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Abstract: Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been
increasingly studied with respect to its potential use in medicine, where its beneficial effects on
tumor reduction in oncology have been demonstrated. This review discusses the cellular changes
appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells’ direct or
indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the
CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation
and various forms of cell death is addressed, especially in light of CAP use in the oncology field of
plasma medicine.

Keywords: cold atmospheric plasma (CAP); reactive oxygen species; cell signaling; cell death

1. Introduction

Cold atmospheric plasma (CAP) is partially ionized gas, produced at atmospheric
pressure and operating at room/body temperature. Roughly a decade ago, CAP started
to be considered for medical therapy despite paucity of supporting biomedical and mech-
anistic redox chemistry research [1,2]. Most reactive species found in plasma source are
known in biology for inter- and intra-cellular communication (redox signalling). Mam-
malian cells are equipped to interpret the plasma derived redox signals, their composition,
strength, and duration, in either cell endurance/fitness or cell death promoting ways.
In vitro and in vivo, CAP was shown to act anti-inflammatory, tissue-stimulating, blood
flow-enhancing, and would healing on one side [3], and bactericidal, proapoptotic, and
anti-tumorigenic [1,4,5] on the other side. CAP’s anticancer capacity led to establishing a
new field in medicine called “plasma oncology” [6]. In this field, plasma gained attention
owing to its ability to induce cancer cell death [4] and significantly reduce tumour size in
mice, without damaging normal cells [7]. In this review, we shall focus on the processes
triggered in cancer cells, and leading to their cell death and elimination. In particular, the
mechanisms and processes triggered by CAP-origin reactive species, the rise of intracellu-
lar reactive oxygen and nitrogen species (RONS), DNA and mitochondria damage, and
deregulated expression of survival inhibiting and death promoting genes will be discussed.

2. Cold Atmospheric Plasma Devices

Chemically CAP comprises unique mixes of active species such as RONS generated
by working gas [8]. Several different gases are currently used to produce CAP such as
Helium, Argon, Nitrogen, Oxygen, air, and their mixing; and specific methods and devices
for their production were developed, for use in different biomedical conditions [4]. For
direct and indirect treatments in medical applications, plasma jet and dielectric barrier
discharge-DBD plasma sources appear suitable. Majority of plasma laboratories around
the world use tuned/home-made plasma devices [9–11]. They are inexpensive and simple
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to make, but the main drawback of using these home-made devices is that comparison of
the results obtained at exactly the same conditions is very difficult, almost impossible. The
standardization of the cold atmospheric plasma devices has been attempted to achieve for
some time now, but this topic is still subjected to discussion. Though specific devices have
been developed and utilized by various research groups, there are some—the DBD device
PlasmaDerm® VU-2010 (CINOGY Technologies GmbH), the atmospheric pressure plasma
jet (APPJ) kINPen® MED (INP Greifswald/neoplasm tools GmbH), and the SteriPlas (Adtec
Ltd., London, UK)—that have been CE-certified as a medical product [4]. In this respect,
Jet treatment proved superior to DBD in yielding much stronger cellular response [5].
For this reason, the so-called COST jet, being introduced by a European COST initiative
as a reference device, using both reference conditions as well as conditions adjusted to
kINPen gas mixtures [12] were evaluated. In these, thiol oxidation revealed dominant
under all tested conditions, whereas an Ar + N2/O2 gas compositions combined with a
nitrogen curtain were shown to foster nitric oxide deposition and desired generation of
S-nitrosocysteine [12]. This highlights the potential of plasma effects tuning, not only by
gas admixtures alone but also by adjusting the surrounding atmosphere.

3. Effects of Plasma-Activated Liquids

In most CAP treatment experiments, CAP-derived chemical and physical particles
reach the cells via their surrounding milieu. Several studies revealed that final outcome
of CAP-induced cytotoxicity does not depend solely on device type, gas mixture, and
treatment duration [13,14], but also on the type of the surrounding milieu. This proved
true for indirect CAP treatment of seven human cell lines (cancerous: A549, U87, A375, and
Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) with five different plasma-activated
media (PAM) (DMEM, RPMI1640, AM, BEGM, and DCBM). Considerable differences were
noted in these experiments, whereas direct CAP treatment proved less affected by analysed
parameters [15]. Toxicity of PAM in cancer cells could be modulated by controlling the
composition of solution (PBS vs. DMEM) [16,17]. CAP-treated PBS seems to inhibit cell
growth in a treatment time-dependent manner, showing a linear correlation to the solution
peroxide concentration. In contrast, CAP-treated foetal bovine serum (FBS), acting as a
model for complex bio-fluids, shows not only cytotoxic effects but also exhibits increased
mutagenic potential [18]. Compared to water, a higher production of reactive species (H2O2
and NO2

−) can be detected in 2% gelatine polymer solution after CAP treatment, with
RONS amounts generated in up to 12-times higher concentration, thus resulting in its
higher efficiency to kill U-2 OS bone cancer cells [19]. Likewise, CAP treated DMEM shows
increased effect on proliferation and apoptosis of A431 and HaCaT cutaneous squamous
carcinoma cells, compared to CAP treated PBS, though intracellular ROS levels are more
increased in the latter [20]. Among RONS that are produced in these CAP-activated liquids,
hydrogen peroxide, nitrite, and nitrate appear to be mainly responsible for cytotoxic and
genotoxic effects. CAP-PBS appears more efficient than 0.9% CAP-NaCl due to more
extensive RONS production [21]. In addition to the mentioned CAP-activated liquids, a
higher production of RONS was also observed in more polymer solutions such as CAP-
treated alginate (in solution/non-crosslinked phase), and shown to affect cells in vitro [22].
Additionally, the anti-cancer potential or plasma-conditioned liquids for in vivo therapies
has been thoroughly discussed by Sole-Marti et al. They claim plasma-activated liquids
represent an alternative to direct CAP treatment [23–25], because they may allow treatment
of malignant tumours located in inner organs of the body, by means of an injection, thus
avoiding multiple surgeries [23]. Further studies are needed to determine the nature, causes,
and effects of the cyto- and genotoxic potential of solutions exposed to plasma discharges
and generating oxidative stress in cells to ensure the long-term safety of novel plasma
applications in medicine and healthcare.

4. Plasma’s Ability to Differentially Affect Cell Fitness

CAP treatment promotes cell growth or cell death depending on the cell type, plasma
type, and exposure parameters [26,27]. The exposure parameters effects on these processes
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were presented already by Bauer [28] and Tanaka [29]. The general consensus is that the
exposure of living cells to the CAP or PAMs initiates their cellular response, mainly due
to the oxidative stress signals generated [30,31]. The cells’ early response to this oxidative
stress signals very much resembles the initial response of the cells to transient stress, which
is reversible and allows cells to resume normal cell functions or even boost their metabolism
after stress withdrawal. This way CAP was shown to induce stress granule formation
in the exposed cells via eIF2α-signalling, and in dynamic very much resembling stress
granule formation in cells exposed to Arsenite—the oxidative stress inducer [26]. Stress
granules are transient structures within the cells formed by proteins and RNA, that initiate
translation halt, and protect the cellular proteins and RNA during stress. These structures
also reversibly disassemble upon stress signal withdrawal to enable metabolic boost in
recuperating cells, possibly very much utilised in wound healing [3]. However, during
long-lasting stress conditions, cell response triggers and activates the downstream pathways
leading to cell death—the process utilised in plasma oncology. CAP irradiation was shown
to reduce lung adenocarcinoma cell viability [32] and to induce cell death in colon cancer,
melanoma, cervical cancer, glioma, multiple myeloma, and many more [5,33]. The selective
toxicity of breast cancer cells over the normal mesenchymal stem cells (MSCs) was very
early revealed [34]. Still, to eradicate the cells, in other words to force the cell to succumb to
cell death, several mechanisms in different cellular compartments must get activated.

5. Intercellular Effects of Reactive Species Generated by CAP

Among the plethora of reactive oxygen and nitrogen species (RONS) produced in
plasma-activated saline solutions and buffers, hydrogen peroxide, nitrite, and nitrate
appear most represented and responsible for cytotoxic and genotoxic effects [21]. The
formation of •OH radicals generated by CAP depends on the type of rare gas used, the
yield of production of •OH and correlates inversely with ionization energy in the order of
krypton > argon = neon > helium [35]. The electron paramagnetic resonance (EPR) spectra
analyses of aqueous solutions exposed to Ar-CAP revealed the formation of enormous
amounts of •OH radicals, with small amounts of H atoms with no nitric oxide or pyrolysis
radicals present. Hydrogen peroxide H2O2, the recombination product of •OH and OCl−

is the most likely formed reactive oxygen species [35] and is speculated to be the one toxic
trigger, particularly of cancer cells response [36]. Recently, intracellular signalling cascades
have been reviewed and schematically presented elsewhere [9,37], yet here we shall focus
on them, regarding their sequential activation in different subcellular compartments.

5.1. Reactive Species Interact with Cell Membrane Enzymes

During cell/tissue treatment with CAP or PAM, cellular and organelles membranes rep-
resent the natural interphase, which first comes in contact with the above mentioned RONS
produced in PAM or within the cells. The membranes allow for the translation of RONS
chemical reactivity into distinct biological responses [38]. Tumour cells are protected against
intercellular apoptosis by inducing signalling with increased expression of membrane-
associated enzymes catalase and superoxide dismutases [39]. None of the long-lived species
found in PAM, such as nitrite and H2O2, nor OCl− or NO seem to have the potential to
interfere with catalase-dependent control of apoptotic cell death-inducing signalling within
tumour cells when acting alone. However, these reactive species acquire this potential when
involved in a sequential multi-step process. The first step involves the formation of primary
singlet oxygen (1O2) through the complex interaction between NO2

− and H2O2 [40]. 1O2
then inactivates some membrane-associated catalase molecules on at least a few tumour
cells. Consequently, H2O2 and peroxynitrite that are produced continuously by tumour
cells [41], and are usually decomposed by their protective membrane-associated catalase,
are found to survive at the site of locally inactivated catalase [42]. With some protective
catalase molecules inactivated in these tumour cells, the surviving cell-derived, extracellular
H2O2 and ONOO− form secondary 1O2 [42,43]. These continue to inactivate catalase on
the triggered cells and adjacent cells via autoamplificatory propagation of the secondary
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singlet oxygen. The bystander effect on signalling between treated and untreated tumour
cells (possibly within tumours) depends on the generation of secondary singlet oxygen by
the treated cells and singlet oxygen-mediated catalase inactivation of the untreated recipient
cells [42,44]. CAP and PAM-derived reactive species are merely the trigger for the activation
of autoamplificatory mechanisms of tumour cells. The exposure to CAP or PAM initially
inactivates only a small percentage of protective membrane-associated catalase molecules
in the tumour cells [28]. Then the tumour cells efficiently propagate their cell death through
their own CAP-induced RONS signalling [38,44].

At the inactivated catalase site, CAP and cell-generated H2O2 enters the cell via aqua-
porins, leading to intracellular glutathione depletion [42], since cysteine is the main target of
effective ROS [36]. This abrogates the cell protection towards lipid peroxidation and sensi-
tises the cells for apoptosis induction [28,42]. Optimal inactivation of catalase thus seems to
allow for efficient cell-death induction through the NADPH oxidases 1 (NOX1) signalling
pathway driven by HOCl, the signalling that is on cell membranes finalized by lipid peroxi-
dation [28]. Accordingly, CAP was shown to induce increased lipid peroxidation and nitric
oxide production in B16 melanoma cells compared to non-malignant L929 cells [33]. Though
the above-mentioned experimentally established model based on a triggering function of
CAP and PAM-derived H2O2/nitrite sufficiently explains selective cell death in tumour
cells, also based on their own RONS [42], surprisingly a recently published mathematical
model [45] claimed that catalase-dependent activation of the apoptotic/cell death pathways
is unlikely to contribute to the observed anti-cancer effect of CAP.

5.2. CAP Affects Membrane Integrity, Permeability, and Endocytosis

The changes in the cell membranes induced by CAP and PAM inevitably affect their
normal functions. Computer simulations confirmed CAP/PAM-oxidizes a phospholipid
bilayer to exhibit a decrease of the free energy barrier for translocation of various substances,
including melittin, when compared to the non-oxidized bilayer [46]. CAP treatment was
shown to enhance translocation of low molecular weight (ATP), as well as molecules,
sized up to 150 kDa, through the cytoplasmic membrane [47–49]. PAM efficiency herein
reveals cell type dependency (efficiency proved in HeLa cells vs. none in 4T1 cells) [47]. The
detection of non-membrane-permeable fluorescein diacetate and endogenously synthesized
ATP confirmed increased membrane permeability in human osteosarcoma (U-2 OS, MNNG-
HOS) [48,49] and U373MG glioblastoma cells [8]. CAP/PAM treated cell membranes rich
in peroxidised lipids are trafficked into the cells via membrane repairing endocytosis.
Their enhanced uptake is clathrin-dependent with the formation of lysosome directed
vesicles [8,50]. CAP-stimulated membrane repair via increased endocytosis can accelerate
the uptake of dextran and several nanoparticles [48,49]. Besides, CAP-induced changes
in the cell membrane of U-2 OS, MNNG/HOS, A673, and RD-ES cells also afflict their
cytoskeleton composition and G/F actin distribution [48,51], leading to the formation of
actin stress fibres [47]. A model, based on the expression of aquaporins, was proposed to
explain why cancer cells respond to CAP treatment with a more significant rise in ROS
than normal cells. Namely, cancer cells express more aquaporins on their cytoplasmic
membranes, which causes the H2O2 uptake speed in cancer cells to be faster than that in
normal cells, resulting in faster cancer cell killing. Due to membrane changes, glioblastoma
cells indeed consume H2O2 much faster than do astrocytes after CAP/PAM treatment [52],
which supports the selective model based on aquaporins.

5.3. Changed Ionic Fluxes and pH Affect Mitochondria and Endoplasmic Reticulum

The abnormalities in membrane transport highly affect the intracellular conditions in
the cytoplasm and function of various organelles. CAP was shown to destroy the ultra-
structure of HepG2, A549, and HeLa cells to different degrees, demonstrated in perturbed
ionic fluxes, nuclear fragmentation, and organelle damage [53]. Increased intracellular
ROS concentration in He-CAP treated cells was shown to reduce the intracellular pH [54].
Both intracellular ROS and pH affect Ca2+ fluxes. CAP induces increased Ca2+ influx in
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melanoma cells in acidic pH than in physiological conditions [55]. Since CAP-induced
cytoplasmic Ca2+ increase occurs in melanoma cells even in the absence of extracellular cal-
cium, this indicates the Ca2+ increase to originate from intracellular stores. In this respect,
ryanodine and cyclosporin A analyses confirmed the involvement of the endoplasmic
reticulum and the mitochondria [56].

Intracellular NO formation induced by CAP treatment is also pH-dependent, with
enhanced protein nitration occurring under acidic conditions. The pH and RNS affect the
ion pumps, mitochondrial membrane permeability, and mitochondrial membrane poten-
tial [57]. CAP modifies the dynamics of intramitochondrial H2O2 and superoxide anions,
i.e., the rhythm and shape of ROS oscillation are disturbed by H2O2 infusion [58]. The
present computational model demonstrates that CAPs crucially affect essential mitochon-
drial functions, which in turn affect intracellular redox signalling, metabolic cooperation,
and cell fate decision on survival or death induction. CAPs control the ROS oscillatory be-
haviour, nicotinamide adenine dinucleotide redox state and ATP/ADP conversion through
the respiratory chain, the TCA cycle, and intracellular ROS regulation system [58]. More-
over, CAP treatment decreases the glutathione (GSH) levels in cells and results in the
loss of mitochondrial membrane potential and cytochrome c release, leading to cell death.
Pre-treating the cells with an antioxidant N-acetyl-L-cysteine (NAC) dramatically decreases
the death of CAP-treated cells [54]. Disruption of mitochondrial membrane integrity in
CAP treated cells [57] results in decreased ATP production and downregulation of survival
PI3K/AKT/mTOR and RAS/MEK pathways [59]. Likewise, CAP induced Nrf2-mediated
oxidative endoplasmic reticulum stress response, PPAR-alpha/RXR activation, and exces-
sive peroxisomes production in the treated cells [60].

5.4. CAP Treatment Affects Nuclear DNA Content and Replicative/Transcriptional Activity

The CAP generated stress stimuli entering the nuclei directly via cell membrane or
organelle signalling pathways, showing the effect on DNA content and processes of DNA
replication and gene expression, preceding pro- and anti-survival pathways activation.
CAP treatment induces DNA damage and promotes induction of Sub-G1 phase stop in
melanoma cells [61]. Likewise, incubation of cholangiocarcinoma cells BPH-1 and PC-3
cells with PAM leads to double-strand DNA breaks [62], which are also detected by histone
H2AX phosphorylation in the outermost layers of 3D adenocarcinoma cell spheroids upon
PAM treatment [63]. As DNA damage can be avoided by catalase addition, this points to
H2O2 as a major player in observed PAM genotoxicity [63,64]. As superoxide dismutase
and D-mannitol scavengers can also reduce DNA damage, this indicates O2

(−) and OH−

involvement in H2O2 formation [63].
In CAP-treated cells, DNA breaks are followed by an increased phosphorylation and

activation of the cell cycle master regulators—checkpoint kinases CHK1/2 and mitogen-
activated (MAP) kinases, increased expression of MAP kinase signalling effectors (e.g., heat
shock protein Hsp27), epithelium-derived growth factors, and cytokines (Interleukins
6 + 8) [65]. In a human skin cell model, CAP causes the phosphorylation of serine- (ATM)
and serine/threonine-protein kinase (ATR), where ATM acts as a direct redox sensor yet
without relevant contribution to phosphorylation of the histone A2X. This is followed by
transient phosphorylation and nuclear translocation of p53 [62,65], phosphorylation of
Rad17, Cytochrome c release, and activation of Caspase-3 [61], leading to cell cycle arrest
and cell death.

Transcription wise, CAP treatment deregulates the expression of over 934 genes, which
cluster into 40 different pathways, with p53 pathway being the most enriched. Surprisingly,
many p53 pathway-related genes might be activated by other stimuli, in a p53-independent
manner [66]. Likewise, 112 and 843 deregulated genes were detected in CAP-treated U937
and SK-mel-147 cells, respectively. However, only 4 and 2 genes, respectively, were found
commonly regulated by H2O2 and CAP, indicating that non-ROS constituents are responsi-
ble for the regulation of the majority of CAP-regulated genes, including both PTGER3 and
HSPA6 [67]. CAPs also deregulate the expression of several transcription factors, including
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c-FOS [68] and Yes-associated protein YAP/transcriptional enhancer associated domain
TEAD [29]. In MCF-7 breast cancer cells, up and downregulation of ZNRD1 gene (DNA
directed RNA-polymerase 1 subunit) correlated with long and short CAP treatment scheme.
Its antisense long noncoding RNA, ZNRD1-AS1 was shown to be regulated in the opposite
direction and shown to increase the expression of other cis-genes including PPP1R11 in-
volved in proteasomal degradation [69]. In lung cancer cells, CAP treatment was shown to
inhibit cell proliferation by depressing pERK and pAKT downstream signalling [70]. Con-
trary, the miR-203a expression normally downregulated in lung cancer tissue was increased
in the CAP treated cells. Increased miR-203a inhibited proliferation and targeted BIRC3,
BIRC5 inhibitors of apoptosis for silencing in lung cancer cells [71].

Besides the direct effect on DNA, CAP also displays an epigenetic effect. In the
H3K4me3 MCF-7 breast cancer cell line, CAP treatment changed the methylation level of
899 genes. A histone demethylase JARID1A was induced by CAP via ROS signalling, and
was shown to inhibit HSCB and PRPS1 oncogenes expression in breast cancer cells. CAP
inhibits cancer cell proliferation by modulating the H3K4 methylation level corresponding
to oncogenes [72]. The hypomethylation effect induced by CAP treatment is enhanced in
oestrogen-negative MDA-MB-231 cells [73], which indicate that plasma induces epigenetic
and cellular changes in a cell type-specific manner.

5.5. CAP Affects Cytoplasmic Metabolite Content

Lack of pyruvate is known to increase PAM’s cytotoxic potential in affected cancer and
healthy cells by increasing 10–100 times the concentration of present H2O2 without altering
that of nitrites [74]. Contrary, CAP-treated AML cells display changed metabolism of ala-
nine, aspartate, d-glutamine, and d-glutamate. Glutaminase activity decreases after CAP
treatment, leading to intracellular glutamine accumulation and leukaemia cells death [75].
In vivo CAP treatment of endothelial cells results in downregulated xantosine and pro-
line metabolites, though KEGG pathway analysis revealed alanine, aspartate, glutamate,
and purine metabolism pathways to be most suppressed [76]. Yet, He-CAP treatment of
myeloma cells revealed the beta-alanine metabolism pathway to be most changed, followed
by propanoate and linoleic acid metabolism [77]. The alanine decrease is also consistent with
the metabolomic profiles of U251 cells exposed to the CAP-treated Ringer’s lactate solution,
which shows increased generation of acetyl-CoA for lipid metabolism from alanine and as-
paragine [78]. CAP is also known to modify the amino acids of proteins, affecting the protein
structure and function, which results in changes of the secondary and/or tertiary structure
of the proteins in the presence and absence of co-solvents, as demonstrated for lysozyme,
horseradish peroxidase, myoglobin, α-chymotrypsin, lipase, MTH1180, haemoglobin, and
bacteriorhodopsin [5].

6. CAP Affects Major Cell Processes

All mentioned disruptions of vital cellular components—membranes, cytoplasmic
milieu, and organelles—have drastic effects on cell fate. A normally vital cell that is not in
the terminally differentiated state would either replicate the genetic material and proliferate
or migrate in between the cell cycles. Should such cell face any stress signals, its proliferation
and migration will be the first to seize, followed by either cell-death avoiding (autophagy)
or cell death promoting processes (see Figure 1).

6.1. Proliferation

A strong anti-proliferative effect of CAP/PAM was demonstrated in chondrosarcoma
CAL-78, SW1353 [48], A549, H1299 [71], U-2 OS MNNG cells, 3T3 fibroblasts, HaCaT ker-
atinocytes [79], glioblastoma cells [29], pancreatic cancer cells [80], MG63 osteosarcoma
cells [57,81], and C2C12 myoblasts [82]. In this respect, CAP-treated osteosarcoma cells ex-
hibit an increase of PRX 1 and ratio change of oxidized to reduced forms of PRX1 and PRX2,
with an increased cellular concentration of oxidized dimer. This effect can be attenuated by
N-acetylcysteine (NAC), an antioxidant supplement known to suppress redox homeostasis
changes [81].
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cesses. The appearance of (a) non-treated and (b) plasma treated immortalized fibroblasts showing
reduced cell proliferation, cell rounding, and cell death, 24 h upon high dose plasma exposure. (c) A
schematic overview synthesizing plasma induced (intra)cellular perturbations affecting some major
cell processes. Scale bar 10 µm.

Furthermore, the expression of γH2A.X (pSer139), an oxidative stress reporter indi-
cating S-phase DNA damage described previously is enhanced in CAP treated cells that
are in the S phase of the cell cycle [83]. This coincides with the notion that post CAP/PAM
treatment, the percentage of cells in the G2/M phase increases and cells show G2/M
arrest [82]. Cancer cells are highly proliferative (the highest proportion of the cells in the
S-phase), thus CAP treatment was shown to decrease their viability via G2/M arrest in
a dose-dependent manner, whereas no such CAP effect was noted in HUVEC and NHA
cells [84]. Cell lines differ in their proliferative rates, the reason why CAP treatment sub-
stantially shrinks U87-Red spheroids and to a lesser degree, less proliferative U251-Red
spheroids [85]. In vivo CAP treatment can decrease glioblastoma tumour volume by 56%
and increase mouse life span up to 60% [86].

6.2. Migration

CAP treatment inhibits the migration and invasion of BrCa cells [34], whereas CAP-
Ar treatment of mammary carcinoma cells (MCF-7, MDA-MB-2311) leads to a complete
loss of cellular motility [87]. The D-17 and DSN osteosarcoma cells also exhibited reduced
migration and invasion activity when treated with CAP [2]. This is possibly related to
a decrease of epithelial-to-mesenchymal-transition (EMT) markers (E-cadherin, YKL-40,
N-cadherin, SNAI1) and stem cell (CD133, ABCB5) markers, as observed in CAP-treated
melanoma cells. Namely, the expression of these markers describes a highly motile cancer
cell phenotype [88]. Lower expression of stem cell markers could account for decreased
sphere-formation ability of glioblastoma cells, dependent on the presence of stem-like
cells [89]. Yet, possibly, cell-type dependent 3D spheroids of human osteosarcoma cells
oppositely demonstrated increased stem cell marker expression upon treatment with CAP
activated Ringer’s solution [90]. Still, CAP in conjunction with temozolomide reduces cell
migration in glioma cells via increased αvβ3 and αvβ5 cell surface integrins expression,
that enhance cell adhesion [91], whereas CAP-suppression of migration ability in myeloma
cells proceeds via decrease of MMP-2 and MMP-9 secretion [92], metalloproteinases crucial
for extracellular matrix degradation.

However, milder/shorter CAP exposures were noted to promote the motility of
human HT-1080 cells observed by extended cell shape, membrane protrusion formation,
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and increased cell surface area, but not cell death induction, despite the production of
intracellular ROS and Ca2+ [93]. Similarly, CAP triggered production of nitric oxide (NO)
was noted to enhance endothelial cell migration in the angiogenesis model [94].

6.3. Autophagy and Proteosomal Degradation

Upon halted proliferation/migration, cells try to cope with stress by increased au-
tophagy and proteasomal degradation of misfolded and aggregated proteins, respectively.
Regarding proteasomal protein degradation, the RONS generated by He and He-N2 CAPs,
are increased in treated human epithelial cells [95], whereas PAM treatment increases
autophagic cell death in endometrial cancer cells in a concentration-dependent manner.
In PAM-treated cells, the mTOR pathway is inactivated [96]. Autophagy was recorded
upon CAP exposure in primary prostate cancer cells, whereas established cancer cell lines
exhibited necrosis and apoptosis [64]. The autophagy inhibitor MHY1485 was shown to
partially inhibit the autophagic cell death induced by PAM treatment [85]. A huge CAP
effect on autophagy was noted in melanoma cells, while there was only a minor effect on
autophagy noted in L929 cells [33]. Likewise, CAP-treated glioblastoma cells accumulated
acridine orange positive vesicles, indicative of acidic lysosomes, and associated with their
concomitant cell death, yet with no increase of autophagy [97].

Autophagy is reported either as a survival or death-promoting pathway and as such
remains highly debatable in different kinds of cancer. CAP and silymarin nanoemulsion
trigger autophagy in G-361 cells by activating the PI3K/mTOR and EGFR pathways [59].
This blocks downstream survival pathways via reduced HRAS and MEK genes expression;
modulated ZKSCAN3, TFEB, FOXO1, CRTC2, and CREBBP transcription factors expres-
sion, and enhanced BECN-1, AMBRA-1, MAP1LC3A and SQSTM, autophagy-related genes
expression [59].

6.4. Senescence and Cell Death Involving Apoptosis, Necrosis, and Pyroptosis

At the cross-road of cell faith decision—whether to respond to stress with high energy-
consuming either protective autophagy or cell death activating mechanisms—some cells
can simply duck and enter the low energy consuming state of cellular senescence. This
senescence (quiescence) phase enables the cells to re-activate normal cellular metabolism
upon stress seizure, provided cell organelles and DNA are not damaged beyond repair. In
this respect, low doses of CAP have been shown to induce senescence in melanoma cells,
confirmed by a positive H3K9 immunofluorescence, SA-β-Gal staining, and p21 expres-
sion [98]. CAP-He treatment of normal human dermal fibroblasts and adipose-derived
stromal cells also does not induce cell death but leads to minor DNA damage, proliferation
arrest with an increase in p53/p21, p16 expression, characteristic morphological changes,
and secretion of pro-inflammatory cytokines defined as the Senescence-Associated Secre-
tory Phenotype (SASP), associated with a glycolytic switch and increased mitochondria
number [99].

However, upon CAP treatment, several cancer cell lines including HEI-193 and mouse
SC4 VS cells, preferentially exhibit programmed cell death or apoptosis and necrosis [64,100].
The programmed cell death or apoptosis can be triggered by extrinsic (extracellular trigger
origin) and intrinsic (intracellular trigger origin) signalling pathways that can overlap at
various levels. CAP generated RONS in THP-1 human monocytic leukaemia cells induce
apoptotic cell death at lower (1 min exposure) and necrosis at higher dosage treatment
(3 min exposure to Ar-CAP, 20kHz low frequency at 18kV with a flow rate 2 L/min) [101].
Similarly, Ar-CAP treatment causes apoptosis of human lymphoma U937 cells, whereas Ar
+ N2-CAP proves to be less efficient [102]. On the other hand, PAM induces apoptosis in
triple-negative breast cancers rather than the other subtypes of breast cancer cells, possibly
due to genome mutation rate, hyper-activated MAPK/JNK, and NF-kB pathways in the for-
mer [103]. MAPK-induced apoptotic signalling was also noted in PAM treated TE354T basal
cell carcinoma [104] and A875 melanoma cells, where CAP increased Sestrin2 expression
and activated its downstream iNOS, Fas, and p38/MAPK signalling to induce apoptosis
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via Fas/TRAIL-mediated cell death receptor extrinsic pathway [89,105]. In CAP-treated
myeloma cells, p53 proved to be a feedback activator of Fas expression [106]. Downstream
caspase-8 activation was observed in CAP-treated Jurkat cells [107]. The levels of cellular
glutathione and peroxidases were found to be crucial for CAP induced cell death, showing
increased RONS levels to be primary apoptotic triggers [108,109].

Regarding the intrinsic apoptosis pathway also induced by CAP treatment, DNA
damage is often described as an intracellular trigger. CAP/PAM treatment increases intra-
cellular ROS, and DNA damage in Jurkat cells [107], which, in CAP treated osteosarcoma
cells, leads to increase of p53/phospho-p53 expression, [107,110] and in HT29 and SW480
colon cancer cells to increase of p21 expression [111], resulting in cell cycle blockage and
apoptosis. DNA lesions inducing apoptosis are in CAP/PAM treated cancer cells accompa-
nied by 8-oxoguanine(8-oxoG) formation [62], up-regulated 8-oxoG repair enzyme [112],
and elevation of DNA-damage inducible protein GADD45 α [29]. The CAP/PAM induced
DNA damage induces apoptosis by activation of downstream signalling pathways involv-
ing ASK1 stimulation in G-361 melanoma cells [27] and c-JUN/AKT/AMPK or STAT3
in U-2 OS cells [74]. The p53, which is involved in both extrinsic and intrinsic apoptotic
signalling, was shown to suppress the expression of Bcl-2 and XRCC1 and increases that
of Bax protein resulting in apoptosis and inhibited DNA repair in CAP treated cancer
cells [53,107–109]. Both extrinsic and intrinsic apoptotic pathways merge at the level of
death, executing enzymes—caspases 3 and 7. CAP treatment causes massive caspase 3/7 ac-
tivation, cleavage, and morphological changes of cell architecture in prostate cancer LNCaP
cells [108,109], cholangiocarcinoma cells [62], human endothelial cells HDMEC [113], and
G-361 human melanoma cells. This is accompanied by increased PARP level and a blocked
HGF/c-MET pathway [88]. As cell death in CAP-treated cells could not be abrogated
entirely by pan-caspase and receptor-interacting serine/threonine-protein kinase 1 (RIK1)
inhibitors [100], this points toward the involvement of other cell death-inducing cascades.

6.5. Immune Response Activating Cell Death

In contrast to apoptosis—cell death without any inflammatory outcome—cell death
mechanisms that inherently result in inflammation are pyroptosis and immunogenic cell
death (ICD). Recently, CAP was shown to induce pyroptosis, another highly inflamma-
tory programmed cell death, via ROS generation in gasdermin E expressing tumour cell
lines [114]. The basal level of gasdermin E protein positively correlates with the cell’s
sensitivity to CAP-induced pyroptosis, which depends on the activation of mitochondrial
pathways (JNK/cytochrome c/caspase-9/caspase-3) and the cleavage of gasdermin E [114].
ICD, on the other hand, involves changes in the composition of the cell surface, as well
as the release of soluble mediators, which operate on a series of receptors expressed by
dendritic cells, to stimulate the presentation of tumour antigens to T cells and elicit tumour
cell death [115]. ICD is mediated by the release of damage-associated molecular patterns
(DAMPs). These molecules are normally retained within cells and integrated into their
normal functioning, but once released outside the cells, they act as danger signals. The list
of DAMPs includes calreticulin, heat shock proteins (HSPs) 70 and 90, high-mobility group
box 1 (HMGB1), ATP, annexin A1, type I interferons (IFNs), mitochondrial DNA, and many
other [116]. In this way, PAM rich in H2O2 was shown to increase calreticulin exposure and
ATP release in tumour cells [117]. CAP exposure induced cell death of MX-7 rhabdomyosar-
coma cells [118] and of vestibular schwannoma cancer cells [119] via similar calreticulin
and HSP70 externalization and increased HMGB1 release. Prostate cancer cells exposure to
CAP-PBS resulted in their enhanced immunostimulatory secretion profile (higher TNF-α
and IFN-γ, lower TGF-β), and increased phagocytosis by dendritic cells [17], whereas in
CAP-exposed keratinocytes, expression of key regulators important for inflammation (IL-8,
TGF-β1, and TGF-β2) was found increased [120]. The cellular processes addressed above
together with de-regulated genes in cells exposed directly to CAP or to CAP-activated
media and other CAP-activated solutions are summarized in Table 1.
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Table 1. Summary of cellular processes and genes either upregulated (↑) or downregulated (↓) in different cells exposed to CAP and CAP-activated liquids.

Med. Type Cell Type Process Affected Deregulated Genes Ref.

CAP-media CAL-78, SW1353, A549, H1299, U-2 OS, 3T3 fibroblasts, HaCaT
keratinocytes, glioblastoma cells, Pancreatic cancer cells, C2C12 myoblasts ↓ proliferation ↑ PRX1, PRX2 [29,48,71,79,81,82]

CAP-Ringer’s solution MG-63 osteosarcoma cells ↓ proliferation [57]

CAP-media MDA-MB-231, BrCa, DN-17,
DSN osteosarcoma cells, MCF-7 ↓migration - [2,34,87]

CAP-media Melanoma cells ↓migration ↓ E-cadherin, YKL40, N-cadherin, SNAI1 [88]

CAP-Ringer’s solution MG-63 osteosarcoma cells (3D) ↑migration
↑ adhesion

↑MMP2, MMP9
↑ FN1, PTK2 [90]

CAP-media + Tmz Glioma cells ↓migration ↑ αvβ3, αvβ5 [91]

CAP-media Myeloma cells ↓migration ↑MMP2, MMP9 [92]

CAP-media Melanoma cells, glioblastoma cells (3D), MG-63 osteosarcoma cells (3D) ↓ stemness
↑ stemness

↓ CD133, ABCB5
↑ BGLAP, ALPL, BMP2, RUNX2 [88–90]

CAP-media Human epithelial cells, primary prostate cancer cells, melanoma cells ↑ autophagy - [33,64,95]

CAP-media Endometrial cancer cells ↑ autophagy ↓ mTOR, PI3K [96]

CAP-media + silymarin G-361 cells ↑ autophagy ↓ HRAS, MEK
↑ BECN1, AMBRA1, MAP1LC3A, SQSTM [59]

CAP-media Melanoma cells, dermal fibroblast,
adipose-derived stromal cells

↑ senescence ↑ H3K9, p21
↑ p53, p16 [98,99]

CAP-media HEI-193, mSC4 VS, THP-1, U37 ↑ necrosis
↑ apoptosis - [64,100–102]

CAP T-lymphoblastoid leukemia cells, LNCaP prostate cancer cells ↑ apoptosis ↑ p53, Bax
↓ Bcl2, XRCC1 [53,107–109]

CAP-media BrCa cells, TE354T basal cell carcinoma, A875 melanoma cells,
G361 melanoma cells, U-2 OS

↑ apoptosis
↑MAPK, JNK, NFkB

↑ Sestrin2, p38, MAPK, Fas
↑ Ask1, cJUN, STAT3

[27,74,89,103–105]

CAP-media Myeloma cells, osteosarcoma cells, HT29, SW480 colon cancer cells ↑ apoptosis ↑ p53, Fas
↑ p21, OGG1, GADD45 [29,62,106,107,110–112]

CAP-media Prostate cancer LNCaP, choloangiocarcinoma cells, HDMEC, G-361 ↑ apoptosis ↑ PARP
↑ Casp3, Casp7 [62,88,108,109,113]

CAP-media MX-7, vestibular schwannoma cancer cells ↑ ICD
↑ apoptosis

↑ CALR
↑ HMGB1, HSP70 [118,119]

CAP-PBS Prostate cancer cells
Kertinocytes

↑ ICD
↑ apoptosis

↑ TNF-α, IFN-γ, ↓ TGF-β
↑ IL-8, TGF-β1, TGF-β2 [17,120]
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7. Conclusions

In summary, further insight into specific interactions of plasma-derives species with bi-
ological cell/tissue, as well as with subcellular systems (membranous and non-membranous
organelles), is highly desired, to enable the fine-tuning of the treatment condition poten-
tially utilized in plasma medicine. Many studies have stressed that improving plasma
source and design, and allowing for standardization of protocols and procedures is of
utmost importance. An elevated number of proposed clinical trials is expected, though
exact treatment regimes, media compositions, and cell type specificity for the desired
effect still need to be defined. Regarding the intracellular putative autoamplificatory and
positive or negative feedback loops regulated by high or low dose CAP treatment, more
detailed knowledge still remains to be provided. All these further studies are warranted to
determine the nature, causes, and effects of the cyto- and genotoxic potential of solutions
and media exposed to various forms of CAPs to ensure the long-term safety of novel
plasma applications in medicine.
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