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Abstract
Subpopulations of cells that escape anti-cancer treatment can cause relapse in cancer patients. Therefore,
measurements of cellular-level tumor heterogeneity could enable improved anti-cancer treatment regimens. Cancer
exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD.
The optical redox ratio (fluorescence intensity of NAD(P)H divided by FAD) reflects global cellular metabolism. The
fluorescence lifetime (amount of time a fluorophore is in the excited state) is sensitive to microenvironment,
particularly protein-binding. High-resolution imaging of the optical redox ratio and fluorescence lifetimes of NAD(P)H
and FAD (optical metabolic imaging) enables single-cell analyses. In this study, mice with FaDu tumors were treated
with the antibody therapy cetuximab or the chemotherapy cisplatin and imaged in vivo two days after treatment.
Results indicate that fluorescence lifetimes of NAD(P)H and FAD are sensitive to early response (two days post-
treatment, P b .05), compared with decreases in tumor size (nine days post-treatment, P b .05). Frequency
histogram analysis of individual optical metabolic imaging parameters identifies subpopulations of cells, and a new
heterogeneity index enables quantitative comparisons of cellular heterogeneity across treatment groups for
individual variables. Additionally, a dimensionality reduction technique (viSNE) enables holistic visualization of
multivariate optical measures of cellular heterogeneity. These analyses indicate increased heterogeneity in the
cetuximab and cisplatin treatment groups compared with the control group. Overall, the combination of optical
metabolic imaging and cellular-level analyses provide novel, quantitative insights into tumor heterogeneity.
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Introduction
Cancer treatments often include chemotherapy, targeted therapy, and/
or radiation therapy.Most cancer patients respond to treatment initially,
exhibiting decreased tumor size, and later relapse, exhibiting increased
tumor size. Chemotherapy and targeted treatments can eliminate the
majority of cells in a tumor while subpopulations of cells can escape
treatment [1,2]. These subpopulations of cells may be responsible for
innate or acquired resistance, which can enable treatment failure, disease
progression, and diminished patient outcomes.

Standard chemotherapies and radiation treatments are administered
based on average response rates for a particular type and stage of
cancer. Current methods for determining targeted treatment strategies
rely on identifying the dominant subpopulation of cells, usually based
on surface marker expression, and administering drugs that inhibit the
overexpressed targets to decrease proliferation or increase death of the
cells expressing those targets [3]. Resistant subpopulations existing
within a tumor could escape the treatment, allowing relapse after
therapy. Therefore, tumor heterogeneity poses a difficult challenge for
optimizing treatment outcomes in cancer patients.
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Tumor heterogeneity can be characterized as genetic, phenotypic,
or functional [4,5]. Genetic measures focus on analysis of genes
known to promote tumor progression. Phenotypic characterization is
usually established from histology to visualize cell morphology and
from immunohistochemistry to measure expression of cell surface
receptors, growth factors, and hormone receptors. However, these
measures may not directly relate to cellular function [4]. Whereas
genetic and phenotypic biomarkers provide static measurements,
functional measures characterize dynamic tumor behavior or response
to stimuli and therefore may be more attractive. Functional measures
include cellular metabolism, oxygen consumption, and blood
perfusion. In particular, cellular metabolism, which is altered in
cancer [6], has been shown to be a good indicator of drug response
and therefore may be a promising marker for tumor heterogeneity [7].
Numerous metabolic pathways involve the autofluorescent

co-enzymes NAD(P)H (an electron donor) and FAD (an electron
acceptor). The optical redox ratio is defined as the fluorescence
intensity of NAD(P)H divided by that of FAD, and is an established
method for monitoring relative amounts of electron donor and
acceptor in a cell [8–10]. As a complementary measure, the
fluorescence lifetime reports the amount of time a fluorophore is in
the excited state before relaxing to the ground the state. Fluorescence
lifetime is sensitive to conformational changes in enzyme structure
that are caused by the microenvironment, particularly protein-
binding [11]. The fluorescence lifetime of NAD(P)H has two distinct
components, due to vastly different lifetimes when NAD(P)H is in
the free and protein-bound states [12]. Similarly, FAD has two
lifetimes due to its free and protein-bound states [13]. The short
lifetimes of NAD(P)H (free state) and FAD (protein-bound state) are
due to quenching by the adenine moiety of the molecule [11]. The
redox ratio and fluorescence lifetime provide independent measure-
ments of cellular metabolism [10], and can be performed using
two-photon fluorescence microscopy, which enables cellular-level
imaging and deeper penetration in tissue than single-photon (e.g.
confocal) microscopy [14]. This approach exploits the endogenous
contrast of NAD(P)H and FAD autofluorescence to acquire
quantitative measurements of cellular metabolism that can be used
to characterize cellular heterogeneity.
There are few analysis approaches that are appropriate for

quantifying cellular heterogeneity. The Shannon diversity index is a
metric used in ecology literature that incorporates the number and
relative proportions of species in a community [15], and it has also
been applied to tumor heterogeneity [16–18]. However, the degree of
separation between subpopulations is also an important consideration
in tumor heterogeneity [19], which is not incorporated into the
Shannon diversity index. A metric incorporating the number of
cellular subpopulations, relative contributions of each subpopulation,
and relative differences in subpopulations to quantify tumor
heterogeneity could provide insight into optimal treatment strategies
for cancer patients. This type of metric could be applied to each
optical metabolic imaging parameter, including the redox ratio and
fluorescence lifetime components of NAD(P)H and FAD.
Since optical metabolic imaging acquires multi-dimensional data

sets of parameters, which can be difficult to interpret holistically,
dimensionality reduction techniques can be applied as a comple-
mentary method to facilitate interpretation of these types of data sets.
Traditional methods apply a linear transformation of the data, like
principal component analysis [20]. However, an alternative method
that preserves nonlinear relationships at a single-cell level may be
advantageous, like the viSNE technique [21]. viSNE is a dimension-
ality reduction tool that uses t-distributed stochastic neighbor
embedding (t-SNE) to plot high-dimensional single-cell data on a
two-dimensional axis for visualization of cellular heterogeneity, and is
well-suited for single-cell data acquired in optical metabolic imaging.
viSNE is also attractive for identifying cell sub-populations because it
preserves the relative distances between cells that are present in
multi-dimensional space when projecting them into two-dimensional
space, thereby maintaining relationships between individual cells in
the reduced data set and identifying relationships that would not be
apparent by manual analysis alone.

This study quantifies the optical redox ratio and fluorescence
lifetimes of NAD(P)H and FAD in a xenograft model of head and
neck cancer two days after treatment with the antibody therapy
cetuximab or the chemotherapy cisplatin. Additionally, these in vivo
high-resolution images enabled analysis of cellular metabolic
heterogeneity in response to treatment at an early time point using
endogenous contrast. An index to quantify heterogeneity was
developed, validated on samples containing cultures of one cell line
or co-cultures containing two cell lines, and applied in vivo to each
individual optical metabolic imaging variable. Additionally, a
dimensionality reduction technique (viSNE) was applied to enable
holistic visualization of heterogeneity across all optical metabolic
imaging variables combined. Immunohistochemistry stains for cell
proliferation and cell death validated treatment efficacy, and tumor
growth curves measured gold standard treatment response. Results
indicate that in vivo optical metabolic imaging, combined with a
quantitative metric of heterogeneity or a dimensionality reduction
visualization of heterogeneity, has potential to resolve treatment-
induced cellular-level heterogeneities in tumors. Ultimately, charac-
terization of cellular heterogeneity could enable optimized treatment
regimens and improved patient outcomes.

Materials and Methods

In Vivo Imaging and Tumor Growth Curves
FaDu cells were grown in DMEM media supplemented with 10%

fetal bovine serum (FBS) and 0.4 μg/mL hydrocortisone. Approxi-
mately 107 FaDu cells were injected into the flanks of 7 week old
male nude mice and tumors were grown to approximately 100 mm3.
Mice in treated groups received treatment of cetuximab (33 mg/kg)
[22,23] or cisplatin (6 mg/kg) [24] via intraperitoneal injection. To
measure tumor growth curves, mice were treated three times a week
for two weeks (6 tumors per group). Tumor sizes were measured daily
and calculated by (l*w2)/2, where l represents the tumor length in
mm and w represents the tumor width in mm. Tumor sizes were
normalized to the size on day 1. On day 13, tumors were excised and
fixed for immunohistochemistry, and mice were euthanized. A
separate cohort of mice was used for in vivo imaging studies, with
only one dose per treatment group on day zero (6 tumors for control
group, 5 tumors for cetuximab and cisplatin groups). Two days after
treatment, each mouse was anesthetized and the skin covering the
tumor was removed. A coverslip was placed over the exposed tumor,
and the mouse was placed on the microscope to acquire in vivo images
(3–7 images per tumor).

Imaging Instrumentation
Mice were imaged on a custom-built (Bruker) inverted two-photon

fluorescence microscope (Ti-E Nikon) using a 40× oil immersion
objective (1.3 NA). A titanium:sapphire laser (Chameleon, Coherent
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Inc.) was used for excitation, and a GaAsP photomultiplier tube
(H7422P-40, Hamamatsu) was used for fluorescence collection. To
measure NAD(P)H autofluorescence, an excitation wavelength of
750 nm and an emission filter of 400 to 480 nm was used. To
measure FAD autofluorescence, an excitation wavelength of 890 nm
and an emission filter of 500 to 600 nm was used. Time correlated
single photon counting electronics (SPC-150, Becker and Hickl) were
used to acquire fluorescence lifetime images over 60 seconds, and
photon count rates (~2 to 3 × 105) were monitored during this time
to ensure the absence of photobleaching. A pixel dwell time of 4.8 μs
was used to acquire 256 × 256 pixel images. First, an NAD(P)H
lifetime image was acquired, and then an FAD lifetime image was
acquired from the same field of view. Sequential fields of view were
separated by at least one field of view. A Fluoresbrite YG microsphere
(Polysciences Inc.) was imaged as a daily standard with a fluorescence
lifetime of 2.11 ± 0.05 ns (n = 7), consistent with previous studies
[25,26]. Instantaneous scattering from second harmonic generation
of urea crystals excited at 900 nm was measured to calculate the full
width at half maximum of the instrument response function (244 ps).

Image Analysis
Fluorescence lifetime images were analyzed as described previously

[27]. Briefly, the fluorescence lifetime decay curves were fit to a
two-component exponential function, F(t) = α1e

-t/τ1+ α2e
-t/τ2 + c,

where F(t) represents the fluorescence intensity over time, α1 and α2

represent the contribution from the short and long lifetime
components respectively (α1 + α2 = 1), and τ1 and τ2 represents
the fluorescence lifetime of the short and long lifetime components
respectively (SPCImage, Becker and Hickl). A two-component fit has
been shown to be appropriate for describing freely diffusing versus
protein-bound conformations of NAD(P)H and FAD [25]. For
NAD(P)H, the short lifetime represents free NAD(P)H, and for FAD
the short lifetime represents protein-bound FAD [11]. The weighted
mean lifetime, τm, was calculated by τm = α1τ1 + α2τ2. A fluores-
cence intensity image was generated by integrating the fluorescence
lifetime decay over time for each pixel in the lifetime image. The
optical redox ratio was calculated by dividing the NAD(P)H
fluorescence intensity by the FAD fluorescence intensity for each
pixel to create a redox ratio image for each field of view. NAD(P)H
and FAD fluorescence specific to cellular metabolism is localized in
the cytoplasm and mitochondria. Therefore, the redox ratio and
fluorescence lifetime images were thresholded to remove nuclear
fluorescence, and the average redox ratio and fluorescence lifetime
decay parameters for each remaining cell cytoplasm was computed.
The optical redox ratio and NAD(P)H and FAD fluorescence lifetime
images were quantified for each cytoplasm in each cell using a
customized CellProfiler routine as described previously [28].

Heterogeneity Index and Validation
For subpopulation analysis, frequency histograms were plotted for

the optical redox ratio, NAD(P)H τm, and FAD τm, as described and
validated in [29]. The histograms were fit to one-, two-, or
three-component Gaussian curves, and the lowest Akaike Informa-
tion Criterion indicated optimal fitting [8]. Each Gaussian curve
represents a subpopulation of cells, and the sum of the Gaussian
curves was plotted for visualization. To quantify heterogeneity, a
heterogeneity index was defined as H = − ∑ dipi ln pi, where
i represents each subpopulation, d represents the distance between
the median of the subpopulation and the median of all data within a
group, and p represents the proportion of the subpopulation.
Validation of the heterogeneity index was performed on co-cultures of
MDA-MB-231 and SKBr3 breast cancer cell lines plated at ratios of
0:100, 50:50, and 100:0.

viSNE
The viSNE dimensionality reduction tool was used to visualize

cellular heterogeneity by incorporating all seven optical metabolic
imaging parameters: the optical redox ratio, NAD(P)H α1, NAD(P)H
τ1, NAD(P)H τ2, FAD α2, FAD τ1, and FAD τ2. The data from each
parameter was transformed to a common scale of 0 to 100%, where
100% represented the highest value for that parameter across all
treatment groups. Data were analyzed in Cytobank (www.cytobank.
org) to create a viSNE map [21,30,31]. viSNE performs t-distributed
stochastic neighbor embedding (t-SNE) to minimize the differences
between high-dimensional space and low-dimensional space, and
produces a two-dimensional plot in arbitrary units. Briefly, a pairwise
distance matrix is calculated in high dimensional space, which is
transformed to a similarity matrix using a varying Gaussian kernel.
The points are randomly mapped in low-dimensional space and
iteratively rearranged to minimize the divergence between high-
dimensional and low-dimensional similarity matrices.

Statistical Analyses
Bar graphs are shown as mean ± standard error. Kruskal-Wallis

and two-way rank sum tests determined statistical significance with an
α of 0.05.

Results
Tumor growth curves measure tumor size changes in FaDu xenografts
after treatment (Figure 1A). Compared with control, cetuximab and
cisplatin treatments cause tumor size decreases starting six and nine
days, respectively after treatment onset (P b .05). Immunohisto-
chemistry was performed on excised tumor tissue at the end of the
study to quantify markers of treatment efficacy (Figure 1). Ki-67
staining shows decreased proliferation with each treatment group
(P b .05; Figure 1B). Cleaved caspase 3 shows increased cell death
with cisplatin treatment (P b .05; Figure 1C). These gold standard
measurements verify drug efficacy in the xenografts.

Representative in vivo images demonstrate cellular-level resolu-
tion of NAD(P)H and FAD autofluorescence imaging and enables
visualization of qualitative differences in the optical metabolic imaging
parameters two days after treatment (Figure 2). Images were quantified
to calculate the average optical redox ratio, NAD(P)H fluorescence
lifetime, and FAD fluorescence lifetime per-cell (Figure 3). The redox
ratio shows no change with cetuximab treatment and decreases with
cisplatin treatment (P b .05). The NAD(P)H fluorescence lifetime
decreases with cetuximab and cisplatin treatments (P b .05). The
FAD fluorescence lifetime decreases with cetuximab and cisplatin
treatments (P b .05). The shifts in fluorescence lifetime reflect shifts
in microenvironment, particularly NAD(P)H and FAD protein-
binding. NAD(P)H τ1, NAD(P)H τ2, FAD τ1, and FAD τ2 decrease
with cetuximab and cisplatin treatments (Supplementary Figure 1,
P b .05). The relative amounts of free NAD(P)H and FAD increase
and decrease, respectively, with cetuximab and cisplatin treatments
(Supplementary Figure 1, P b .05).

Single-cell images were represented as histograms of number of
cells versus optical metabolic imaging parameters, and Gaussian fits
were used to identify distinct cell sub-populations for each treatment
group. Histograms plotting the sum of Gaussian fits for the redox

http://.www.cytobank.org
http://.www.cytobank.org


Figure 1. (A) Tumor growth curves show a decrease (*P b .05, compared with control) in tumor size in cetuximab treated xenografts after
6 days of treatment and in cisplatin treated xenografts after 9 days of treatment. Xenografts were excised and stained for ki-67
(proliferation) and cleaved caspase 3 (cell death) on day 13. (B) Xenografts from cetuximab and cisplatin treated mice exhibited decreased
proliferation. (C) Xenografts from cisplatin treated mice exhibited increased cell death. *P b .05 compared with control, rank sum test.
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ratio, NAD(P)H fluorescence lifetime, and FAD fluorescence lifetime
highlight cellular heterogeneity across treatment groups for each
optical parameter (Figure 4, A–C and Supplementary Figure 2). For
the redox ratio, histograms of the treatment groups have some overlap
with control. This trend is consistent with the NAD(P)H and FAD
fluorescence lifetimes. The degree of overlap for the subpopulations of
cells from each treatment group compared with control could reflect
the degree of resistant cells compared with responsive cells.

In order to compare cellular-level heterogeneity across treat-
ment groups, a quantitative metric called the “heterogeneity index”
was developed, validated in vitro, and then applied to in vivo
histograms. The heterogeneity index is the Shannon diversity index
weighted by a distance factor, where a larger value indicates more
subpopulations, similar numbers of cells within each subpopulation,
and/or more distance between subpopulations. The heterogeneity
index was validated on co-cultures of MDA-MB-231 and SKBr3
breast cancer cell lines because they exhibit distinct optical redox
ratios [10]. The heterogeneity index was calculated for the optical
redox ratio of dishes including 100% MDA-MB-231 cells, 100%
SKBr3 cells, and 50% MDA-MB-231 + 50% SKBr3 cells. The
condition with two cell lines causes an increased heterogeneity index
(0.285) compared with the MDA-MB-231 cell line (0.006) or the
SKBr3 cell line (0.152) cultured alone (Table 1), indicating that the
heterogeneity index behaves as expected. SKBr3 cells have been
shown to exhibit intrinsic heterogeneity within the cell line based on
HER2 expression, which could account for the relatively high
heterogeneity index within that cell line [32]. For the in vivo studies,
the heterogeneity index is increased for the treated groups compared
with the control for the redox ratio (Figure 4A), NAD(P)H
fluorescence lifetime (Figure 4B), and FAD fluorescence lifetime
(Figure 4C). This trend in heterogeneity index is consistent for the
redox ratio of FaDu cell monolayers treated with cetuximab and
cisplatin in vitro (Supplementary Figure 4). Note that the
heterogeneity index is not normalized, and therefore not comparable
between variables.

The heterogeneity index is helpful to analyze individual
variables, but a dimensionality reduction technique is necessary to
visualize tumor heterogeneity with respect to all optical variables
combined. viSNE reduces seven optical metabolic imaging param-
eters by preserving the similarities across cells and projecting these
onto a two-dimensional axis (Figure 5). viSNE analysis shows a
distinct population of the control group, while the cetuximab and
cisplatin treatment groups overlap with control and also exhibit a
separate subpopulation of cells (Figure 5A). This trend is consistent in
FaDu cell monolayers in vitro (Supplementary Figure 4). viSNE
preserves similarities across cells in a nonlinear way by producing a
visual two-dimensional scatter plot, but does not provide a
quantitative relationship between the input parameters and the



Figure 2. In vivo images of FaDu xenografts 2 days after treatment with cetuximab or cisplatin. NAD(P)H and FAD autofluorescence
images were acquired from the same fields of view, and the redox ratio (top row), NAD(P)H fluorescence lifetime (middle row), and FAD
fluorescence lifetime (bottom row) were calculated. Scale bar = 50 μm.
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viSNE plot. Therefore, heat maps plotting the values for individual
parameters over the two-dimensional viSNE axes can be helpful for
understanding the contribution of each parameter to the viSNE plot
(Figure 5, B and C and Supplementary Figure 3). Gradients within a
parameter that correspond with the grouping in the viSNE plot
indicate that these parameters contribute significantly to the viSNE
plot. In particular, gradients in NAD(P)H τ1 and FAD τ1 agree with
grouping in the viSNE plot because points in the top group of the
viSNE plot exhibit low values compared with points in the bottom
group (Figure 5, B and C).

Discussion
Tumor heterogeneity poses a difficult challenge for improving
treatment outcomes in cancer patients. The goal of this study is to
apply autofluorescence imaging of the metabolic cofactors NAD(P)H
and FAD to resolve anti-cancer treatment response on a cellular level,
and characterize cellular heterogeneity. Mice with FaDu xenografts
were treated with cetuximab or cisplatin, and 48 hours later the
xenografts were imaged in vivo using two-photon microscopy and
fluorescence lifetime imaging. Cellular-level imaging enabled per-cell
analysis of the optical redox ratio and fluorescence lifetimes of
NAD(P)H and FAD in response to treatment, and a heterogeneity
index was devised to quantify cellular heterogeneity for each optical
metabolic imaging variable. Furthermore, a dimensionality reduction
technique was applied on a per-cell level to visualize heterogeneity on
a two-dimensional axis based on combined information from all
optical variables. Overall, the degree of heterogeneity is increased for
the xenografts of mice treated with cetuximab or cisplatin compared
with control. These nondestructive, quantitative methods to measure
in vivo cellular heterogeneity could be used to develop improved
treatments that account for tumor heterogeneity and target all tumor
cell sub-populations for improved efficacy in cancer patients.

Tumor growth curves show that over two weeks of treatment the
administration of cetuximab or cisplatin causes stable disease,
exhibiting decreased tumor size compared with control tumors that
exhibit continued increase in tumor size (Figure 1A). These results
agree with clinical studies of patients administered cetuximab or
cisplatin [33,34]. Additionally, cetuximab and cisplatin treatment
cause decreased cell proliferation (Figure 1B), which agrees with
previous in vitro studies [35,36]. Cisplatin treatment causes increased
cell death (Figure 1C). Cisplatin has been shown to cause apoptosis
[37], and cetuximab sensitizes cells to chemotherapy by inhibiting
DNA repair mechanisms [38]. Cetuximab has been shown to cause
autophagy instead of apoptosis [35]. These immunohistochemistry
measures verify in vivo drug efficacy.

The redox ratio of FaDu xenografts measured in vivo decreases
48 hours after cisplatin treatment, whereas cetuximab treatment
causes no change in the redox ratio (Figure 3A). These results agree
with in vitro optical redox ratio measurements in SCC25 and SCC61
head and neck cancer cell lines treated with cetuximab or cisplatin
[27]. The lack of effect from cetuximab treatment could reflect its
administration as a single agent, since cetuximab is maximally
effective in combination with chemotherapy and radiation therapy.
Additionally, cetuximab initiates antibody-dependent cell cytotoxic-
ity (ADCC), but this process might be altered in the immunocom-
promised nude mice used in this study [39]. The NAD(P)H and
FAD mean lifetimes decrease with cetuximab and cisplatin treatment
(Figure 3, B and C), which could reflect treatment-induced changes



Figure 3. The optical redox ratio, NAD(P)H fluorescence lifetime, and FAD fluorescence lifetime were quantified on a per-cell level from
in vivo NAD(P)H and FAD autofluorescence images 2 days after treatment. (A) The redox ratio decreases with cisplatin treatment. (B, C)
The NAD(P)H and FAD fluorescence lifetimes decrease after cetuximab and cisplatin treatment. The shifts in NAD(P)H and FAD
fluorescence lifetime measured 2 days after treatment are consistent with response measure by tumor growth curves and
immunohistochemistry after 13 days of treatment. *P b .05, compared with control.
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in preferred metabolic pathways involving NAD(P)H and FAD.
These results also highlight the fact that the redox ratio and
fluorescence lifetimes of NAD(P)H and FAD probe different features
of cellular metabolism [10]. The redox ratio reflects relative amounts
of electron donor (NAD(P)H) and acceptor (FAD), whereas the
fluorescence lifetimes of NAD(P)H and FAD reflect enzyme activity,
preferred protein-binding, and other microenvironmental factors (e.g.
pH) of these co-factors [11]. Decreased NAD(P)H and FAD mean
fluorescence lifetimes have also been measured in BT474 breast
cancer xenografts treated with antibody therapy trastuzumab two days
after treatment [10]. No previous literature has reported the effects of
chemotherapy in vivo on the optical redox ratio and fluorescence
lifetimes of NAD(P)H and FAD. These fluorescence lifetime changes
two days after treatment agree with tumor size decreases in treated mice
nine days after treatment onset, indicating that NAD(P)H and FAD
fluorescence lifetime measurements could reflect early treatment-
induced metabolic effects.
To visualize treatment-induced shifts in cellular heterogeneity,

frequency histograms were plotted for the optical redox ratio and
mean fluorescence lifetimes of NAD(P)H and FAD. Shifts in the
histograms can be qualitatively visualized across control and treatment
groups (Figure 4), and a metric to describe cellular heterogeneity is
necessary for quantitative comparisons. However, there is no standard
metric for quantifying tumor heterogeneity. We have modified the
Shannon diversity index to incorporate the relative separation
between subpopulations by including a coefficient of the distance
between the median of each subpopulation to the median of the
group. Since the scale and range of this coefficient depends on the
parameter, the heterogeneity index is a relative value for each
parameter. A heterogeneity index of 0 indicates one population of
cells, and the index increases with increased number of subpopula-
tions, evenness between subpopulations, and distance between
subpopulations. The heterogeneity index increases for co-cultures of
SKBr3 and MDA-MB-231 cells compared with either cell line alone
(Table 1), indicating that an increased heterogeneity index reflects
increased sample heterogeneity. The heterogeneity index was
calculated for the redox ratio, NAD(P)H fluorescence lifetime, and
FAD fluorescence lifetime (Figure 4), and is consistently lower for the
control group compared with the cetuximab or cisplatin treatments.
The higher heterogeneity index for the treatments indicates increased
variability in cellular response to each treatment, and could indicate a
balance between cellular response and resistance that leads to stable
disease as seen in tumor growth curves (Figure 1A). Additionally, in vitro
heterogeneity analysis of FaDu cell monolayers show similar response as
in vivo results, indicating intrinsic heterogeneity in the FaDu cell
response to cetuximab and cisplatin (Supplementary Figure 4). Other
factors could also contribute to in vivo drug response, including hypoxia,
drug delivery, and glucose gradients. These factors could induce greater
heterogeneity in the in vivo optical metabolic imaging measurements
compared to in vitro measurements.



Figure 4. To quantify the level of cellular metabolic heterogeneity
within a treatment group, each group is fit to one, two, or three
Gaussian curves based on the Akaike Information Criterion. Each
Gaussian curve represents one subpopulation, and the sum of the
Gaussian curves is plotted for visualization. The heterogeneity
index, H, is a weighted sum over each subpopulation within a
treatment group that incorporates d, the distance between the
median of the subpopulation and the median of all data in the
treatment group, and p, the weight of the subpopulation. This
parameter is the Shannon diversity index modified to incorporate
the relative location of each subpopulation. Increased heteroge-
neity index indicates increased number of subpopulations,
increased equality in the weights of each subpopulation within a
treatment group, and increased separation in the locations of the
subpopulations. (A) The heterogeneity index for the redox ratio is
lowest for the control group followed by the cisplatin and
cetuximab treatment groups. (B) The heterogeneity index for the
NAD(P)H fluorescence lifetime is lowest for the control group
followed by the cetuximab and cisplatin treatment groups. (C) The
heterogeneity index for the FAD fluorescence lifetime is lowest for
the control group followed by the cisplatin and cetuximab
treatment groups.

Table 1. Validation of the Heterogeneity Index

MDA-MB-231: SKBr3 Ratio 0:100 50:50 100:0
Heterogeneity Index 0.152 0.285 0.006

The heterogeneity index is defined as H = −∑[dipiln(pi)], where i represents each subpopulation, d
represents the distance between the median of the subpopulation and the median of all data within a
group, and p represents the proportion of the subpopulation. The heterogeneity index was validated
using redox ratio measurements of MDA-MB-231 and SKBr3 cell monolayer cultures plated at
ratios of 0:100, 50:50, and 100:0, and exhibits an increased value for the 50:50 condition.
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The heterogeneity index can be applied to individual optical
metabolic imaging parameters. However, since the seven optical
metabolic imaging parameters are complementary measures [10],
incorporating all parameters into one heterogeneity analysis could
provide additional insight for characterizing tumor heterogeneity.
Dimensionality reduction techniques can preserve the similarity
between cells across multiple variables, and project relative distances
between cells onto a two-dimensional scatter plot. Common
dimensionality reduction techniques include principal component
analysis, but this method requires a linear transformation of the data
[40]. The viSNE technique optimizes the separation between cells
based on high-dimensional data sets without relying on a linear
transformation of the data, so it can preserve non-linear relationships
at single-cell resolution, identify rare subpopulations of cells, and
provide a two-dimensional plot for visualization of cellular
heterogeneity [21]. These advantages make viSNE an attractive tool
for the analysis of optical metabolic imaging parameters. viSNE
analysis shows a distinct population of cells in the control group. In
contrast, the cetuximab and cisplatin treatment groups overlap with
control and also display a separate subpopulation of cells (Figure 5).
This indicates increased heterogeneity in the treatments compared
with the control, which agrees with the analysis of the heterogeneity
index applied to individual optical metabolic imaging parameters
(redox ratio, NAD(P)H and FAD fluorescence lifetimes). A gradient
in the short lifetime components of NAD(P)H and FAD can be seen
across the viSNE map (Figure 5, B and C), which indicates that these
optical parameters contribute more variability to the data set. These
results indicate that the combination of optical metabolic imaging
and single-cell analyses (heterogeneity index, viSNE) are attractive for
characterizing tumor heterogeneity.

Tumor heterogeneity poses a challenge for optimizing anti-cancer
treatment strategies in cancer patients, and new tools are necessary to
adequately quantify and interpret tumor heterogeneity in vivo in animal
models at a cellular level. This study shows that optical metabolic
imaging can resolve metabolic shifts induced by chemotherapy and
targeted therapy in vivo at an early time point. Autofluorescence
imaging on a cellular level is well-suited for analysis of heterogeneity
across single cells. In particular, a heterogeneity index can quantify
drug-induced shifts in heterogeneity across treatment groups for
individual variables, and dimensionality reduction techniques can be
advantageous for holistic interpretation of multivariate measures of
cellular heterogeneity. These methods for assessing tumor heterogeneity
could enable improved treatment regimens that account for tumor
heterogeneity, leading to improved outcomes for cancer patients.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neo.2015.11.006.
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Figure 5. Single-cell analysis using the dimensionality-reduction technique viSNE reduces seven optical metabolic imaging parameters to
two dimensions for visualization of heterogeneity across individual cells. To account for different scales between parameters, common
linear transformation was applied within each parameter across all treatment groups so the transformed values range from 0 to 100. (A)
viSNE analysis shows a distinct population of cells for the control group. The cetuximab and cisplatin treatment groups overlap with the
control group and also exhibit a separate subpopulation of cells. (B, C) Heat maps of the short fluorescence lifetime components for (B)
NAD(P)H and (C) FAD show gradients over the 2-dimensional viSNE axes.
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