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Abstract Zika virus (ZIKV) is an emerging pathogen associated with neurological complications, such as
Guillain–Barré syndrome in adults and microcephaly in fetuses and newborns. This mosquito-borne flavivirus
causes important social and sanitary problems owing to its rapid dissemination. However, the development of
antivirals against ZIKV is lagging. Although various strategies have been used to study anti-ZIKV agents,
approved drugs or vaccines for the treatment (or prevention) of ZIKV infections are currently unavailable.
Repurposing clinically approved drugs could be an effective approach to quickly respond to an emergency
outbreak of ZIKV infections. The well-established safety profiles and optimal dosage of these clinically approved
drugs could provide an economical, safe, and efficacious approach to address ZIKV infections. This review focuses
on the recent research and development of agents against ZIKV infection by repurposing clinical drugs. Their
characteristics, targets, and potential use in anti-ZIKV therapy are presented. This review provides an update and
some successful strategies in the search for anti-ZIKV agents are given.
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Introduction

Zika virus (ZIKV) of the genus Flavivirus is responsible
for large disease outbreaks attributed to transmission by
mosquitoes [1]. ZIKV infection may sometimes lead to
severe neurological complications, including microce-
phaly in fetuses and newborns and a remarkable increase
in the number of Guillain–Barré syndrome cases [2,3].
Owing to its volatile epidemics and teratogenic effect, the
World Health Organization declared ZIKV as a Public
Health Emergency of International Concern in 2016 [4].
Similar to other flaviviruses, ZIKV is a single-stranded

positive-sense RNA virus approximately 10 kb in length
that encodes a polyprotein [5]. The polyprotein is cleaved
into three structural proteins, namely, capsid (C), pre-
membrane (prM), and envelope (E) and seven nonstruc-
tural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5), which are involved in viral genome
replication and virulence [6]. Among these proteins, only

NS3 and NS5 have enzymatic activities [7]. NS3 possesses
serine protease, RNA helicase, RNA triphosphate, and
nucleoside triphosphate enzymatic activities [8]. Along
with NS2B, NS3 protease is responsible for the cleavage
and posttranslational modification of the virus polyprotein
[9]. NS5 consists of two domains: methyltransferase
(MTase) at the N-terminal, which is responsible for viral
RNA cap methylation; and RNA-dependent RNA poly-
merase (RdRp) at the C-terminal, which is required for
viral RNA synthesis [10]. Furthermore, the crystal
structures of NS2B/NS3 and NS5 proteins have been
resolved [9–12]. As targeting viral enzymes is a proven
antiviral approach, evidenced by clinically used anti-
hepatitis C virus (HCV) and anti-human immunodefi-
ciency virus (HIV) drugs, NS2B/NS3 and NS5 are the
main drug targets for anti-ZIKV drug discovery [13]. An
overview of ZIKV replication in infected cells is presented
in Fig. 1, which describes the important drug targets that
can be inhibited by the anti-ZIKV agent.
The general strategies used to search for inhibitors

against ZIKV currently include viral protein-based screen-
ing [14,15], viral replication-based phenotypic screening
[16,17], and repurposing of clinically approved drugs
[18,19]. Although these strategies have been considered
for the identification of anti-ZIKV agents, no specifically
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approved drugs or vaccines are currently available to
prevent or treat ZIKV infections. Only a few vaccine
candidates and antiviral molecules have progressed to
phase I and phase II clinical trials [20,21]. Therefore,
repurposing existing drugs is a rapid strategy, which has
the advantages of cost-saving and speed in identifying anti-
ZIKV agents.
Drug repurposing is defined as “studying drugs that are

already approved to treat one disease or condition to assess
if they are safe and effective for treating other diseases”
[22]. It focuses on US Food and Drug Administration
(FDA)-approved drugs, as these drugs have details on
potential toxicity, formulation, and pharmacology and
drug-like molecules with potential activity [23]. This
strategy will address most of the costs and time-consuming
hurdles that accompany the drug development process
[24]. This approach offers significant achievements to
quickly determine ZIKV inhibitors [25,26]. Chloroquine, a
well-known antimalarial compound synthesized in 1934,
was found to target ZIKV [27,28]. Additionally, sofosbuvir
and temoporfin were identified to possess anti-ZIKV
activities [29,30]. Researchers often use various methods
for drug repurposing, including in silico, biological, and
experimental approaches. In silico drug repurposing
merges and analyzes information regarding drug-disease

relationships based on various public databases and
information from research, reports, and clinical trials
[31,32]. Biological approaches have been developed to
target multi-factorial complex diseases through systems
and network biology [33]. Experimental approaches
include the screening of targets, cell assays, animal
models, and clinical aspects [34,35]. However, drug
repurposing has several disadvantages. Considering the
affinity and selectivity for the given primary target, the
potency values for novel targets of repurposed drugs are
likely to be lower than those observed for the primary
target [36]. Conversely, drug repurposing only reduces but
does not eliminate the risk of compound development.
Therefore, companies need to balance the risks of having a
second-in-class drug with lower potency that is not linked
to a certain indication.
In this review, we focus on clinically approved

drugs that have been evaluated in clinical trials, pre-
clinical studies, animal models, or in vitro anti-ZIKV tests
(Table 1).

Inhibitors of RdRp

RdRp is the most conserved protein component that plays

Fig. 1 Overview of ZIKV replication in the infected cells and the important drug targets that can be inhibited by anti-ZIKV agents
discussed in this review.
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an essential role in viral replication. It is considered a
promising target for anti-ZIKV drugs.
Sofosbuvir is a successful drug targeting RdRp that is

used for HCV therapy [37,38]. It is a uridine nucleotide
prodrug that is triphosphorylated intracellularly and can be
metabolized to the active 5-triphosphate form, 2-deoxy-2-
α-fluoro-2-β-C-methyluridine-5-monophosphate (PSI-
7409), in the liver [39,40]. Sofosbuvir is a potent inhibitor
of HCV RdRp [41]. Considering its low side effects, good
oral administration, and tolerance due to its high potency,
sofosbuvir has attracted an increasing amount of attention
for development as a direct-acting antiviral drug [38].
Sofosbuvir reportedly inhibited ZIKV replication in Huh-7
cells, with an EC50 (half-maximal effective concentration)
of 0.41 µmol/L [12,29,34,42]. However, sofosbuvir
showed no inhibitory effect on ZIKV replication in Vero
and A549 cells. This finding might be correlated with
different intracellular concentrations of the active tripho-
sphate metabolite of sofosbuvir, which was 11–342 times
higher in Huh-7 cells than in Vero and A549 cells [42].
Sacramento et al. reported that sofosbuvir triphosphate
inhibited ZIKV RdRp activity, with a half maximal
inhibitory concentration (IC50) of 0.38–7.3 µmol/L
[29,43]. Furthermore, sofosbuvir might increase A-to-G
mutations in the viral genome, which is due to anti-ZIKV
activity [29]. However, the mutation at S604T of ZIKV
RdRp could confer resistance to sofosbuvir [43]. Sofosbu-
vir protected mice against ZIKV infection and increased
survival rates [34]. Sofosbuvir is a class B FDA-approved
drug, which implies that it presents no risk to animal fetus.
Sofosbuvir’s antiviral activity in human neural progenitors
and brain organoids demonstrated that it might be a
promising drug for clinical ZIKV therapy [12,29].
Emetine, an antiprotozoal agent, is used for intestinal

amebiasis and amoebic liver abscess treatment [44–46].
Yang et al. observed that emetine possessed anti-ZIKV
activity in HEK293 cells, with an EC50 of 52.9 nmol/L
in vitro, and reduced levels of ZIKV in both female SJL
mice and Ifnar1–/– mice [47]. Emetine is a non-nucleoside
compound that directly inhibited ZIKV NS5 RdRp
activity, with an IC50 of 121 nmol/L. Moreover, emetine
inhibited viral entry by inhibiting lysosome activity [47].
However, emetine has demonstrated potential toxicity
toward the fetus, indicating that its use should be avoided
during pregnancy [35]. In addition, 10-undecenoic acid
zinc salt (UA) was another non-nucleoside drug that
inhibits ZIKV replication by targeting RdRp [48]. UA is
commonly used in clinics to treat fungal infections [49].
The anti-ZIKV activity of emetine and UA is currently at
the in vitro stage. The safety of emetine and UA for
pregnancy and newborns needs further evaluation.
Some nucleoside analogs have presented good inhibi-

tory effects on ZIKV by targeting RdRp, including
BCX4430, NITD008, and 7-deaza-2′-C-methyladenosine

(7DMA). BCX4430 inhibited ZIKV replication with an
EC50 of 3.8 – 11.7 mg/mL in vitro and showed protective
effects on the AG129 mouse model with ZIKV infection
[50]. BCX4430 is currently in phase I clinical trial to
evaluate its safety, tolerability, and pharmacokinetics
[25,50]. NITD008 and 7DMA exhibited antiviral activity
against ZIKV in vitro in the micromolar and submicro-
molar ranges [25]. However, both 7DMA and NITD008
failed during clinical trials [51].

NS2B/NS3 protease inhibitor

The protease complex, NS2B/NS3, plays an important role
in the hydrolysis of ZIKV polyproteins into functional
formats. The cleaved proteins, thus function in the process
of viral propagation and maturation. In the NS2B/NS3
complex, the partial residues (residues 49–95) in NS2B
could help NS3 cleave vital polyproteins more effectively
[52–54]. The unlinked construct of NS2B/NS3 is a
promising tool for drug discovery [55]. Thus, inhibitors
that block the NS2B/NS3 interaction could be promising
anti-ZIKV drugs.
Niclosamide, an orally bioavailable salicylanilide

approved by the FDA, has been used to treat worm
infections [19]. It was reportedly a broad-spectrum
flavivirus inhibitor. As a category B drug, niclosamide
has an LD50 (median lethal dose) of 5 g/kg in rats. A
previous study indicated that niclosamide inhibited the
NS2B/NS3 interaction in various flaviviruses, presenting
an IC50 of 12.3 � 0.6 µmol/L, while the EC50 against
various flaviviruses ranged between 0.4 and 1.1 µmol/L
[56]. However, the CC50 (50% cytotoxic concentration) of
niclosamide was 4.8 mmol/L, suggesting an unsatisfactory
therapeutic index. Researchers observed that the EC50 of
niclosamide was 0.22 mmol/L for ZIKV production in
human astrocytes [19]. Importantly, niclosamide reduced
viral loads in both infected men and non-pregnant women
and could protect humans against ZIKV-related complica-
tions, such as Guillain–Barré syndrome.
Temoporfin, a photosensitizer drug, has been approved

for the treatment of head and neck squamous cell
carcinoma [57]. A drug repurposing investigation revealed
that temoporfin inhibits ZIKV post-infection. The inhibi-
tory efficiency of temoporfin was almost identical at
different ZIKV post-infection times [56]. Furthermore,
temoporfin interfered with ZIKV production at approxi-
mately 40 nmol/L in ZIKV-infected human placental
epithelial cells (HPECs). Protein thermal shift assays
(PTSA) and surface plasmon resonance (SPR) confirmed
the inhibition of NS2B/NS3 interaction. In animal models,
temoporfin-treated Balb/C mice showed a 100-fold reduc-
tion in ZIKV-induced viremia. In the lethal A129 mouse
model, temoporfin-treated animals survived without any
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neurological damage after ZIKV infection.
Nitazoxanide, an antiparasitic drug used to treat various

helminthic and protozoal infections, possesses broad-
spectrum antiviral activity against viruses, including
flaviviruses [58]. A previous report revealed that nitazox-
anide effectively inhibited ZIKV infection in HPECs by
reducing protein expression and viral RNA replication
[56]. Studies were performed on human neuronal progeni-
tor cells (hNPCs) and the human-induced pluripotent stem
cell (iPSC) line HDF9 to investigate nitazoxanide’s
protective effect. Nitazoxanide markedly reduced ZIKV
titers in hNPCs and HDF9 iPSCs cells. Further studies
showed that nitazoxanide bound to the NS3 protease
domain with an affinity of 7.3 mmol/L, indicating its potent
ability to inhibit the NS2B/NS3 interaction. Although
studies involving pregnant women remained elusive,
nitazoxanide reportedly did not affect human fertility or
harm the fetus in rats and rabbits [59].
Novobiocin, an antibiotic derived from Streptomyces, is

an FDA-approved pregnancy category C drug [60]. As an
aminocoumarin antibiotic, novobiocin targets the GyrB
subunit of bacterial DNA gyrase to exert its antibacterial
effects [61,62]. Novobiocin disrupted NS2B/NS3 interac-
tion and had an IC50 of 14.2 µg/mL. The viral titer assay
showed that the EC50 in Vero and Huh-7 cells was 26.12
µg/mL and 38.14 mg/mL, respectively. A plaque reduction
assay revealed that novobiocin achieved 100% plaque
reduction at 50 mg/mL. Molecular docking between
novobiocin and the NS2B/NS3 protein showed that three
hydrogen bonds were formed at NS2B/NS3 interaction
sites, namely the MET51 (NS2B residue), SER81 (NS2B
residue), and LYS54 (NS3 residue). In novobiocin-treated
mice models, ZIKV viral loads in the blood and most
major organ tissues were dramatically reduced than in
untreated models.
Bromocriptine is a potent dopamine D2/D3 receptor

agonist used to treat galactorrhea and Parkinson’s disease
[63,64]. As an FDA-approved pregnancy category B drug,
it is considered safe in pregnant women [28,34].
Bromocriptine had an EC50 of 13 µmol/L in ZIKV-
infected Vero cells and was used as an agent to treat ZIKV
infections in combination with Intron A (interferon-α2b).
The data showed that the combination of bromocriptine
and Intron A exhibited a synergistic effect on ZIKV
infection. Other studies revealed that bromocriptine
interfered with ZIKV replication through a post-entry
mechanism. Molecular modeling and a fluorescence-based
protease inhibition assay showed that bromocriptine
disrupted the ZIKV NS2B/NS3 interaction in a non-
competitive manner, presenting an IC50 of 21.6 µmol/L.
Although small-molecule inhibitors targeting the active

site NS2B/NS3 are available, further chemical modifica-
tions might be required to improve the potency of these
inhibitors [65].

Antimalarial (quinoline derivatives)

An increasing number of studies observed that some
antimalarial drugs possess in vitro and in vivo anti-ZIKV
activities, including mefloquine, chloroquine, amodia-
quine, and hydroxychloroquine.
Chloroquine (CQ), a 4-aminoquinoline derivative, is an

inhibitor of autophagy and Toll-like receptors (TLRs) and
is widely used to treat malaria and rheumatoid arthritis
[66–68]. It can also inhibit various viral infections, such as
HIV, dengue virus, Japanese encephalitis virus, and
influenza virus, by disrupting the pH-dependent steps of
viral replication [69–72]. CQ suppressed in vitro ZIKV
replication in Vero cells with an EC50 of 9.82 µmol/L
[28,73–75]. It reversed morphological changes induced by
ZIKV infection in mouse neurospheres [28]. CQ interfered
with the early stage of the ZIKV replication cycle in the
fusion of envelope proteins with the endosome membrane.
Li et al. found that CQ inhibited ZIKV infection in vitro by
blocking virus internalization [73]. In an animal model,
CQ protected fetal mice from microcephaly caused by
ZIKV infection. Using interferon signaling-competent SJL
mice, Shiryaev et al. demonstrated that CQ attenuated
vertical transmission, which reduced the ZIKV load in the
fetal brain by over 95% [74]. CQ is a class C FDA-
approved drug that can cross the placental barrier [76].
Enhanced permeability of the placental barrier benefits
therapy in pregnant women.
Hydroxychloroquine (HCQ), a hydroxyl analog of

chloroquine, is a class C FDA-approved drug that is used
to treat malaria, systemic lupus erythematosus, and
rheumatoid arthritis [68,77–79]. Both HCQ and CQ are
derivatives of a 4-aminoquinoline nucleus [80]. HCQ is
proposed to be a safer CQ alternative [81]. The concentra-
tions of HCQ in the brain are 4–30 times higher than in
plasma, suggesting a favorable pharmacokinetic profile
against ZIKV infection in hNPCs [74,82]. By alkalizing
intracellular acidic organelles, HCQ exerts antibacterial
and antiviral activities [83,84]. Furthermore, HCQ blocks
the viral entry step and protein glycosylation [84]. Cao
et al. observed that HCQ could reduce ZIKV infection in
the mouse placenta and relieve placental damage in the
fetal head [85]. This result might be associated with
decreased placental autophagy, which limits vertical
maternal-fetal transmission. Kumar et al. indicated that
HCQ suppressed ZIKV replication by reducing the NS2B/
NS3 protease activity [52]. A normal HCQ dosage during
pregnancy is not related to fetal malformations [86] and not
associated with other adverse pregnancy outcomes, such as
stillbirth, low birth weight, and prematurity. However, the
current results are insufficient to evaluate its fetotoxicity.
Mefloquine (MQ), a quinine derivative, is a class B

FDA-approved drug widely used in malaria prevention
[87,88]. Additionally, MQ has anti-cancer, anti-
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tuberculosis, and antiviral activities [89–91]. Barbosa-
Lima et al. identified that MQ inhibited ZIKV replication
in Vero and HeLa cells, with EC50 values of 3.6 mmol/L
and 10 mmol/L, respectively [18,92]. However, MQ was
found to be cytotoxic in an hNSC cell line (K048) [18].
MQ demonstrated better blood-brain barrier (BBB)
penetration than CQ [66]. The anti-ZIKV activity of MQ
requires further evaluation.
Amodiaquine (AQ), a 4-aminoquinoline derivative, is

another inhibitor of autophagy for malaria therapy [93].
AQ reportedly inhibited ZIKV replication in hNPCs cells,
with an EC50 of 2.8 mmol/L in vitro, and inhibited ZIKV
infection in the SCID-beige mouse brain in vivo [94]. A
report by Han et al. revealed that AQ targeted an early step
of viral replication [75]. Importantly, AQ is safe during
pregnancy and has been used to inhibit the Ebola virus at
clinically relevant doses [95]. However, AQ has been
restricted in many fields due to its hepatic and hematolo-
gical toxicities [96]. Therefore, the application of AQ for
ZIKV infections requires further investigation.

Antibiotics

Azithromycin (AZ) is a macrolide antibiotic with no side
effects on pregnancy and fetal development [97]. By
screening FDA-approved compounds for anti-ZIKV treat-
ment in a glial cell line, Retallack et al. found that AZ
inhibited viral production and virus-mediated cell death
[98]. In U87 cells, AZ reduced ZIKV infection, presenting
an EC50 of 2–3 µmol/L, whereas in human pluripotent
stem cell (hPSC)-derived astrocytes, the EC50 was 15
µmol/L. AZ was found to reach 19–151 ng/mL in fetal
tissues and the adult human brain [99,100]. The mechan-
ism underlying the action of AZ against ZIKV remains
unclear.
Daptomycin is a cyclic lipopeptide antibiotic with potent

antibacterial activity against skin and bloodstream infec-
tions [101–103]. Daptomycin inhibits ZIKV infection with
an EC50 of 1.0 µmol/L in Huh-7 cells, but the inhibitory
activities in HeLa and JEG3 cells were weak [18].
Furthermore, daptomycin reduced ZIKV replication in
hNSC and human amnion epithelial cells (hAECs). The
concentration of daptomycin in plasma ranged between 19
and 199 µg/mL [104]. Although daptomycin is a class B
FDA-approved drug, limited case reports in neonates have
been recorded [102]. No reports regarding the anti-ZIKV
activity of daptomycin in vivo are currently available.

Others

By screening drugs for repurposing, several compounds
that could inhibit ZIKV infection have been identified, and
the various mechanisms are presented.

Emricasan, a selective pan-caspase inhibitor, has been
used to treat ZIKV infection in combination with other
anti-ZIKV-replication drugs [105,106]. Emricasan inhib-
ited neural cell death induced by caspases but failed to
inhibit ZIKV replication [107]. Subsequent studies
observed that PHA-690509, a cyclin-dependent kinase
inhibitor, possessed good inhibitory activity on ZIKV
proliferation. Combination of emricasan and PHA-690509
showed synergistic effects on ZIKV infection. Emricasan
could induce the recovery of ZIKV-infected cells by
inhibiting caspase when combined with PHA-690509.
Emricasan is currently undergoing phase II clinical trials
[108,109].
Suramin is not approved by the FDA; it is a polyanionic

compound used to treat African trypanosomiasis and kill
the adult Onchocerca via an unknown mechanism [110].
Suramin could protect Vero cells against ZIKV-induced
death, presenting an EC50 of 39.8 µmol/L. Albulescu et al.
demonstrated that suramin could decrease the intracellular
ZIKV RNA copies by interfering with both the virus
attachment and release stage [111].
After screening 774 FDA-approved drugs, mycopheno-

lic acid, sertraline, and mefloquine were found to be
effective in inhibiting ZIKV infection in Huh-7 cells [26].
HeLa and JEG3 cells were also used for further anti-ZIKV
investigations. Mycophenolic acid, an immunosuppressant
drug, could inhibit ZIKV infection in HeLa and JEG3 cells.
In hAECs, both sertraline and mefloquine exhibited strong
inhibition against ZIKV infection at 16 µmol/L; none of
these drugs were cytotoxic at this concentration [18].

Conclusions

Identifying novel therapeutic activities of existing drugs is
a rapid approach to curb emergency outbreaks of ZIKV
infections. Several clinically approved drugs manifest anti-
ZIKV activities in vivo and are now undergoing clinical
trials [74,85]. We discussed the features of these drugs for
their potential use in ZIKV infections. Considering that the
unique patients include pregnant women and newborns,
further work is needed to complete the clinical trials of
these drugs. The risk of repurposing drugs needs to be
weighed against the risk of no treatment. Moreover, some
clinically approved drugs showed anti-ZIKV activities at
impracticable inhibition concentrations (> 100 µmol/L) or
possessed cytotoxicity, indicating that they could never be
utilized in pregnant women and newborns [35,61]. Thus,
the immediate use of these repurposed clinical drugs in
humans seems unlikely. Medicinal chemistry approaches
should be used to improve or optimize these drugs.
Additionally, further development of novel anti-ZIKV
compounds and combination therapies is needed to treat
ZIKV infections.
By repurposing clinical drugs, we are advancing the
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fight against ZIKV. We believe that the development of
highly effective anti-ZIKV drugs is possible.
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