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Abstract: Any variation in normal cellular function results in mitochondrial dysregulation 
that occurs in several diseases, including cancer. Such processes as oxidative stress, meta-
bolism, signaling, and biogenesis play significant roles in cancer initiation and progression. 
Due to their central role in cellular metabolism, mitochondria are favorable therapeutic 
targets for the prevention and treatment of conditions like neurodegenerative diseases, 
diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for 
simultaneous targeting, drug delivery, and imaging of these organelles are of immense 
interest in cancer therapy. It is a challenging task to cross multiple barriers to target 
mitochondria in diseased cells. To overcome these multiple barriers, several mitochondrio-
tropic nanoformulations have been engineered for the transportation of mitochondria-specific 
drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric 
nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondrio-
tropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphospho-
nium, and Mitochondria-penetrating peptides. Most of these nanoformulations are 
meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, 
and specific cell-membrane interactions. Recently, some novel mitochondria-selective anti-
tumor compounds known as mitocans have shown high toxicity against cancer cells. These 
selective compounds form vicious oxidative stress and reactive oxygen species cycles within 
cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA 
and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. 
The novel use of these NPs still faces tremendous challenges and an immense amount of 
research is needed to understand the proper mechanisms of cancer progression and control by 
these NPs. Here in this review, we summarize current advancements and novel strategies of 
delivering different anticancer therapeutic agents to mitochondria with the help of various 
nanoformulations. 
Keywords: cancer, antitumor drugs, mitochondria targeting, theranostic nanoparticles, 
mitochondriopathies

Introduction
Mitochondria are multifunctional organelles found in most eukaryotic cells that 
form a comprehensive intracellular network controlled by a proper balance among 
fusion, fission, biogenesis, and mitophagy.1,2 These organelles are acknowledged 
for storing and harvesting energy, released by oxidative phosphorylation. 
Mitochondria are maternally inherited organelles, and most of their proteins are 
nuclear-encoded. However, these organelles retain a small DNA genome of about 
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16 kb mitochondrial DNA (mtDNA), which encodes 
rRNAs and tRNAs and proteins required for respiration. 
Eukaryotic cells generally contain hundreds of mitochon-
dria with their mtDNA either free of mutations (wild type), 
mutated mtDNA, or a mixed population known as 
heteroplasmy.3

These organelles are significant junctions for intracellu-
lar interactions with other organelles. They interact with 
nuclei, the endoplasmic reticulum (ER), and peroxisomes 
through membrane contact, vesicle transport, and signal 
transduction to regulate biosynthesis, energy metabolism, 
immunoresponse, and cell turnover. However, when this 
normal communication among mitochondria and other orga-
nelles fails or when mitochondria are dysfunctional, it most 
often induces different diseases and especially 
tumorigenesis.4 Mitochondrial diseases are well known to 
be devastating, and can affect many organs like muscles, the 
heart, and the nervous system. These diseases can either be 
of maternal inheritance or by nuclear inheritance of loss-of- 
function mutations in some essential mitochondrial genes.5

Most cancers retain mitochondrial functions, including 
respiration, and even some tumors show enhanced oxida-
tive phosphorylation.6 The energy-harvesting functions of 
mitochondria are at least as important for cancer progres-
sion as ATP generation.7 Cancer cells survive easily dur-
ing hypoxic milieus by recycling NADH to NAD+ through 
plasma-membrane electron transport and lactate dehydro-
genase to continue glycolytic ATP synthesis.8–10 The pre-
cise role of mitochondria during different phases of cancer 
has been recently reviewed. This review discusses the 
altered functions of mitochondria during cancer, 
changes in mitochondrial dynamics, and targeting mito-
chondria with specific mitochondriophilic biomolecules at 
multiple sites during cancer progression. In addition, ther-
apeutic strategies, including the use of novel NPs (NPs) 
conjugated with mitochondriophilic biomolecules, to com-
bat cancer progression are discussed.

Mitochondria as Eukaryotic Cell 
Organelles
The fundamental role of mitochondria as eukaryotic cell 
organelles was verified over a century ago.11 During 
a healthy state, these organelles regulate some vital cellular 
functions through the tricarboxylic acid cycle (TCA), oxida-
tive phosphorylation, fatty-acid oxidation, and calcium home-
ostasis. Mitochondria also regulate heme biosynthesis, 
ketogenesis, urea cycle, gluconeogenesis, and iron–sulfur 

cluster formation.12 These organelles possess their own 
DNA (mtDNA), which controls some important functions 
and can get mutated or partially deleted. Mitochondria are 
enclosed by a lipid-bilayer double-membrane system — 
inner mitochondrial membrane (IMM) and outer mitochon-
drial membrane (OMM) — which are separated by inter-
membrane space. Much of the inner space of the 
mitochondrial matrix is occupied by cristae, which are 
formed by extensive IMM folds. Each mitochondrial com-
ponent plays specific roles that controls many of the overall 
cellular activities.13

There are several proteins and enzymes that regulate 
mitochondrial function, fission, fusion, interaction, and 
cross talk with other organelles. Mitochondrial fission is 
promoted by mitochondrial fission 1 protein (FIS1) and 
mitochondrial fission factor (MFF) present in OMM. 
Mitochondrial fission controls important functions like 
autophagy, apoptosis, and cell death.14 On the other hand, 
mitochondrial fusion is achieved by the outer-membrane 
fusion proteins, Mfn1 and Mfn2 and the inner-membrane 
fusion protein OPAC1.15 Mitochondrial fusion controls 
mitochondrial membrane potential (MMP), cell growth, 
and electron-transport chain (ETC) functions.16

For the normal functioning of a cell, proper crosstalk 
between mitochondria and other organelles is very impor-
tant. Any impairment in this connection may lead to 
alteration of the cellular environment, which can activate 
certain oncogenes and mitochondrial genome mutation.4 

Precise control exists between the nucleus and mitochon-
dria for the stability of these organelles. Any cross-talk 
dysfunction between these two organelles can lead to 
DNA damage in both, abnormal activation of growth 
factors, Ca2+ overload, and metabolic disorders, which 
are prominent hallmarks of cancer.17,18

An active and strong interaction exists between the ER 
and mitochondria for the coordination of important cellu-
lar biological functions like Ca2+ signaling, ER stress 
response, regulation of apoptosis, phospholipid biosynth-
esis, and translocation from the ER to mitochondria. In 
addition, proper interaction between mitochondria and 
peroxisomes is very important for reactive oxygen species 
(ROS) and lipid balance.

Role of Mitochondria in Autophagy, 
Apoptosis, and Senescence
In addition to the regulation of biosynthetic precursor 
balance, energy production, and cytosolic Ca2+ levels, 
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mitochondria can modulate redox status and ROS genera-
tion and initiate apoptosis through the activation of 
mtPTP.19 Mitochondria are the major sources of ROS (ie, 
hydroxyl radicals, hydrogen peroxide, and superoxide 
anions), and these reflect the imbalance between antiox-
idant defense and ROS production. The most pronounced 
ROS-depended damage includes vascular tonus impair-
ment and platelet adhesion and alterations in gene tran-
scription and metabolism.20 This usually occurs due to 
hydrogen peroxide, which besides acting as intracellular 
messenger, controls autophagy, senescence, and 
apoptosis.20 These processes are closely related to one 
another, the relationship appears rather complex, and the 
boundaries are difficult to delineate.

In some circumstances, autophagy can lead to cell 
death while apoptosis is inhibited, so acting as a backup 
mechanism for death progression.21 During some failure 
conditions, to activate autophagy as a cell-survival 
mechanism during nutrient starvation, it leads to cell 
death by apoptosis with the involvement of BAX/BAK 
proteins. These are BCL2-family proteins that are required 
for caspase activation or mitochondrial outer-membrane 
permeabilization,22 which is the point of no return in 
different forms of apoptotic cell death, as it initiates proa-
poptotic, enzyme-mediated proteolytic cascades and 
damages mitochondrial functions.23 The cross-regulation 
among autophagy, senescence, and apoptosis is a complex 
phenomenon and still far from being understood. The role 
played by mitochondria in the onset of these process is 
briefly discussed in many sections of this article.

Mitochondrial Participation in 
Cancer Development
Mitochondria may play a significant role in the develop-
ment of cancer phenotypes through at least five mechan-
isms. First, it has been commonly demonstrated that DNA 
mutations affect mitochondria and lead to many diseases, 
mainly due to alterations in ETC subunits.24 Second, ROS 
are mainly produced from mitochondria (mtROS), which 
mediates oxidative stress (OS) and is the principal cause of 
cancer generation and progression.25 mtROS can be gen-
erated either in the ETC or during the TCA cycle.26 

Enhanced levels of ROS are usually found in cancer 
cells, due to altered antioxidant potential.27 Third, the 
mitochondria have a direct role in cell-death regulation, 
including but not limited to necrosis and apoptosis.28 For 
the induction of apoptosis, BCL2 proteins interact with 

mitochondria through binding with voltage-dependent 
anion channels (VDACs) to enhance the release of 
cytochrome c (cyt c).29 Mitochondria also control necrop-
tosis, which is a regulated form of necrosis that requires 
mitochondrial permeability transition and mtROS.30 

Fourth, metabolic reprogramming also affects gene muta-
tions encoding enzymes of the TCA cycle, which can 
promote cancer transformation.31 Fifth, telomerase reverse 
transcriptase shuttles from the nucleus to mitochondria 
during enhanced oxidative stress. It is used to preserve 
mitochondrial functions, decrease oxidative stress, and 
protect mtDNA and nuclear DNA from oxidative damage 
to avoid apoptosis.32

Mitochondrial Functional 
Aberrations During Cancer
Though cancer cells are highly diverse, all display some 
stereotypical traits or hallmarks, and mitochondria play an 
important role in such hallmarks.33 Mitochondria play 
a significant role in initiation of cancer, which can be 
due to dysregulated signaling, mtDNA mutations, oxida-
tive stress, metabolism, bioenergetics, fission and fusion 
dynamics, or biogenesis and turnover. The distorted bioe-
nergetics within cancer cells help them meet the required 
energy demands by ATP generation through the ETC.

During acute myeloid leukemia (AML), altered mito-
chondrial metabolism occurs, due to mutations in isocitrate 
dehydrogenase (IDH). An isoform of IDH, IDH3 catalyses 
the formation of α-ketoglutarate from isocitrate in the 
TCA cycle. In parallel, IDH1 and IDH2 catalyse the 
same reaction, but outside the TCA cycle.34 Aberrant 
mitochondrial metabolism during AML has opened the 
possibility of using several drug nanoformulations to rec-
tify mutations. Various studies on in vivo and in vitro 
AML models have demonstrated the benefits of using 
mitochondria-targeted mitocans in combination therapies. 
In this regard, arsenic trioxide has been found to be 
a potential drug at the clinical level for acute promyelocy-
tic leukemia patients. The use of arsenic trioxide has raised 
hopes of discovery in more aberrant mitochondria–tar-
geted drug nanoformulations as a therapeutic strategy in 
treating AML.

The transformed mitochondrial metabolism supports 
the rapidly dividing cancer cells by providing building 
blocks. Mitochondria show good flexibility in supporting 
cancer-cell survival during adverse conditions, such as 
starvation and chemotherapy.9 Therefore, understanding 
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the mechanisms of mitochondrial function during normal 
and cancerous states will be crucial to develop next-gen-
eration cancer therapeutics. Some altered mitochondrial 
functions during cancerous state are outlined in the follow-
ing sections.

Upregulation of Oxidative 
Phosphorylation
Recent experimental data on mitochondria have over-
turned the belief that cancer cells quench their bioener-
getic and anabolic requirements predominantly through 
aerobic glycolysis. It is now well acknowledged that 
mitochondrial metabolism plays a crucial role in cancer 
development and progression. These organelles play an 
important role in different steps of oncogenesis and 
response to treatment.35 This is further supported by the 
findings that different cancer cells depend primarily on 
oxidative phosphorylation for promotion of their tumori-
genic potential.6,36 These observations are supported 
further by analysis of glioma cells, which are rescued 
by pyruvate and lactate, oxidative substrates produced 
during low-glucose conditions.37 In parallel, it has been 
observed that in MCF7 cells, oxidative metabolism pro-
duces 80% of ATP and increased glucose consumption is 
not necessarily linked with increased glycolysis.38 

Furthermore, it has been found that some drug-resistant 
tumor cells are subjected to mitochondrial oxidative 
phosphorylation for their survival. The treatment of 
these cells with ETC complex I inhibitors 
prolongs survival and tumor burden in murine xenograft 
models.39

Reprograming of Metabolism
Mitochondria are indispensable for tumor cells, as they 
provide the major share of energy and process metabolic 
intermediates. The TCA cycle provides some major meta-
bolic intermediates and building blocks for anabolism. 
Kreb’s cycle constitutes an epicenter in cellular metabo-
lism, as numerous substrates can feed into it. As such 
altered TCA-cycle regulation and its continued feedback 
with dysregulated oxidative phosphorylation is crucial for 
the progression of cancer.

Several types of human cancers show that TCA cycle 
enzymes are often dysregulated and frequently mutated. 
Some of the most vulnerable enzymes are isocitrate dehy-
drogenase, aconitate hydratase, succinate dehydrogenase 
(SDH), fumarate hydratase (FH), and the α- 

ketodehydrogenase complex.40,41 In addition, some meta-
bolites of the TCA cycle control mitochondrial chromatin 
modifications and post-translational modification in pro-
teins. The role of Kreb’s cycle rewiring during hepatocel-
lular carcinoma has been summarized by Todisco et al, as 
they found dysregulation of glutamine metabolism, 
citrate–pyruvate, and malate–aspartate shuttles. A link 
has also been observed between the transcription factor 
NFκB–HIF1 and TCA cycle reprogramming.42

Significant alterations have been observed in the abun-
dance of some enzymes linked with aerobic glycolysis and 
Kreb’s cycle in gliomata of IDH1-mutant types.43 

Enzymes involved in the metabolism of lactate, glutamate, 
and α-ketoglutarate are also significantly enhanced in such 
mutant gliomata. In addition, increased expression of 
SLC4AG, a bicarbonate transporter has been observed in 
such gliomata. This suggests a mechanisms that preventing 
the glycolysis mediated intracellular acidification is active 
in such cells. This special type of metabolic rewiring 
preserves the activity of TCA cycle in IDH1-mutant 
glioma types.43

Enhanced Oxidative Stress
Cancer cells display metabolic aberrations accompanied 
by accumulation of ROS, which is the main cause of 
biomolecular damage, and if it exceeds the limit leads to 
cell death.44 The ETC releases electrons that are captured 
by O2 to generate O2

–, which leads to the formation of 
ROS.45 These entities lead to DNA damage and bind with 
intracellular and surface receptors and signaling mole-
cules. All these changes lead to angiogenesis, prolifera-
tion, and apoptosis, significant aspects of cancer 
progression.46,47 The extensive DNA damage by ROS 
can promote carcinogenesis and the malignant transforma-
tion of normal cells. Excessive production of ROS also 
leads to Cyt. c release and can trigger programmed cell 
death.48 Enhanced levels of ROS pose a severe threat to 
mitochondria and even cell viability.

Altered Dynamics
Normal cells exhibits continued mitochondrial fission and 
fusion cycles to maintain proper function. Fission- and 
fusion-machinery proteins also regulate intrinsic apoptotic 
pathways.49 In cancer cells, the genes responsible for 
mitochondrial dynamics regulation are amplified and inhi-
bition of DRP1, a fission promoting GTPase known to 
induce apoptosis.50 DRP1 knockout in pancreatic cancer 
cells has been witnessed with diminished oxygen 
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consumption and minimal ATP production, which results 
in reduced growth.51 In comparison to normal cells, lung 
adenocarcinoma has been reported to express lower 
levels of Mfn2 and higher levels of DRP1. Different 
phases of the cell cycle are also controlled by DRP1 
dysregulation, which helps to maintain cell proliferation. 
DRP1 also inhibits p53 and promotes progression of the 
cell cycle.52 DRP1 expression has been found to be in 
phase with cell-cycle gene expression in ovarian cancer 
cells, as 55% of these genes regulate mitotic transition.53 

Forced inhibition of DRP1 in these cells causes replication 
stress and delayed G2–M transition. This replication stress 
leads to hyperfused mitochondrial structures and improper 
cyclin E expression during the G2 phase.54 In addition to 
this, silencing of DRP1 in breast cancer cells leads to 
suppressed metastatic abilities.55 Furthermore, inhibition 
of upregulated expression of DRP1 in hypoxic glioblas-
toma U251 cells attenuates hypoxia-induced mitochondrial 
migration and fission. All these findings support the view 
that DRP1 can be a potential therapeutic target in cancer 
cells.56 In addition, proteasomal degradation of Mfn2 
induced by chemotherapy leads to mitochondrial fragmen-
tation, which results in apoptotic cell death.57,58

Altered Mitochondrial DNA
In addition to mitochondrial aberrations in different can-
cers, high levels of mtDNA mutations have been reported 
in several cases.59 The different mtDNA mutations in 
diverse cancers include deletion, inversion, point mutation, 
and variation in copy number. These mutations potentially 
arise from the clonal expansion of cells containing mtDNA 
mutations. mtDNA mutations have been reported in a large 
percentage of lung cancer, colorectal cancer, head and 
neck cancer, pancreatic cancer, urinary bladder cancer, 
ovarian carcinoma, gastric cancer, breast cancer, and sev-
eral other tumors.60–66 Whether the enhanced frequency of 
mutated mtDNA in cancer cells is an outcome of their 
uncontrolled division or whether mtDNA mutations pro-
vide a selective advantage to these transformed cells that 
contributes to cancer initiation and progression remains an 
important open question.67

Some recent discoveries have shown intergenomic cross 
talk between mitochondria and the nucleus and the role of 
mtDNA variation in disturbing this signaling and thus indir-
ectly targeting nuclear genes involved in tumerogenic and 
invasive phenotypes. Therefore, mitochondrial dysregula-
tion is currently regarded as an important hallmark of 
carcinogenesis and a promising target for antitumor 

therapy.68 Moreover, the advancement of mtDNA editing 
tools is expected to improve strategies to characterize, track, 
and repair oncogenic mitochondria, which will further boost 
the understanding of mitochondrial epigenetics in cancer 
and therapeutic strategies.

Elevated Heme Levels
Heme (protoporphyrin IX), an iron-containing molecule, 
is synthesized by human cells at the basal level.69 Heme 
plays a significant role in mitochondrial respiratory-chain 
complexes and different enzymes and proteins involved in 
oxygen metabolism like cytochromes, peroxidase, and 
catalase. Different types of cancers have been reported 
with elevated heme levels, and this elevation may con-
tribute to the maintenance and proliferation of cancer.70 

Oxygen consumption and heme biosynthesis are signifi-
cantly intensified in lung cancer cells. In addition, protein 
levels in heme synthesis and uptake are increased in lung 
cancer. It has been found that the inhibition of heme and 
mitochondrial functions suppresses the cancer-cell prolif-
eration and migration.70,71 Furthermore, some epidemio-
logical studies have suggested that increased heme intake 
via red meat is associated with greater risks of breast, 
lung, pancreatic, oesophageal, and colorectal cancer. 
A study based on almost 500,000 individuals revealed 
that the consumption of processed meat leads to a 16% 
increased risk of lung cancer. Important sites of altered 
mitochondrial metabolism in cancer as potential targets 
for therapy are shown in Figure 1.

Novel Strategies for Targeting 
Mitochondria at Different Sites
Novel anticancer drugs have been synthesized that can 
selectively disrupt cancerous mitochondria at different 
function targets by inhibiting glycolysis, disrupting the 
ETC and oxidative phosphorylation and depolarizing 
membrane potential. Here, we elucidate different locations 
of mitochondria in cancerous cells that can be novel tar-
gets to hit these types of cells.

Targeting Oxidative Phosphorylation
Appropriate functioning of the ETC is very important to 
support oxidative phosphorylation and ATP synthesis, 
essential for tumorigenesis. Several ETC inhibitors like 
tamoxifen, α-tocopheryl succinate, metformin, and 3-bro-
mopyruvate have been used to disrupt the proper function-
ing of ETC respiratory complexes. These inhibitors lead to 

International Journal of Nanomedicine 2021:16                                                                                   https://doi.org/10.2147/IJN.S303832                                                                                                                                                                                                                       

DovePress                                                                                                                       
3911

Dovepress                                                                                                                                                   S Allemailem et al

https://www.dovepress.com
https://www.dovepress.com


the induction of enhanced ROS generation and ultimately 
kill some cancerous cells.72 Proper use of these drugs 
specific to mitochondria of cancerous cells is a novel 
approach of drug targeting and requires deeper investiga-
tions for future cancer therapy.

Some novel mitochondria-targeted therapeutic agents 
like MitoTam, a derivative of tamoxifen, have been found 
to inhibit ETC complex I and lead to increased ROS 
synthesis. This drug has been used in breast cancer cells 
to induce their death.73 In parallel, another mitochondria- 
specific drug — MitoVes, an analogue of vitamin 
E succinate — inhibits ETC complex II and 
minimizes tumor growth by triggering apoptotic cell 
death in colorectal, breast, and lung cancers.74 In addition, 
several signaling pathways and ETC complex I have been 

targeted by ME44, which induces cell death by interfering 
with mitochondrial permeability in colorectal cancer.75 

Mitochondria were further targeted by ME143 and 
ME344, which significantly inhibit oxidation of NADH 
by complex I, thus preventing electron flux through other 
oxidative phosphorylation complexes. ROS are generated 
by ME344-mediated inhibition of complex I, thus leading 
to BAX translocation to the OMM. This translocation 
leads to mitochondrial permeability transition, which 
results in the discharge of proapoptotic molecules.76

Targeting the TCA Cycle and Glutamine 
Metabolism
As the TCA cycle is the bioenergetic hub of metabolism 
and redox-state balance, it also serves as an important 

A

B

C

D

Figure 1 Some important locations of mitochondria that can be potential targets of anticancer-drug nanoformulations. (A) Mitochondria in normal and in cancer 
cells. (B) Highly metabolically active or hypoxic cancer cells generate superoxide (O2

–), which is immediately dismutated to H2O2. (C) in cancer cells, the TCA 
cycle produces reducing equivalents to fuel the ETC (green arrows), and also generates intermediates necessary for cell proliferation (red arrows). The most 
important anaplerotic reaction produces oxaloacetate directly from pyruvate (purple arrow). (D) Mitochondrial DNA (mtDNA) variations, including single- 
nucleotide polymorphisms (SNPs), maternally inherited haplotypes, and deletions, have been studied for their associations with cancer.
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location of biosynthesis of different compounds. This hub 
is considered a novel location for different therapeutic 
strategies for the prevention of cancer. It involves muta-
tions of isocitrate dehydrogenase genes, which have been 
reported in cancers like AML and glioblastoma.41,77 Novel 
therapeutic agents against these mutated gene products are 
now being engineered for the treatment of AML and other 
cancers.78 Some mutations have also been reported in FH 
and SDH in association with certain cancers, and any loss 
of these enzymes increases the vulnerability of a cancerous 
cell to a therapeutic agent.79 In addition to TCA cycle 
enzymes, oncogenes like HIF, MYC, RAS, and P53 are 
known to regulate the metabolic phenotype of tumor 
cells.80 As such, these additional pathways are now being 
explored as new therapeutic targets against cancer cells.81

Many cancer cells use glutamine as a fuel to supply 
essential nutrients and precursors for their constant growth. 
Inhibition of glutaminolysis can be an innovative therapeutic 
strategy for the treatment of various cancers. Some glutamine 
analogues (azaserine and 6-diazo-5-oxo-l-norleucine, azoto-
mycin) have been tried as a treatment strategy, but this 
therapeutic protocol was not continued, as these analogues 
induced severe toxicity.82 These analogues can be tried again 
if transported specifically to cancer cells through mitochon-
dria-targeted NPs.

Targeting Mitochondrial Dynamics and 
Trafficking
Mitochondrial dynamics include morphology, distribution, 
fusion, and fission, which regulate different biological 
activities within the cell, including energy production. 
Most cancers show a prominent hallmark of increased 
fission compared to its fusion ratio.83 Some studies have 
targeted DRP1 with mitochondrial division inhibitor 1, 
a mitochondrial fission protein inhibitor, to reduce the 
tumorigenic activities of cancer stem cells.84 In parallel, 
an effective therapeutic strategy has been devised by using 
miR125a to inhibit Mfn2, which augments the mitochon-
drial fission in pancreatic tumor cells.85 The cell cycle is 
regulated by LATS2, which senses DNA-damage response. 
Overexpression of this gene activates mitochondrial fission 
and promotes mitochondrial stress in lung cancer cells, 
leading to their apoptosis. Targeting of LATS2 and its 
associated signaling can be an efficient therapeutic 
approach.86 The regulation of mitochondrial morphology 
through mitofusins and DRP1 is also regulated by E3 
ubiquitin ligase (MARCH5). This protein is associated 

with breast cancer, and could serve as a potential thera-
peutic target.87

Cancer therapy can also be shortlisted by focusing on 
mitochondrial membrane transport mechanisms and asso-
ciated proteins. This includes translocase of inner mitochon-
drial membrane 50 (TIMM50), involved in ERK–P90RSK 
signaling-pathway regulation. It prevents E-cadherin expres-
sion, which promotes cancer proliferation in NSCLC cells, so 
can be an efficient therapeutic target in such cells.88 

Furthermore, mitochondria-mediated apoptosis is also regu-
lated by VDAC1, which is found at the OMM. Specific 
targeting of this complex may serve as a novel therapeutic 
approach for cancer treatment.89 Some important examples 
of mitochondria-specific antitumor drugs (mitocans) and 
treatment strategies with these are listed in Table 1.

Mitochondria-Specific Targeting 
Ligands and Accumulation Criteria
A number of mitochondria-specific targeting ligands have 
been discovered that have tremendously improved therapeutic 
efficacy and greatly reduced the side effects of conjugated 
drugs. The direct targeting of these moieties to mitochondria 
has resulted in rapid response to the attached drugs.109 The 
most widely used mitochondria-targeting ligands are triphe-
nylphosphonium (TPP), dequalinium (DQA), short peptide, 
rhodamine 19, and rhodamine 123, pyridinium, guanidine, 
(E)-4-(1H-indol-3-ylvinyl)-N-methylpyridinium iodide (F16), 
and 2,3-dimethylbenzothiazolium iodide. The direct conjuga-
tion of these mitochondria-specific moieties with anticancer 
drugs, sensors, and antioxidants by different bonds and spacers 
has resulted in enhanced cytotoxicity, sensing activity, and 
antioxidizing activity, respectively.110 Transformed and can-
cer-cell mitochondria display amplified transmembrane poten-
tial compared to normal cells.111 This difference has been 
utilized to develop mitochondria-targeting moieties that pre-
ferentially accumulate within cancer-cell mitochondria. Most 
mitochondria-targeting moieties are delocalized lipophilic 
cations, and their chemical structure is shown in Figure 2. 
They are also elaborated upon below in the following sections.

Triphenylphosphonium
TPP is a delocalized cationic lipid that readily penetrates 
through the mitochondrial membrane because of highly 
negative membrane potential. TPP is a well-known mito-
chondria-orienting moiety with cationic phosphorus 
bonded with three hydrophobic phenyl groups.112 This 
compound has been used significantly by conjugating 
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Table 1 Mitochondrial function target sites for different mitocans and their possible treatment effects

Targets Mitocan Treatment consequences Reference

Oxidative 
stress

Rotenone This compound activates NOX2, which leads in increased ROS and 
cell death

90

Metformin This drug exerts enhanced oxidative stress and is in a phase I clinical 
trial (NCT03477162)

91

Lonidamine This mitocan induces cytotoxicity through ROS production 92

PARP activation This leads to enhanced ROS production, which results in apoptosis 93

NAC1 silencing This helps in removal of oxidative stress–defense mechanism and 

sensitization

94

Curcumin analogue Compound A This mitocan helps in selective apoptosis through the production of 

substantial ROS in different cancers

95

PYCR1 and PYCR2 downregulation This leads to the sensitization of cancer cells to ROS by inhibiting 

stress-response proteins

96

Electron- 
transport chain

Metformin It leads selective mitochondria-targeting, acts as an adjuvant with 

many cancer therapies, and is in a phase I (NCT03477162) clinical trial

97

Resveratrol This drug act as a prooxidant and leads to cancer-cell death 98

MitoTam It gets localization within mitochondria and leads to increased 

specificity

73

Sorafenib (nexavar) It supports the inhibition of ATP synthase and leads to parkin- 

mediated apoptosis and is in a phase III clinical trial (NCT00105443)

99

TPP-peptide artemisinin-TPP green 

titania (G-TiO2-x) conjugated with 

TPP

This formulation is selectively anticancerous and helps in killing cancer 

cells quite efficiently

100

Voltage- 
dependent 
anion channel

Steroid analogues It is a well-known cytotoxicity mediator 101

Oroxillin A This compound leads to cytotoxicity, apoptosis, cell-cycle arrest, and 

metastasis inhibition of different cancer cells

101

Fenofibrate This compound promotes the reprogramming of metabolism and 

apoptosis in oral carcinomas

102

R-Tf-D-LP4 peptide Targeted transferrin receptor in cancer cells, enhancing specificity of 

Antp-LP4 and N-Ter-Antp

103

Arsenites Arsenites are well-known cytotoxicity agents 101

Clotrimazole It is an inhibitor of glycolysis and leads to cytotoxicity 104

Hexokinase II Rapamycin/siRNA downregulation of 

STAT3

This treatment leads to reduced glucose consumption and glycolysis 

inhibition

105

Lactobacillus casei peptidoglycan 

fragments (European patent 
1217005)

This peptidoglycan fragment promotes inhibition of the entire 

metabolism of cancer-tumor cells

106

Benz Reduces glucose uptake, lactate production, and ATP levels, leads to 

apoptosis, and is in a phase IV clinical trial (NCT02741947)

107

miR134 and miR218 These lead to the knockdown of HKII and reduced glucose 

consumption, thus leading to apoptosis

108
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with anticancer drugs like doxorubicin, porphyrin, cou-
marin, and chlorambucil to enhance mitochondria target-
ing within cancer cells.113 Accumulation of TPP is directly 
proportional to the negative charge of the mitochondrial 
membrane, and for every 60 mV negative membrane 
potential, TPP accumulation is increased by one order of 
magnitude. It has been reported that MMP is −180 mV, 
which can facilitate up to 1,000-fold buildup of TPP inside 
mitochondria.114 TPP has also been conjugated with chlor-
ambucil (DNA-damaging anticancer agent) and used 
against breast cancer cell lines, resulting in an almost 12- 
fold reduction in IC50 compared to free drug.115 In 
a parallel study, vitamin E succinate has been conjugated 
with TPP, and this conjugate (MitoVES) presented 
enhanced mitochondrial accumulation.74

1,1′-Decamethylene-bis- 
(4-Aminoquinaldinium Chloride)
1,1′-Decamethylene-bis-(4-aminoquinaldinium chloride) 
also named dequalinium (DQA) is a well-known lipophilic 
dication composed of two quinolinium moieties bonded 

with each other through an alkyl chain of ten carbons. This 
compound displays antiproliferative potential against dif-
ferent in vitro cancer cell lines and also shows in vivo 
antitumor properties.116 In aqueous medium, DQA mole-
cules (single-chain bola-amphiphile) self-assemble and 
form vesicles known as DQAsomes.117 These vesicles 
are used to deliver pDNA within the mitochondria without 
any off-target leakage.118 In another study, DQA-conju-
gated, peptide-conjugated, and F16-conjugated anticancer 
drugs were used against different cancers.119

Mitochondria-Penetrating Peptides
Mitochondria-penetrating peptides (MPPs) have repeating 
lipophilic and cationic residues, eg, (L-cyclohexyl alanine- 
D-arginine)3 (Figure 2). These peptides show mitochon-
drial buildup with low toxicity against human tumor 
cells.120 Doxorubicin has been conjugated with MPP via 
succinate linkage. Another examples of mitochondria-spe-
cific peptides is Szeto–Schiller (SS) peptides. These tetra-
peptides denote a special class of novel chemical entities 
that precisely target mitochondrial cardiolipin, improve the 

Figure 2 Chemical structure of some important mitochondria-targeted lipophilic cations.
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plasticity of mitochondria, and recondition bioenergetics. 
They are water-miscible tetrapeptides composed of Tyr- 
dimethyltyrosine (Dmt)-Arg-Phe-Lys residues. These pep-
tides get selectively built up within the IMM and scavenge 
ROS. Further, these peptides block the opening of mito-
chondrial permeability transition pores, thus stopping the 
release of cytochrome c (cyt c).121 Different types of SS 
peptides have been engineered (SS1–S31), and SS01 (Tyr- 
D-Arg-Phe-Lys-NH2) is shown in Figure 2.

The smart character of SS peptides lies in their mutual 
lipophilicity and positive charge, which is essential for 
easy passage through the cell membrane and mitochon-
drial membranes. To target mitochondria more specifically, 
a key strategy is to ensure alternate basic and aromatic 
amino residues. This approach has been used to design 
SS31 (D-Arg-Dmt-Lys-Phe-NH2), an efficient ROS sca-
venger through inhibiting lipid peroxidation. The safety 
and efficacy of SS31 led to a phase II clinical trial 
on microvascular and ischemia–reperfusion injuries, in 
patients with acute myocardial infarction. This trial also 
involved the treatment of hypertension-mediated renal 
microvascular dysfunction and kidney injuries. This drug 
has also been used for the treatment of diabetic macular 
edema and heart failure.122

In addition, an amphipathic molecule, α-helical 
D-(KLAKLAK)2, has been used for targeting the IMM, 
as this drug has improved anticancer potency.123 Keeping 
the chemistry of these drugs in mind in terms of their 
alternate hydrophobic and cationic nature, it has attracted 
to design similar MPPs. This led to the design of P11LRR, 
an arginine-modified amphiphilic peptide that comprises 
polyproline scaffolds and has a helical structure. It has 
been reported that accumulation of P11LRR within mito-
chondria is basically driven by its transmembrane poten-
tial. Its mitochondria-targeting impact is further enhanced 
by the amphipathic α-helical structure, as this is crucial for 
the import of some peptide sequences up to 
mitochondria.124

Guanidium and Biguanidium Moieties
Guanidinium and bigaunidinium moieties possess deloca-
lized positive charges, and have been conjugated with 
hydrophobic porphyrins as photosensitizers and phototoxic 
agents to enhance mitochondrial accumulation. Guanidine 
and biguanidines have been reported to possess enhanced 
lipophilicity. These amphiphilic porphyrins have been 
bonded with different moieties to enhanced mitochondria 
targeting. These conjugates have been found to possess 

high membrane potential across the IMM and have been 
used for the treatment of cancer.125 Cellular uptake of 
these conjugates and their subcellular localization studies 
have revealed that guanidine-porphyrins are readily 
engulfed by cells and get accumulated in mitochondria 
more quickly than bigaunidine moieties. These conjugates 
possess enhanced mitochondria targeting and improved 
phototoxicity against certain cancer cells. The guanidine- 
porphyrin conjugates represent 1.8 fold enhanced photo-
toxicity than biguanidine–porphyrins.126 The presence of 
guanidinium shows a proton-sponge effect within lyso-
somes and promotes lysosomal membrane rupture and 
escape capacity, even when conjugated with porphyrins. 
Metformin is a good example of biguanide, which acts as 
an antihyperglycemic agent and suppresses mitochondrial 
respiration, as it inhibits respiratory complex I.127

(E)-4-(1H-Indol-3-ylvinyl)- 
N-Methylpyridinium Iodide
(E)-4-(1H-Indol-3-ylvinyl)-N-methylpyridinium iodide 
(F16) is a delocalized cation that accumulates within the 
mitochondrial matrix. The accumulation of this cation within 
this organelle lies in its higher MMP (Δψm) capability. This 
accumulation also causes depolarization of the membrane, 
disrupting the integrity of mitochondria, and opens mito-
chondrial permeability transition pores. These events lead 
to cytochrome c (cyt c) release, cell arrest, and ultimately 
cell death.128 The antiproliferative potential of F16 has been 
reported in a variety of human breast cancer cell lines and 
mouse mammary tumors.

Unlike other apoptosis inducers, F16 acts in mitochon-
dria at the junction of the apoptotic and necrotic pathways. 
This compound results in the induction of permeability 
transition and changes the functional integrity essential 
for cell survival. It has been observed that cell death in 
F16-treated overexpressing BCL2 clones is prevented 
under conditions of higher concentration of ATP mainte-
nance to neutralize superoxide anions. This indicates that 
overexpressing BCL2 cells show necrotic death that coin-
cides with F16-mediated mitochondrial dysregulation.129

Rhodamine
Rhodamine has a mitochondria-targeting nature due to its 
lipophilic and cationic properties. These properties are the 
basis of crossing the double mitochondrial membrane 
ands accumulation within the negatively charged mitochon-
drial matrix.130,131 Rhodamine is also efficient at 
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mitochondria targeting and damaging the ETC when bound 
to mitochondria. Both rhodamine 19 and rhodamine 123 
have potential in targeting mitochondria.132 The mitochon-
dria-targeting capacity of rhodamine 19 has been confirmed 
by substituting TPP. In brief, rhodamine 19 is a potential 
mitochondria-targeting cationic uncoupler, and shows its 
protonophorous uncoupling potential and maintains equili-
bration across the mitochondrial membranes in a Nernstian 
style. Some examples of important mitochondria-targeting 
moieties liganded with different drugs through specific 
bonds or spacers and their respective responses are listed 
in Table 2. In addition to the aforementioned mitochondrio-
philic ligands, molecular imaging tracers of positron-emis-
sion tomography (PET) and single photon–emission 
computed tomography (SPECT) are currently used to get 
deeper information about mitochondrial function.144

Mitochondria Targeting with the 
Aid of Ligand-Conjugated 
Nanoformulations
In clinical practice, the use of single-unit nanoformulations in 
therapeutics and diagnostics (theranostics) is a novel 
approach to drug delivery.145 Theranostic NPs exhibit several 
advantages over the conventional systemic administration of 
native drugs. These include overcoming the problems of 
limited solubility, inactivation, biodegradation, and minimal 
off-target toxicity. Other benefits include extended circula-
tion time, higher concentration at tumor site, multiple syner-
gistic drugs, diagnostic system delivery,146 controlled drug 
release at tumor sites through stimulus-sensitive delivery 
systems, eg, pH, temperature, enzyme-sensitive nanoformu-
lation, overcoming multidrug resistance and enhanced ther-
apeutic efficacy. The approach of this drug-delivery system 
even up to the organelle level (third-level drug targeting) 
with the aid of different nanoformulations has revolutionized 
the therapeutic approach to different diseases, including 
cancer.

Mitochondria-related diseases can be best addressed by 
the novel strategy of using nanoformulations, which can 
also prove to be a valuable tool to overcome the current 
limitations of treating mitochondrial diseases. These nano-
formulations can be powerful targeted drug-delivery sys-
tems to mitochondria.147 Moreover, they can drastically 
improve the pharmacokinetic and biodistribution proper-
ties of various therapeutic drugs. The uptake of NPs 
loaded with chemotherapeutic agents by mitochondria sti-
mulates ROS generation and Cyt. c release, sequentially 

activates the downregulation of caspase 3/9 precursors, 
and ultimately induces mitochondrial permeability. These 
responses result in mitochondrial edema and cause sub-
stantial damage. Moreover, NPs dysregulate membrane 
potential and promote mitochondrial death pathways, 
inducing the elevation of apoptotic events within cancer 
cells.148

Delivery systems based on NPs must be meticulously 
designed with proper size, shape, charge, lipophilic sur-
face, and specific density to achieve center-point targeting 
within mitochondrial locations. NPs need to have spatio-
temporal control over the release of their drug payloads at 
different mitochondrial compartments.149 NP size impacts 
drastically on cellular uptake by influencing adhesion 
strength with cellular receptors. Optimal cellular uptake 
with ligand-coated NPs has been found to be met at almost 
50 nm diameter.150 Similarly, the highest uptake of sphe-
rical mesoporous silica NPs by HeLa cells is at 50 nm.151 

In addition, targeted AuNPs have been reported to possess 
the highest cellular uptake by SKBR3 cells at 40–50 nm in 
size.152 Currently, NPs/nanoformulations are conjugated 
with different mitochondria-specific compounds to achieve 
best organelle targeting. Some common examples of NPs 
used against mitochondria of different cancer cell lines are 
presented in Figure 3.

Liposomes
Liposomes are spherical vesicles composed of one or more 
concentric lipid bilayers and are routinely used as drug- 
delivery vehicles. The physicochemical properties of these 
vesicles differ considerably on size, composition, surface 
charge, and even method of preparation.153 New modifica-
tions of conventional liposomes to achieve efficient mito-
chondria targeting are ongoing, as these entities need to be 
cheaper, atoxic, and biodegradable. This has led to the 
formation of TPP-modified liposomes coloaded with 
a photothermal near-infrared (NIR) imaging agent, IR780 
iodide, and a photosensitizer known as chlorin e6. These 
novel liposomes show enhanced toxicity to HeLa cells and 
some tumor vessels in vitro compared to untargeted ones. 
In addition, this technique has led to easy and controlled 
release of drugs and imaging agents to achieve antitumor 
angiogenesis and photothermal therapy.154 In a parallel 
strategy, stearyl residues have been conjugated with TPP 
and incorporated as STPP within lipid bilayers.155 These 
STPP-modified liposomes were further loaded with cera-
mide, which showed significantly reduced tumor volume 
in BALB/c mice.
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Liposome-based drug formulations face some aggrega-
tion and instability issues in blood. This complication has 
been resolved by using hybrid cerasomes based on the Si– 
O–Si framework and liposomes.156 The cerasomes were 
conjugated with TPP using 3-aminopropyl triethoxysilane, 
which acts as a linker. These TPP-modified cerasomes 
were loaded with doxorubicin (TPP–CER–Dox) through 
self-assembly process and formed phospholipid bilayer 
vesicles covering the cerasomes. These possessed extraor-
dinary stability, biocompatibility, sustained drug release, 
and efficient drug accumulation within mitochondria.157

Recently, a novel liposome (Mito-Porter) has been 
designed with phosphatidic acid or sphingomyelin nd its 

surface modified with octaarginine (R8) and GALA, 
a membrane fusogenic peptide. This special type of lipo-
some can introduce specific cargoes into mitochondria 
using the advantage of membrane fusion. The presence 
of highly dense R8 enables the liposomes to achieve 
micropinocytosis-mediated cell-membrane internalization. 
The presence of GALA helps the liposomes escape endo-
some formation. Mito-Porter helps to fuse successfully 
with both the OMM and IMM158,159 (Figure 3).

Mito-Porters have also been designed for targeting 
nucleic acids specific to the mitochondrial genome. The 
presence of phosphatidic acid or sphingomyelin in this 
formulation facilitates enhanced mitochondrial membrane 

Table 2 Mitochondria-targeting moieties conjugated with various drugs through a specific bond or spacer, provoking different 
reactions and mediating important changes

Targeting ligand Drug Bond and 
spacer

Mitochondrial induction Reference

TPP Dox Amide, propyl Caspase 3 activation and apoptosis 134

F16 Butyl Mitochondrial uptake, Δψ decrease 135

Chlorambucil Amide, propyl Alkylates and cross links DNA, inducing DNA damage 115

Vitamin E C–C, (– 

CH2–)11

BAK-mediated apoptosis 74

Coumarins C–C ROS generation, MMP decrease, apoptosis 113

2,4-dihydroxy- 

benzaldehyde

Ether-hexyl Mitochondrial aggregation, MMP decrease, ROS generation 136

(KLAKLAK)2 Amide, butyl Activation of caspase 3, 9, disruption of mitochondrial membrane, 

cytochrome c (cyt c) release

137

TPP, TEA Porphyrin Ethyl, butyl Mitochondrial destabilization, photodynamic therapy 138

MPP Dox Amide, 

succinate

ROS generation, Topo II inhibition 139

Chlorambucil Amide Caspase 3-, 7-, 9-activated apoptosis, alkylate mtDNA, induces DNA 

lesions

140

Cisplatin Amide Attachment of alkyl groups to DNA bases 141

F16 Bodipy–phenylethynyl 

linker–F16

C–C Decreases membrane potential, apoptosis, increases ROS 119

5FU Ester, amide, 

disulfide

Thymidylate, pyrimidine, DNA 142

Cyclic guanidium Gamitrinib Amide ROS scavenging, decreases cytochrome c (cyt c) levels 131

Guanidine, Biguanidine, 

MLS peptide

Porphyrin Amide, PEG 

for MDL

Photodynamic therapy 125

PS-6-TSPOmbb732 IR700DX–NHS Urethane, 

valeric acid

Apoptosis 143
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D

Figure 3 (A) Schematic representation of mitochondria-targeted nanoformulations loaded with hydrophilic and hydrophobic drugs. These NPs can also be loaded with 
Mitochondria-targeted genes. (B) Approaches for drug-loaded NP entry within a target cell. (C) of Mito-Porter approach for targeting of cancer-cell mitochondria. (D) 
Membrane fusion of Mito-Porter with OMM and IMM and the delivery of mitochondria-specific drugs and genes.
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binding and special cargoes are released within the mito-
chondrial compartment. For intracellular trafficking of 
Mito-Porter, R8 plays a crucial role, as its higher density 
leads to internalization by micropinocytosis and its lower- 
density vehicles being taken up by clathrin-mediated endo-
cytosis and degraded by lysosomes.158,160

Mito-Porters have also been used to transport fluores-
cent dyes like propidium iodide for staining nuclear 
DNA.161 Advancement in the same study led to the dis-
covery of a dual-function Mito-Porter system that pene-
trates the endosomal and mitochondrial membranes by 
phase-wise membrane fusion.162 A study was based on 
comparison of the effective dose for the two types of 
nanocarriers, and the results showed that the dual-function 
Mito-Porter was 15-fold higher in efficiency than conven-
tional Mito-Porter for mitochondrial delivery.163

Furthermore, instead of R8, mitochondrial signal targeting 
signal peptide (MTS) with sequence NH2- 
MVSGSSGLAAARLLSRTFLLQQNGIRHGSYC was used 
to form MTS-Mito-Porter; however, this system showed labile 
aggregation, eventhough it was highly efficient for mitochon-
drial delivery compared to R8-Mito-Porter.164 In further 
research, S2 peptides modified with stearyl-Dmt-D-Arg-FK- 
Dmt-DArg-FK-NH2 were used to decorate the dual-function 
Mito-Porter, which provoked lower toxicity than the DF-R8- 
Mito-Porter.165 The mechanism of Mito-Porter uptake by 
cells and its fusion with mitochondria for the delivery of 
loaded drug is illustrated in Figure 3.

DQAsomes
DQAsomes are well known mitochondriotropic “bola- 
lipid”–based vesicles composed of dequalinium 
(DQA;1,1′-decamethylene-bis-[4-aminoquinaldinium 
chloride]), a dicationic amphiphilic molecule. These vesi-
cles were designed for the transportation of drugs and 
DNA specific for mitochondria.166 Studies have now 
demonstrated that DQAsomes induce necrotic and apopto-
tic activities, as these nanovehicles induce mitochondrial 
dysregulation. DQAsomes cause mitochondrial mem-
brane–potential reduction, excess ROS production, ATP 
depletion, activation of the protein kinase–signaling cas-
cade, and induction of apoptosis by mitochondria-depen-
dent pathways.167

A novel formulation of curcumin encapsulated by 
DQAsomes has been prepared with average hydrodynamic 
diameter about 185 nm, drug-loading capacity up to 61%, 
and encapsulation capacity up to 90%. These DQAsomes 
possessed enhanced antioxidant activity compared to free 

curcumin. These vesicles are potential mitochondria-tar-
geting vehicles, thus representing a promising formulation 
and improved stability for mitochondria-targeting 
strategies.168

Some specifically modified DQAsomes have been 
engineered to deliver plasmid DNA to mitochondria as 
“DQAplexes”, a hybrid of DNA and DQAsomes.169 

(Figure 3). The application of DQAsomes has been 
extended further to deliver mitochondria-specific che-
motherapeutic drugs. This includes the use of the antic-
ancer drug paclitaxel, which induces apoptosis and 
ultimately cell death.170 This technique has revolutionized 
mitochondrial gene-therapy protocols, as the preparation 
of DQAsome–DNA complexes is quite efficient and 
simple.169 Plasmid DNA is first coupled with mitochon-
drial homing sequences for mitochondrial delivery only.171 

It has been reported that after harvested mitochondrial 
contact with DQAplexes, DNA gets released quickly and 
escapes endosomes.172

Polymeric Nanoparticles
Polymeric NPs are formed from poly(glycolic acid), poly-
lactic acid, polycaprolactone, or polylactic-co-glycolic 
acid (PLGA). These NPs are efficient biocompatible and 
biodegradable polymers and promising drug carriers.173 

They can encapsulate both hydrophilic and hydrophobic 
drugs.173 A special type of polymeric NP prepared from 
polycaprolactone modified with PEG and TPP and self- 
assembled into micelles with a diameter 38–60 nm showed 
CoQ10-loading efficiency of almost 9.5%. These micelles 
were efficiently loaded and accumulated in mitochondria.

In another study, TPP-modified PLGA-PEG and 
PLGA-COOH NPs were prepared and their size, potential, 
and stability optimized. Those with diameter <100 nm and 
potential >22 mV were efficiently taken up by mitochon-
dria. For clinical application, they were loaded with four 
drugs: 2,4-dinitrophenol (mitochondrial decoupler), curcu-
min (amyloid-β protein inhibitor for Alzheimer’s disease), 
α-tocopheryl succinate (tumor targeting drug), and loda-
mine (mitochondrial glycolysis inhibitor).174 These NPs 
improved the therapeutic activity of 2,4-dinitrophenol 
and decreased the amyloid-β–mediated cytotoxicity.175

In other research, thioketal linker-modified camptothe-
cin (Cpt) was conjugated with PEGylated TPP to form 
(TL-Cpt-PEG1K-TPP) and blended with DSPEPEG-NH2. 
This led to the synthesis of photodynamic and chemosen-
sitive dual-function NPs loaded with the photosensitizer 
molecule as zinc phthalocyanine (ZnPc). These 
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nanoformulations were irradiated by 633 nm laser to pro-
duce ROS by thioketal linker rupture, thus releasing Cpt. 
This led to increased antitumor efficiency against lung 
cancer. This demonstrates that TL-Cpt-PEG1K-TPP 
guided the development of mitochondria-targeting in 
malignant cells with sixfold the cytotoxic activity of free 
ZnPc and Cpt in NCI-H460 cells.176

Another study used chitosan NPs functionalized with 
TPP and loaded with Dox. These NPs showed increased 
antitumor efficiency in A549 and HeLa cells.177 In paral-
lel, PEG-TPP was linked with a disulfide bond. This 
polymer self-assembled and led to the formation of 
a hydrophobic TPP core and a hydrophilic PEG shell. 
Dox was loaded within these NPs and endocytosed by 
specific cells. Within the cells, glutathione broke the dis-
ulfide bond between mPEG and TPP, so removing the 
mPEG shell, exposing TPP, and driving Dox directly to 
mitochondria. These results further demonstrated that 
Dox-encapsulated mPEG-TPP NPs possessed enhanced 
mitochondria-targeting efficacy and improved therapeutic 
activity compared to other nonbioreducible NPs.178

Dendrimers
The new investigational drugs for the treatment of an 
increasing number of hematological cancers still have 
a poor record. Healthcare professionals and researchers 
are working intensively to find an effective therapy against 
chronic lymphocytic leukemia.179 Currently, personalized 
and targeted therapies with active compounds in nanofor-
mulations capable of center-point targeting of cancer cells 
are the most favorable trends in oncology.180 To date, 
among the different studies on NPs, dendrimers have 
demonstrated strong potential in pharmacological applica-
tions, and look to become a milestone achievement in 
oncology and nanomedicine.181,182

Dendrimers are synthetic, hyperbranched macromole-
cules possessing three components, ie, a central core, 
repeated branches, and a surface with a controlled number 
of available groups to load multiple functionalities. The core 
and branched space is used for biomolecular entrapment, and 
surface functionality is used to integrate different moieties. 
These special properties brand dendrimers as multipurpose 
pharmaceutical nanocarriers.183 They have potential in bio-
medical applications, and are used as drug carriers184 and 
gene-transfection vectors,185 as well as in magnetic reso-
nance imaging (MRI) detection.186 The nanometric size of 
these NPs facilitates their specific and effective interaction 
with cellular components like proteins, nucleic acids, 

membranes, and organelles.187 Dendrimers with 
a generation number greater than five and higher positive 
charges due to lipophilic cationic molecules like TPP and 
rhodamine can be engineered. These NPs have the potential 
for endosomal escape and can deliver chemotherapeutic 
drugs directly to mitochondria.

Some of the most widely used dendrimers include poly-
propyleneimine (PPI) and polyamidoamine (PAMAM). 
These dendrimers are toxic, owing to their positively 
charged surfaces.188 Proper surface modification is the 
best way to minimize their toxicity. PPI dendrimers have 
been modified with maltose and maltotriose sugar residues, 
and these semi-modified open-shell (OS) PPI dendrimers 
(PPI-G4-OS) are lethal to selected cancer cells like CEM- 
SS, MEC1, and U87.189 In comparison to this, their fully 
modified dense-shell (DS) counterparts (PPI-G4-DS) show 
relatively weaker or no such effects. Furthermore, neutral 
DS and cationic OS PPI glycodendrimers have been utilized 
as stabilization and transfection agents for different 
particles.190 Third-generation cationic PPI glycodendrimers 
with open maltotriose shells (PPI-Mal-IIIG3) have been 
used for the transfection of AuNP conjugated with turbo 
green fluorescent protein (mitoTGFP) against selective 
mitochondria targeting of JIMT1 cancer cells. This facilita-
tion of AuNPs by PPI dendrimers led to mitochondrial 
rupture, triggering apoptosis.191

PAMAM dendrimers are significantly used as 
a platform for the delivery of genomic materials and 
drugs.192 PAMAM-based G(5)-D-Ac-TPP dendrimers 
have been designed for mitochondria targeting in drug 
delivery.193 For monitoring intracellular localization, 
these NPs are labeled with a fluorescent dye, and less 
cytotoxicity has been reported with these nanocarriers. 
A parallel strategy has been used to deliver the luciferase 
gene and EGFP within the COS7 and HeLa cells by 
utilizing TPP-conjugated PAMAM dendrimers (G5- 
TPP).194 Under the transfection condition, these dendri-
mers have been reported to be atoxic. The G5-TPP den-
drimer platform demonstrates efficient DNA packing and 
unpacking, endosomal escape, and efficient Mitochondria- 
targeting genome and drug delivery.

Carbon Nanotubes
Multiwalled carbon nanotubes (MWCNTs) have been used 
as anticancer delivery vehicles by surface functionalization 
with mitochondria-specific ligands. A novel mitochondria- 
targeted peptide sequence (MTS) with a primary structure of 
KMSVLTPLLLRGLTGSARRLPVPRAKC has been tagged 
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on MWCNT surfaces to attain efficient mitochondria-specific 
drug delivery. With the help of confocal microscopy, these 
nanocarriers have been found to accumulate extensively in 
HeLa cells and macrophage mitochondria. Mitochondria 
targeting of these NPs has been further confirmed by trans-
mission electron microscopy (TEM). Further, these NPs have 
not been reported to possess any significant toxicity, so are 
potential candidates as effective mitochondria-targeted drug- 
delivery systems.195 In this vista, mitochondrial-targeting has 
also been achieved by cationic rhodamine- 110 (MWCNT-ρ) 
and fluorescein (MWCNT-Fluo) used as an untargeted 
control.196 MWCNT-ρ has also been used to entrap 
a platinum prodrug (PtBz), which presented enhanced 
potency and efficient mitochondrial localization.

Inorganic Nanoparticles
Inorganic NPs cover a broad range of substances, includ-
ing elemental metals, metal oxides, and metal salts. 
Inorganic NPs have been utilized as mitochondria-target-
ing agents, as these form uniform and smaller NPs. 
Among these, hydroxyapatite (HAp; Ca10(PO4)6(OH)2), 
displays outstanding drug-loading capacity and biocom-
patibility. It has been reported that HApNPs enter tumor- 
cell mitochondria and induce apoptosis by disturbing 
MMP, causing leakage of cytochrome c (cyt c).197 Rod- 
shaped HApNPs have been engineered with about 50 nm 
length and almost 10 nm width, and are engulfed by 
caveolate-mediated endocytosis by normal bronchial 
epithelial cells (16HBE) and lung cancer cells (A549). 
Interestingly, it has been further reported that A549 lung 
cancer cells engulf more NPs, causing sustained rise in 
Ca2+ concentration compared to 16HBE normal cells. This 
property of specific cell and mitochondria targeting causes 
increased Ca2+ concentration, resulted in almost 40% can-
cer-growth inhibition even without a drug, in lung cancer 
in nude mice.198 Anticancer efficacy was furthered with 
Dox-loaded HApNPs and coating with hyaluronic acid 
(HA). This nanoformulation specifically targets CD44- 
overexpressing cancer cells and overcomes the burst drug 
release. It has been found that Dox-loaded HAp-HA NPs 
exhibit almost four- to sevenfold the cytochrome c (cyt c) 
release of free Dox under similar conditions.199

Metallic NPs are emerging as innovative drug carriers 
and contrast agents for the treatment of different cancers. 
Metallic NPs are routinely used as site-specific targeting, 
drug delivery, and imaging of different tumor cells.200 Metal 
and metal oxide NPs can be precisely synthesized and mod-
ified with different functional groups. The novel 

functionalization of these metallic NPs helps in conjugating 
them with various mitochondria-specific moieties for use in 
specific cancer treatment. Some common metallic NPs are 
explained in the following sections to understand their sig-
nificance for mitochondria targeting and cancer 
management.

Gold Nanoparticles
In addition to other metallic NPs, gold NPs (AuNPs) have 
been demonstrated to accumulate within mitochondria and 
trigger apoptosis after internalization by cells.201 AuNPs 
have been conjugated with GFP and tagged at the amino 
terminus with a mitochondrial localization sequence of the 
IMM protein COX8. To overcome the aggregation of 
AuNPs, these nanoformulations were altered with cationic 
maltotriose–amended polypropyleneimine dendrimers to 
coat mitTGFP-AuNPs. However, for proper transfection, 
this nanoformulation (mitoTGFP-AuNPs) required 
a cationic glycodendrimer (PPI-Mal-III G3) for traversing 
the plasma membrane. These NPs quite successfully 
escaped early endosome formation, efficiently ruptured 
the OMM, and finally got localized within the IMM. 
This resulted in cytochrome c (cyt c) release that triggered 
apoptosis.202 In a similar fashion, multilayered polypep-
tides were used to surround the AuNPs. The first layer 
used was a CALNN-based peptide to avoid the aggrega-
tion of AuNPs. The second layer was tetrameric streptavi-
din, a linker to join biotinylated molecules. The outermost 
layer was a biotinylated peptide (KLA:(KLAKLA)2), 
which possessed both the mitochondriotropic agent and 
cytotoxic peptide to kill the cancer cells. These KLA- 
tagged AuNPs possessed thousands of times the antitumor 
activity of free KLA peptide. KLA peptide is well recog-
nized for its efficiency in cell entry and mitochondrial 
specificity.203

Titanium Dioxide Nanoparticles
TiO2NPs have stronger catalytic activity and have been 
widely used for different applications.204 These raise some 
concerns about adverse health effects, as they are smaller 
particles with larger surface area.205 Significant 
associations have been found between metabolic stress, 
inflammatory response, and ROS production and treatment 
with TiO2NPs in brains of mice.206

TiO2NPs can concentrate in the brain after crossing the 
BBB, thereby resulting in infiltration of inflammatory cells 
and apoptosis of hippocampus cells. This leads to 
a decrease in cognitive brain functioning.207 ROS 
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generation damages the cell membrane, which further 
facilitates the entry of TiO2NPs, activating 
signaling pathways involved in oxidative stress. To check 
oxidative stress, expression ofNRF2 is very important. The 
association between oxidative stress and p38, JNK, and 
MAPK cascade is well established.206 In addition to this, 
TiO2NPs induce apoptosis, alter the immune system, and 
works as a secondary messenger for some intracellular 
signaling cascades. TiO2NP-mediated enhanced ROS pro-
duction may also be related to p38–NRF2 
signaling pathways during brain injury.208

Silver Nanoparticles
Silver NPs (AgNPs) have been widely used in chemical, 
antimicrobial, household, and medical applications.209 

AgNP composition, size, shape, charge, and solubility 
affect their ability to bind with biological sites. The cyto-
toxicity of AgNPs is mainly related to cell-membrane 
destruction, which leads to mitochondrial destruction.210 

These NPs usually induce oxidative stress, which is the 
major reason for their toxicity.211 AgNPs also deplete the 
antioxidant defense system, leading to enhanced ROS 
accumulation, which initiates the inflammatory response, 
and the destruction of mitochondria.212,213 The perturba-
tion of mitochondria also leads to cytochrome c (cyt c) 
release and apoptosis as the final outcome. AgNPs also 
exhibit toxicity toward mammalian and HEPG2 cells by 
reducing MMP, DNA damage, and mediating apoptosis.214 

In addition, this perturbation also leads to changes in the 
mitochondrial respiratory chain, dynamics, biogenesis, and 
autophagy control.215

Zinc Oxide Nanoparticles
ZnONPs are used in biomedical imaging and, fungicides 
and as anticancer drugs and antimicrobial agents.216 The 
toxicity of these NPs has been mainly related to the pro-
duction of ROS, which leads to oxidative stress, inflam-
mation, and DNA and protein modifications. The oxidative 
stress also leads to lipid peroxidation and apoptosis 
through the p38 and p53 pathways.217 The ROS produc-
tion also leads to the activation of MAPK pathway, which 
regulates different cellular pathways.218

In one study, ZnONPs at 14–20 µg/mL exposed to 
HEPG2 cells for 12 hours induced apoptosis-mediated 
reduced cell viability. The cell-viability decline was due 
to oxidative stress–mediated DNA damage and decreased 
MMP. Furthermore, these NPs increased the ratio of BAX: 
Bcl2, which led to the induction of apoptotic pathways. 

ZnONPs also activated p38 and JNK pathways and 
induced the phosphorylation of p53 Ser15 residues.219

Various investigations support the role of ZnONPs in 
mitochondria-mediated toxicity induction in experimental 
animal studies and in vitro models.220 These NPs trigger 
excessive ROS production in zebrafish embryos by redu-
cing MMP and inducing mitochondria-mediated 
apoptosis.221 Further, they decrease mitochondrial density 
by disrupting biogenesis, inhibit the PGC1α pathway, and 
interfere with mtDNA number control. PGC1α plays 
a significant role in mitochondrial biogenesis regulation 
by interaction with downstream targets like TFAM, which 
helps in transcription of some genes. This factor also plays 
an important role in controlling mitochondrial oxidative 
stress by the activation of manganese superoxide 
dismutase.222

Iron Oxide Nanoparticles
FeONPs have been used for cell labeling, gene delivery, 
and drug targeting and as hyperthermia-therapy agents. 
These NPs are also good contrast agents in magnetic 
resonance imaging.223 FeONPs induce such cellular 
responses as cell activation, ROS production, and cell 
death.224 In addition, FeONPs cause mitochondrial 
damage, though these NPs are not targeted for this 
organelle.225 Mitochondria are the principal source of 
ROS generation, and prolonged action initiates oxidative 
stress, which leads to activation of transcription factors 
and some inflammation-responsible genes like AP1 and 
NFKB.

Magnetic composite NPs for dual modal photothermal 
therapy and photodynamic therapy have been used to 
enhanced cancer therapeutic effect by mitochondria target-
ing. These composite NPs have the capacity to generate 
heat and ROS simultaneously upon NIR-laser irradiation. 
After surface modification of targeting ligands, they have 
been selectively delivered to mitochondria to amplify the 
cancer-cell apoptosis promoted by hyperthermia and cyto-
toxic ROS.226

Lung cancer cells have been reported to increase their 
ROS production after exposure to FeONPs. This increased 
production is blocked by N-acetyl cysteine (NAC), which 
results in significantly decreased cell death. In addition, 
this exposure also leads to decreased conversion of LC3-I 
to LC3-II within cancer cells pretreated with f-NAC. 
Therefore, FeONPs likely induce ROS production and 
autophagy-mediated cell death. These lethal consequences 
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are likely due to mitochondrial damage caused by 
FeONPs, as MMP is significantly reduced as well.227

FeONPs have been probed with P13/Akt, and it was 
observed that they activated the classical AMPK–mTOR– 
Akt signaling cascades in lung cancer cells. The involve-
ment of AMPK phosphorylation during autophagic cell 
death has been fully confirmed by pretreating the cells 
with the AMPK-phosphorylation inhibitor compound 
C.228 However, the direct role of FeONPs on AMPK- 
and mTOR-mediated autophagy and cell death with the 
help of certain inhibitors is still under observation. It has 
been observed that FeONPs possess autophagic potential 
by activating the classical pathway for autophagy 
induction.229 Some more examples of drug-loaded nano-
carriers targeting mitochondria with the aid of varied tar-
geting moieties are briefly listed in Table 3.

Limitations of Native and 
Nanoformulation-Based Drugs
Using native drugs poses a number of challenges before 
reaching the final target of action. Healthcare researchers 
are working hard to design the drugs that can be specifi-
cally transported to the site of action while minimizing 
unwanted buildup in untargeted normal tissue. NPs can 
have different routes of administration like respiratory 
tract, skin, and parenteral administration to reach the 
actual target.247 Properties that can give rise to unexpected 
toxicities should be equally noted.248 In the blood, some 
drug nanoformulations can lead to the formation of protein 
corona while in contact with plasma proteins. The protein 
corona may consist of dozens to hundreds of proteins that 
can alter the physicochemical properties of NPs like mor-
phology, size, aggregation, and -potential.249

The toxicity potential of cationic NPs like polystyrene 
and AuNPs can lead to clotting and hemolysis, whereas 
the toxicity potential of anionic NPs is considerably 
less.250 NP use leads to some basal toxicities, due to 
disruption of host homeostasis that leads to ROS 
production.251 Enhanced ROS can promote genome 
damage and micronuclei formation. AgNPs of 15 nm and 
amorphous TiO2 NPs of 30 nm in size induce the highest 
ROS generation. The possible engulfment of quantum dots 
and AgNPs by macrophages can lead to the expression of 
inflammatory mediators like IL1β, TNFα, MIP2, irrespec-
tive of their size.252 The chronic inflammation by ROS 
producing NPs can lead to the development of pulmonary 
diseases, atherosclerosis, or even cancer. Other NPs can 

affect calcium homeostasis, thus affecting cellular meta-
bolism, signal transduction, and gene expression. 
Dissociated ions from metallic NPs can even prove to be 
more toxic, so NPs of biodegradable polymers can be 
beneficial to use.253,254 Single- or multiwalled CNTs 
induce the aggregation of platelets, while their building- 
block C60 fullerenes do not. All NPs tend to accumulate in 
the liver, and the mechanism of their elimination from the 
body needs to be investigated.247

Clinical Applications, Trials, and 
Phases of Mitochondria-Targeted 
Nanomedicine
NPs have been extensively studied in theranostic clinical 
applications, and several formulations have been approved 
by the US Food and Drug Administration and European 
Medicines Agency for clinical applications in patients with 
cancer.255 The formulation of cancer nanomedicines is 
mainly based on liposomes (eg, Doxil, Vyxeos, and 
Onivyde), polymeric micelles (eg, NK105, Genexol, and 
NC6004), albumin (eg, Abraxane), or inorganic NPs (eg, 
NBTXR3 and NanoTherm). Although most current cancer 
nanomedicines are administered intravenously for sys-
temic delivery to tumors, some nanomedicine formulations 
(eg, NanoTherm and NBTXR3) have been designed for 
intratumoral administration.256 A brief overview of some 
major approaches of nanomedicine aiming to modulate the 
TCA cycle, ETC, anaplerosis, mtROS, and mitochondria- 
driven apoptosis in cancer cells is presented in Table 4. 
The table also highlights clinical phase stages and the 
clinical identifier numbers of molecular targets and the 
drugs used against these targets.

Prospects of Mitochondria 
Targeting and Cancer Management
The strategy of direct therapeutic action by targeting mito-
chondria will dramatically decrease the side effects of 
a particular drug at aspecific locations, and is the ultimate 
goal of future therapeutics. Nanomedicine faces tremen-
dous challenges due to the diverse nature of biological 
systems. The advantage of engineering multidimensional 
features within NPs for specific targeting to diseased cells 
and enhanced accumulation in particular organelles has 
drastically revolutionized therapeutic strategies, where 
mitochondrial dysfunction plays a central role.

NPs like liposomes, micelles, CNTs, and dendrimers 
tagged with specific mitochondria-targeting moieties have 
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Table 3 Drug-loaded nanocarriers tagged with various mitochondriophilic ligands, inducing different mitochondrial functional 
irregularities

Nanocarrier Nanocarrier properties (size, 
potential, usage

Targeting 
moiety 
liganded

Drug loaded Mitochondrial induction site Reference

Liposomes (TPGS) 64 nm, −0.54 mV, MCF7- and ADR- 
bearing nude mice

DQA Topotecan Δ decrease, cytochrome c (cyt c) 
release–mediated apoptosis

230

84 nm, 1.93 mV, A549 and A549/ 
CDDP

TPP Ptx cytochrome c (cyt c) release–induced 
apoptosis

231

Graphene oxide 200 nm, −37.6mV, HepG cell- and 
HepG-bearing nude mice

Glycyrrhetinic 
acid

Dox Caspase 3-, 7-, 9-mediated apoptosis 232

100–400 nm, positive charge, 
U87MG and MCF7 cells

Positively 
charged NPs

PheoA Δ decrease, apoptosis 233

Poly(ε- 
caprolactone)

50 nm, 40 mV, HeLa and HepG2 
cells

TPP Dox and Dox– 
HCl

Apoptosis 234

Chitosan–stearic 
acid micelles

63.5 nm, 22.1 mV, MCF and A549, 
MCF tumor–bearing nude mice

TPP-PEG Celastrol ROS generation, cytochrome c (cyt c) 
release–mediated apoptosis

235

DQAsomes and 
DQA80s

208 nm, 56.3 mV and 203 nm, 
60.2mV, U373-MG, HeLa cells

DQA DQAsomes Membrane destabilization, MAPK signal 
activation, ROS generation, apoptosis

236

DQA80plexes 444 nm, 17.1mV, HeLa cells DQA pDNA Δψ decrease because of DQAsomes 237

TPP–coumarin 
NPs

20 nm, −17.5 mV, HeLa, HCT116, 
A549, COV434

TPP Dox Mitochondrial dysfunction 238

D-α-tocopheryl 
PEG 
succinateCQDs

101.4 nm, 21.04 mV, MCF7 and 
MCF7/ADR

TPP Dox Δψ decrease, apoptosis 239

Peptide 
polyoxometalate 
NPs

60 nm, −13.2 mV, MCF7 cells Dmt-D-Arg- 
Phe-Lys-NH2

— Mitophagy-induced cell death 240

Peptide nanofibers 46 nm, negative, HeLa and U87MG DDDK 
peptide

Dox ENTK enzyme–targeted cell death 241

DSPE-PEG 
micelles

163, 186, 168 nm, HeLa cells α-TOS α-TOS-Dox, α- 
TOS-clsPt, α- 
TOS-Ptx

cytochrome c (cyt c) release–led 
apoptosis, DNA and tubulin damage

242

PLGA-β-PEG NPs 65–75 nm, 24–34 mV, MCF and 
HeLa cells

TPP ZnPC Early-stage apoptosis 173

TPP–lonidamine 
PEG micelles

110 nm, 0.7 mV, MCF and MCF7/ 
ADR, MCF7-bearing nude mice

TPP Dox Membrane-potential decrease, ROS 
generation, caspase 3-, 9-activated 
apoptosis

243

AuNPs 40 nm, −16.2 mV, MDA-MB468, 
HCC1937 TNBC

SM9 SM9 Rad6 inhibition–induced apoptosis 244

PAMAM 
dendrimer

6–12 nm, 14–53 mV, A5494 cells TPP–-PEG TPP — 245

TPP–Dox– 
hyaluronic acid 
NPs

192 nm, −28.8 mV, MCF7/ADR 
cells and MCF7/ADR tumor–bearing 
mice

TPP Dox Apoptosis 246

International Journal of Nanomedicine 2021:16                                                                                   https://doi.org/10.2147/IJN.S303832                                                                                                                                                                                                                       

DovePress                                                                                                                       
3925

Dovepress                                                                                                                                                   S Allemailem et al

https://www.dovepress.com
https://www.dovepress.com


Table 4 Clinical perspectives (phases and trials) of some Mitochondria-targeted therapeutic strategies for cancer management

Targeted 
functions

Molecular targets and the drugs used Phase ClinicalTrials.gov identifier/ 
reference

TCA cycle Glutaminase by CB839 I NCT02071927, NCT02071888

Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase by 
CPI613

I NCT02168140, NCT02232152

I/II NCT01766219

Mutant IDH2-R140 and IDH2-R172 by AG221 I/II NCT01915498, NCT02273739

Mutant IDH1/2 by AG881 I/II NCT02492737, NCT02481154

ETC Complex I by carboxyamidotriazole Preclinical 257

Complex I by fenofibrate Preclinical 258

Complex I by metformin III NCT01101438

Complex I by papaverin I NCT03824327

Complex II by lonidamine II NCT00237536

III NCT00435448

Complex III by atovaquone Phase I NCT02628080

Complex IV by arsenic trioxide Preclinical 259

Glycolysis Mitochondria in cancer cells that would not use ketone bodies 

as a fuel by ketogenic diet

Pilot NCT01535911

Not 
applicable

NCT0307551, NCT0228616, 
NCT0175435, NCT03278249

I NCT00575146, NCT03451799, 
NCT01865162

I/II NCT02046187, NCT02939378

II NCT02302235

Mitochondria-driven 

apoptosis

cytochrome c (cyt c) release by photodynamic therapy I NCT03053635

II NCT03945162

cytochrome c (cyt c) release by curcumin III NCT02064673,

II NCT02944578, NCT02782949

cytochrome c (cyt c) release by aloe-emodin Preclinical 260

cytochrome c (cyt c) release by betulin Preclinical 261

ROS signaling Superoxide by mito-Tempo Preclinical 262

Superoxide by MitoQ Preclinical 263

Fatty acid oxidation Carnitine palmitoyl transferase I by etomoxir Preclinical 264

Mitochondrial 

anaplerosis

GLUTs, HKs by 2-deoxy-D-glucose I NCT00096707

III 265

HK2 and GAPDH by 3-bromopyruvate Case 
study

266

(Continued)
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demonstrated their existence as novel delivery means. 
However, more comprehensive research is necessary to 
properly understand the safety aspects of drug nanoformu-
lations when used in human subjects. For successful mito-
chondrial targeting, the characteristics of these theranostic 
NPs should be highly efficient to achieve their goals. Some 
novel characteristics include tumor-cell and tissue specifi-
city, long circulation time in blood, and large accumulation 
within cancer-cell mitochondria.

Some types of currently used mitochondria-targeting 
nanoformulations suffer from certain drawbacks. For 
example, delocalized lipophilic cations accumulate effi-
ciently in mitochondria because of negative mitochondrial 
membrane potential; however, they mediate intrinsic toxi-
city, which limits their clinical applications. In addition, 
other targeting ligands like peptides have bulky structures, 
solubility issues, poor membrane permeability, and very 
low stability in serum. To overcome these limitations, in- 
depth research is necessary to engineer such targeting 
ligands properly to make them clinically more useful as 
drug-loaded mitochondria-targeting agents.

It is a very challenging task to engineer nanoformula-
tions that can perfectly target mitochondrial abnormalities 
in tumor cells without toxicity to nearby normal cells. To 
solve this challenge, different physicochemical factors of 
nanoformulations have been considered, which include 
shape, size, charge, membrane potential, tumor-cell speci-
ficity, andcombinations thereof.

The endosomal escape ability of theranostic nanofor-
mulations is of utmost importance in enhancing their 
mitochondria-targeting abilities. For the production of 
effective mitochondria-targeting NPs, these 

nanoformulations should be equipped with endosomolytic 
features. Furthermore, as NIR photosensitizers enable the 
imaging of NIR fluorescence, photothermal signals, and 
photoacoustic signals, the corresponding diagnostic mate-
rials should be considered for other imaging tools like CT, 
PET, MRI, and SPECT.

Despite the success of these novel nanoformulations in 
in vitro studies, thorough and logical preclinical and clin-
ical studies are obligatory to achieve their potential use in 
clinical settings. At present, there is a big gap in under-
standing the safety aspects unique to specific nanoformu-
lations when used in varied systems. These of 
nanoformulations need to be properly addressed when 
targeting mitochondria of diseased cells only. Enormous 
efforts are required for the development of targeted nano-
formulations. It is extremely difficult to use 
nanoformulations unless full understanding and character-
ization of them are achieved.

Conclusion
The direct mitochondria-targeting approach within can-
cer cells is a current focused to enhance therapeutic 
strategies, and has gained momentum in the last dec-
ade. The goal is to design nanoformulations that can 
show minimum off-target and side effects. 
Mitochondria of cancer cells have unique features, 
which are novel targets of different theranostic NPs 
as a therapeutic strategy. These novel targets include 
oxidative phosphorylation site, TCA cycle, glutamine 
metabolism, and mitochondrial dynamics and traffick-
ing. The direct conjugation of anticancer drugs with 
mitochondria-targeting ligands (eg, TPP, DQA, and 

Table 4 (Continued). 

Targeted 
functions

Molecular targets and the drugs used Phase ClinicalTrials.gov identifier/ 
reference

Mitochondrial 

turnover

DRP1 by Mdivi1/dynasore Preclinical 267

Antioxidant 

modulators

cytochrome c (cyt c) release by resveratrol I NCT00256334, NCT00433576

Mitochondrial 

destabilization

GSTP1-1 and GSTO1-1 by α-tocopheryl (α-TOS) succinate Preclinical 268

DNA replication Prodrug bioactivated by GSTP1-1 in an alkylating agent by 

canfosfamide (TLK286)

III NCT00102973

Pro-drug activated by GSTP and GSTM by brostallicin II NCT00060203, NCT01091454
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MPP) has been able to solve some complications like 
use of larger doses and drug resistance. This problem 
has been solved to some extent by the use of nanofor-
mulations (eg, liposomes, Mito-Porter, and CNTs), but 
still there are so many other challenges like toxicity 
complications and center-point targeting that need to be 
sorted out. Despite the primary success of these nano-
formulations, systematic preclinical and clinical inves-
tigations are obligatory before their actual use in 
clinical settings. At present, there is a lack of thorough 
understanding regarding safety concerns, which 
limits their use as nanomedicine. The safety aspects 
of these nanoformulations need to be properly 
addressed through appropriate safeguards. The prere-
quisite of thorough understanding of the mitochondrial 
role in cancer progression, employment of proper reg-
ulatory procedures, and advancements in nanoformula-
tion technology will definitely boost cancer treatment 
in the near future.
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