the same state,
getting this timing right might be challenging. Future advances in
methods for staging the progression of stroke pathophysiology or
for location-specific drug delivery might bring this approach back
into active consideration.

Block of NR2B is an appealing upstream approach, especially
given experience suggesting that this is doable with an acceptable
level of side effects. If the strong Ca2+ source specificity
hypothesis turns out correct, then full block should be the goal to
interdict all death signaling. The Ca2+ setpoint perspective (and
the complication of triheteromeric NR2A + NR2B receptors)
would favor a more conservative goal of partial block with
a low affinity antagonist that would spare some potentially
anti-apoptotic Ca2+ signaling. A South Korean biotechnology
company, GNT Pharma Co., has developed such a new molecular
entity NR2B antagonist, Neu2000 / Nelonemdaz, which also has
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potent antioxidant properties (Cho et al., 2010; Visavadiya et al.,
2013). Nelonemdaz has a favorable profile in animal stroke model
paradigms including delayed treatment of tMCAO and pMCAO,
and is currently in phase II clinical trials in patients undergoing
endovascular thrombectomy (SONIC) (Hong et al., 2018) or
presenting with acute ischemic stroke (ENIS I). Another way to
improve the therapeutic index of NR2B antagonists may be to
dial in pH sensitivity, so that greater block would occur in brain
regions with severe ischemia and low pH, and lesser block in
brain regions with more normal pH (Yuan et al., 2015).

Moving one step downstream, one might seek to decouple
NR2B from signalosome interactions mediating toxicity,
including PSD-95-nNOS, Src-Panx1 and possibly PI3K-NOX2,
while leaving NR2B channel gating intact. Tymianski and
colleagues have explored this latter approach, using a novel
eicosapeptide, Tat-NR2B9c that disrupts the interaction of the
NR2B C-terminal region with PSD-95 (Ballarin and Tymianski,
2018). Tat-NR2B9c did not block NMDAR-mediated Ca2+

influx, but reduced NMDA-induced neuronal death even if
applied 1 h after NMDA (Aarts et al., 2002), and also reduced
infarction when applied 3 h after tMCAO or 1 h after pMCAO
(Sun et al., 2008). Interestingly, another group has proposed
that the Tat targeting sequence of Tat-NR2B9c, pulled from a
human immunodeficiency virus protein, may have unexpected
anti-excitotoxic properties independent of its NR2B9c payload,
perhaps mediated by inducing endocytic internalization of
membrane ion channels (Meloni et al., 2015).

A Toronto-based biotech company, NoNO Inc. has taken
Tat-NR9B2c (NA-1 / Nerinetide) into clinical development. In
a phase II trial (ENACT), 185 patients undergoing endovascular
repair of intracranial aneurysms received NA-1 or placebo at the
end of their procedure, and the NA-1 treated group sustained
fewer ischemic infarcts (Hill et al., 2012). The results of a just-
completed phase III trial of Nerinetide (ESCAPE-NA1) in 1105
patients with acute ischemic stroke were less encouraging, with
no difference in clinical outcome 3 m after stroke. However
an exploratory analysis suggested that drug treatment within
a 12 h window was associated with improved outcome in the
subset of patients that did not receive tPA (Hill et al., 2020). The
investigators have hypothesized that plasmin generated by tPA
may have cleaved Nerinetide.

Inhibiting many individual steps implicated in augmenting
excitotoxic induction (e.g., blocking mGluR1, AMPAR, or
KAR activation), or downstream in amplifying or expressing
excitotoxicity has been demonstrated to be neuroprotective
in animal stroke models, but taking such selective targeting
forward into the clinic bears significant risk of being bypassed
by concurrent unblocked pathways, especially given the huge
variability of human stroke presentations. To achieve a robust
protective effect in the human wild, it may prove necessary
to inhibit multiple excitotoxic mechanisms. The idea of
combination therapies has been endorsed for a long time by many
workers in the stroke neuroprotection field. My personal view,
after time spent working in the pharmaceutical industry, is that
a historical focus on single drug, single mechanism therapies is a
central reason why the development of innovative drugs has had
a lower success rate in neuroscience than in other areas. Several

important drugs, especially in the infectious disease or oncology
areas, would disappoint if tested as monotherapies.

An anti-excitotoxic drug combination approach would ideally
be configured to ameliorate multiple processes and pathways at
both early and late time points. The development and approval
process for combination drugs is more complicated than for
monotherapies, but not insurmountably so; indeed the number
of combination drugs approved by the US FDA has increased
each decade since the 1950s, with over 400 combination drugs
approved to date (Das et al., 2019). Development of an innovative
combination drug can be eased if only one constituent is a new
molecular entity and other(s) are previously developed drugs
that are well-understood, well-tolerated, and easily available.
A growing number of such drugs have useful anti-excitotoxic
properties that might boost the efficacy or improve the side
effect profile (by permitting lower dosing) of a co-administered
new molecular entity anti-excitotoxic therapy. Some examples
of candidates for service as a background “partner” (or two) in
anti-excitotoxic drug combinations:

1. Memantine. The prototype low-affinity NMDA antagonist,
approved since 2003 to treat cognitive deficiency in patients
with Alzheimer’s disease and now off-patent. Although
NMDA receptor subtype non-selective (Bresink et al.,
1996), it may preferentially block extrasynaptic receptors
(Xia et al., 2010). It is a low-affinity blocker of the NMDA
channel with a fast off-time and use-dependence, properties
that likely explain its low side effect profile (Lipton, 2004).
It reduces NMDAR-mediated excitotoxicity in cultures and
brain infarction after focal ischemia (Chen et al., 2017).

2. Perampanel. Non-competitive AMPA antagonist approved
since 2012 as an anticonvulsant. It is still under US patent
protection, but this begins to lapse in 2021. The basis for its
favorable side effect profile is unclear but perhaps reflects
partial antagonism of central AMPA receptors, analogous
to memantine on NMDA receptors. It reduces infarction in
rats after focal ischemia (Niu et al., 2018), and even if dosed
too low to achieve neuroprotection on its own, it might
aid the survival of neurons and oligodendrocytes expressing
Ca2+/Zn2+-permeable AMPA receptors.

3. Minocycline. Minocycline is a second generation, brain-
penetrant tetracycline antibiotic in clinical use since
1971. Aside from antibiotic properties, it has unexpected
neuroprotective effects in a wide range of acute and chronic
injury models (Garrido-Mesa et al., 2013), including
infarct reduction after focal ischemia in nearly 20 animal
studies (Naderi et al., 2019). This ischemic neuroprotection
has been largely attributed to inhibition of matrix
metalloproteinases (MMPs) at standard antimicrobial doses
(Koistinaho et al., 2005). Brain MMP-9 cellular expression
and release to the extracellular space is increased after
ischemia, likely contributing to inflammation and BBB
breakdown (Chaturvedi and Kaczmarek, 2014). However
minocycline also inhibits PARP at lower concentrations
(10–100 nM) than needed for MMP-9 inhibition (Alano
et al., 2006). It has been tested as a monotherapy in
human stroke in several small pilot studies, and shown
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suggestions of benefit (Lampl et al., 2007; Padma Srivastava
et al., 2012); a third study was negative, cooling enthusiasm
(Kohler et al., 2013).

4. Pyruvate. The glycolytic metabolite, pyruvate, is sold as a
human dietary supplement, typically with suggestions that
it may aid weight loss or improve athletic performance.
High (mM) concentrations of pyruvate reduce Zn2+

neurotoxicity in vitro (Sheline et al., 2000), a protective
effect that may be due to intracellular Zn2+ chelation
by accumulating citrate and isocitrate (Sul et al., 2016),
additional to benefits on cellular NAD+ and ATP stores
(Sheline et al., 2000). Anti-inflammatory effects have also
been described (Wang et al., 2009). Large doses of pyruvate
(500 mg/kg) powerfully blocked selective neuronal death
in rat hippocampus after TGI (Lee et al., 2001) and
30 m-1 h delayed treatment with lower doses (62.5–
125 mg/kg) reduced infarction after tMCAO or pMCAO
(Yi et al., 2007). Chronic doses of oral pyruvate (22–
44 g/d × 4 weeks) were well tolerated in a human dietary
trial, except for some diarrhea (Stanko et al., 1994).

5. Hydrogen. While the physicochemical properties of H2
have been long known, recent studies have highlighted
how these position H2 favorably for use as a biological
protectant. H2 efficiently quenches toxic hydroxyl and
peroxynitrite radicals, but has little effect on the superoxide
or hydrogen peroxide molecules that participate in normal
cellular signaling (Ohsawa et al., 2007), a profile partially
shared with edaravone. H2 readily diffuses through
tissues and penetrates cell membranes, quenching hydroxyl
radicals generated even in cell nuclei. H2 exposure
is not associated with any known toxicity and hence
environmental concerns focus on explosivity (occurring
at 41,000 ppm with ambient O2). Humans are routinely
exposed to H2 as a trace gas in air at about 0.5 ppm, and
this can reach 7,500 ppm (0.75%) in closed environments
such as within submerged submarines (National Research
Council, 2008). Inhalation of 49% H2 (with 50.2% helium
and 0.8% O2) in a gas mixture called Hydreliox has been
used by human divers.

Administration of H2 has been reported to produce
protective and anti-inflammatory effects in multiple
experimental injury settings, including cardiac ischemia,
organ transplantation, sepsis, and 1-methl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic
neuronal loss (Ohta, 2014). Inhalation of 2% H2 gas
reduced infarction in rats after tMCAO (Ohsawa et al.,
2007) and brain injury in swine after TGI (Cole et al.,
2019). Besides radical scavenging, indirect mechanisms,
e.g., activation of transcription factor Nrf2, have been
suggested to contribute to protective effects (Kawamura
et al., 2013). A small randomized controlled trial of H2 gas
inhalation in stroke patients reported good safety and a
hint of benefit (Cole et al., 2019). My colleagues at Stony
Brook University have initiated a pilot therapeutic trial of
H2 in patients with acute ischemic stroke in combination
with a 5 days course of minocycline (H2M treatment –
ClinicalTrials.gov Identifier NCT03320018).

Another potential partner drug is the endogenous purine
metabolite and plasma antioxidant, uric acid (Ames et al., 1981).
Uric acid reduces excitotoxicity in culture and infarction after
tMCAO in rats (Yu et al., 1998); further reviewed in Llull et al.
(2016), and a Phase IIb clinical trial (URICO-ICTUS) examining
the effect of a 1 g dose administered together with tPA showed a
trend toward better outcomes at 90 days (Chamorro et al., 2014).
However uric acid can have pro-oxidant effects in membrane and
intracellular compartments, promoting NOX activity and itself
forming radicals (Sautin and Johnson, 2008).

Non-pharmacological partner approaches should also be
considered. Mild hypothermia attenuates a broad swath of injury
cascades, including early and late excitotoxicity pathways, and
protects the human brain after TGI (cardiac arrest/resuscitation)
(Ginsberg, 2008; Yenari and Han, 2012). Implementation
challenges and side effects have slowed efforts to bring
hypothermia forward as a monotherapy for stroke, but these
issues would recede if it were implemented leniently without
need to reach monotherapy effectiveness (Yenari and Han, 2012).
As noted by Ginsberg (2008), ischemic brain injury lies on a
temperature-dependence continuum: even mild hyperthermia is
clearly bad for the injured brain.

There are of course a daunting – factorial, if order matters –
number of possible rational drug and dosage combinations.
If only a highly optimized combination will succeed, the
discovery and development road ahead could end up lengthy,
but everything we know at present leaves open the more
favorable possibility that many combination approaches now on
the table would end up working well enough to be clinically
useful. Perhaps Radicava or Nerinetide are already there as
monotherapies.

To systematically identify the most promising and robust
combinations for clinical testing, the animal efficacy bar
might be further raised to the point that most monotherapies
would fail. This has been done historically by increasing
treatment delay after tMCAO or pMCAO, but it may be that
commitment points to various deaths will constitute a hard
assay ceiling, limiting ability to differentiate among multiple
promising approaches. And a long treatment window per se
is no longer a requirement for clinical value, as treatment
delays are becoming progressively shorter in today’s stroke
centers. Other ways to raise the laboratory animal efficacy
bar might be to raise core temperature, raise pre-stroke
glucose (increasing ischemic acidosis), add concurrent organ
stressors, or utilize specific genetic backgrounds prone to
severe strokes. Adequate survival times to permit delayed
infarction to complete, efficacy in both male and female
animals, and demonstration of white matter protection in
animal models larger than rodents should also be sought
(Stroke Therapy Academic Industry Roundtable, 1999;
Fisher et al., 2009).

Stroke remains today a leading cause of death and disability
throughout the world (Katan and Luft, 2018), and hypoxic-
ischemic CNS injury occurs additionally in other common
settings such as head trauma, spinal cord injury, cardiac arrest
and surgery. The unabridged strength of the central hypothesis
that excitotoxicity damages brain in human stroke, expanded
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understandings of how excitotoxicity works and where it might
be interdicted, readiness of the health care system to manage
stroke patients with alacrity (finally), and the accessibility of
several promising partner treatments for combination therapies,
all suggest that it is time to recharge the global effort to develop
anti-excitotoxic neuroprotective drugs for stroke. Unfortunately,
in recent years large pharmaceutical companies have substantially
shifted investment away from discovering and developing
innovative neuroscience drugs, based on return-on-investment
assessments (Choi et al., 2014). Alzheimer’s disease R&D may
still be on the table, but stroke R&D is certainly not - the failure
of earlier stroke neuroprotection trials contributed palpably
to corporate de-investment decisions. Thus the recharge will

need to be led, at least initially, by academic investigators and
biotechnology companies.
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