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Abstract

American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism,
Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more
commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this
pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with
probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring
AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from
BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred
irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P.
larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39,
Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load,
upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the
usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for
reducing enzootic pathogen-related hive losses.

Introduction

Managed honey bees (Apis mellifera) perform critical pol-
lination services to many agricultural crops and contribute
an estimated $225 billion USD annually to the global
economy [1]. However, the health of this insect species is
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an ongoing concern, as illustrated by persistent population
decline over the last decade [2—4]. The causal factors pre-
cipitating this decline likely include a combination of pes-
ticide exposure, infectious disease, and loss of habitat [5].

One well-known pathogen afflicting honey bee brood is
the spore-forming bacterium Paenibacillus larvae, which
causes American foulbrood (AFB). This highly adapted
pathogen infects A. mellifera during early development and
can kill brood through secretion of secondary metabolites
(that have antimicrobial properties to counter microbial
competitors) and chitin-degrading enzymes (enabling
degradation of the peritrophic matrix) that allow breaching
of the midgut epithelium, invasion of the haemocoel, and
decomposition of the larva to a ropy mass [6]. ERIC I
isolates of P. larvae are most common and predicted to
produce more secondary metabolites and fewer virulence
factors with a 100% lethality index of 10-12 days, whereas
ERIC II-1V isolates require only 6-7 days to kill infected
honey bee larvae [7, 8].

AFB is a notifiable disease in many countries and requires
the destruction of clinically infected hives [9]. This is because
attempts at hive rescue are outweighed by the extreme
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contagiousness and subsequent risk of disease spread to
surrounding apiaries and to wild pollinators [10]. Despite its
nearly cosmopolitan distribution and enzootic state in most
honey bee hives [11], this pathogen often remains dormant in
its spore-form and does not induce manifestations of AFB
[12]. It has been suggested that P. larvae may exist as a
pathobiont in the native microbiota of adult worker bees,
from where it is passively and constitutively transmitted
throughout the hive to fresh brood cells [12].

Measures to control AFB in apiaries include antibiotic
treatment [13], selective breeding for hygienic behaviour
[14], application of bioactive essential oils [15], bacter-
iophage therapy [16], and administration of synthetic
indoles to inhibit germination of P. larvae [17]. These
disease management approaches are helpful but often
ineffective, and hives remain vulnerable to AFB. One
alternative being considered is the supplementation of
colonies with beneficial bacteria such as Lactobacillus spp.
[18]. Findings from model systems support this approach,
showing that Lactobacillus plantarum Lp39 can improve
the innate immune response and resistance towards oppor-
tunistic infection in Drosophila melanogaster [19]. A
reduction of pesticide toxicity via Lactobacillus rhamnosus
GR-1 supplementation in D. melanogaster [20] and pro-
tection against harmful microorganisms by various Lacto-
bacillus and Bifidobacterium spp. [21-24] has also been
reported, suggesting these beneficial bacterial may be useful
for directly addressing some of the causal factors implicated
in honey bee decline. Additionally, resistance factors that
arises through antibiotic administration are less likely to
evolve with probiotic application [25]. Long-lasting benefits
to honey bee longevity have been observed following
relatively short probiotic supplementation periods and
without the necessity of host colonization—demonstrating
an intermittent dosing schedule, which also reduced hive
disturbance, is favourable [26].

In this study, we capitalized on a naturally occurring
AFB outbreak to test a lactobacilli-infused nutrient patty
(referred to as the BioPatty) for its ability to suppress P.
larvae under normal field conditions. Signs of AFB devel-
oped in the experimental apiary within a few weeks as
expected, providing an opportunity to examine the patho-
logical microbial shifts that occur during disease progres-
sion and to quantitatively assess the effect of BioPatty
supplementation on hive health.

Methods
Bacterial strains and cultures

Lactobacillus plantarum Lp39 (Lp39; American Type
Culture Collect (ATCC), number 14917), Lactobacillus

rhamnosus GR-1 (LGR-1; ATCC number 55826), and
Lactobacillus kunkeei BR-1 (LkBR-1; previously isolated
from a healthy honey bee hive) were routinely cultured
anaerobically at 37 °C using de Man, Rogosa, and Sharpe
(catalogue number 288130; BD Difco) broth or agar sup-
plemented with 10 g/L. p-fructose (catalogue number F-
3510; Sigma-Aldrich; MRS-F), unless otherwise stated.
Isolated P. larvae BMR43-81 (from diseased honey bee
larvae in this study) was routinely cultured in a micro-
aerophilic incubator at 37 °C under 5% CO, using modified
Mueller—Hinton (2 g/l. Mueller—Hinton broth (catalogue
number 212322; BD Difco) and 15 g/L yeast extract (cat-
alogue number 212750; BD Difco); MY) broth and agar,
unless otherwise stated. Honey bee isolates Enterobacter
hormaechei B0003, Paenibacillus illinoisensis B0004,
Hafnia paralvei BO008, and Lactobacillus apis BOO11 used
for inhibition assay experiments were from a geographically
distinct honey bee hive exhibiting no signs of disease.
Isolates Enterobacter hormaechei B0003, Paenibacillus
illinoisensis B0004, Hafnia paralvei BOOOS were cultured
aerobically at 37°C in MY, whereas Lactobacillus apis
BOO011 was cultured anaerobically at 37 °C in MRS-F.

Apiary set up, treatment groups, and sampling
procedure

Field trials were performed on managed Chilean-sourced
honey bees (A. mellifera) in an experimental apiary owned
and operated through Western University (London, Ontario,
Canada) for the purposes of scientific investigation. The
apiary consisted of ten colonies located in a single geo-
graphic location and housed in standard Langstroth hives
that were elevated ~36 inches above ground level using
wooden support beams. Two hives, designated ‘hive A’ and
‘hive B’, were used for each of the following treatment
groups: (1) a no-treatment control (NTC) group that
received equal levels of physical disturbance without any
form of supplementation, (2) a vehicle pollen patty group
that received nutritional supplementation in the form of a
250-g patty containing standard pollen substitute ingre-
dients (28.5 g of soy flour, 74.1 g of granulated sucrose,
15.4 g of debittered brewer’s yeast, 132.1 g of a 2:1 (w/v)
simple sucrose-based syrup solution) with the addition of
4 mL of vehicle (0.01 M phosphate-buffered saline (PBS))
per patty, and (3) a BioPatty group, which received the
250 g of base pollen patty ingredients with the additional
infusion of Lp39, LGR-1, and LkBR-1 each at a final
concentration of 10 colony-forming units (CFU)/g. Sup-
plementation of hives occurred twice during the field trial
on day 0 and day 7. Sampling of hives occurred on days 0
and 12 during which 30 adult nurse bees (located on frames
with active brood) were collected from each hive. Sampling
of larvae (third- to fifth-instar) occurred only on day 12 as
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our original intentions were not to monitor early life stages.
Individuals were collected equally from each hive per
treatment group (i.e. the same number of samples were
taken from both ‘hive A’ and ‘hive B’ for each of the three
experimental groups). Pooling of samples occurred within
the same hive and the same number of pooled samples were
collected from each hive per treatment group. Colony ID
was recorded but was not considered in downstream ana-
lyses in favour of preserving a more robust dataset. Fol-
lowing the detection of AFB on day 12, honey bees were
promptly euthanized, and hives scorched according to local
regulations. Thus, no follow-up survey could be performed
to track further disease progression.

Isolation and identification of P. larvae bacterial
colonies

Standard methods for identification of AFB were followed
as previously described [27]. Briefly, infected larvae exhi-
biting signs of active disease were extracted from the hive,
homogenized in equal volumes of 0.01 M PBS (w/v) using
a sterile motorized pestle, serial diluted and spread plated on
MYPGP (10g/L Mueller—Hinton broth, 15g/L yeast
extract, 3 g/ K,HPO,, and 1 g/ sodium pyruvate), brain
heart infusion (BHI; catalogue number 211059; BD Difco),
and MY agar. Isolated P. larvae colonies were visually
verified on the basis of their Gram-stain and morphological
characteristics, and then re-streaked to obtain pure cultures
from which DNA was extracted as described previously
[28]. Universal 16S rRNA gene primers pA (5'-AGAG
TTTGATCCTGGCTCAG-3’) and pH (5'-AAGGAGGTG
ATCCAGCCGCA-3") were used for PCR as previously
described [28]. The amplified product was then purified by
1.0% agarose gel electrophoresis, extracted with a QIA-
quick gel extraction kit (catalogue number 28704; Qiagen),
and sequenced using the aforementioned primers with the
Applied Biosystems 3730 Analyzer platform at the London
Regional Genomics Centre (Robarts Research Institute,
London, Canada). DNA was similarly extracted from
Enterobacter hormaechei BO0003, Paenibacillus illinoi-
sensis B0004, Hafnia paralvei BO008, and Lactobacillus
apis B0O011 isolates. The corresponding 16S rRNA partial
sequences were uploaded to NCBI GenBank (accession
numbers: MK618560 and MK618171-MK618174).

Repetitive element sequence-based PCR

Briefly, DNA from a single colony of the P. larvae isolate
was extracted using the InstaGene (Bio-Rad) matrix pro-
tocol following manufacturer’s instructions. Genotyping of
the P. larvae isolate was then performed using the ERICIR
(5'-ATGTAAGCTCCTGGGGATTCAC-3') and ERIC2
(5’-AAGTAAGTGACTGGGGTGAGCG-3") primers as

SPRINGER NATURE

previously described [29]. Using 10 pL of the amplified
products, banding pattern was analyzed on a 0.8% agarose
gel stained with ethidium bromide and visualized under UV
light in an Alphalmager 2200 station (Innotech).

gPCR-based quantification of microbial
communities in larval and adult honey bee samples

Honey bee larvae (whole body) and adults (dissected whole
abdomens) were surface sterilized using 0.25% sodium
hypochlorite, followed by a 30-s wash in ddH,O. DNA was
then extracted from samples using the previously described
CTAB method [30]. Bacterial loads were then determined
by qPCR with the Power SYBR Green kit (Applied Bio-
systems) using universal and phylotype-specific 16S rRNA
primers listed in Supplementary Table 1. All qPCR reac-
tions were performed in DNase- and RNase-free 384-well
microplates on a Quant Studio 5 Real-Time PCR System
(Applied Biosystems) and analyzed with associated soft-
ware. Copy numbers of target 16S rRNA genes were cal-
culated as previously described using established primer
efficiencies and limit of detections [30-33].

16S rRNA gene library preparation

Targeted amplification of the 16S rRNA V4 region was
performed using the established GOLAY-barcoded primers
(5'-3") ACACTCTTTCCCTACACGACGCTCTTCCGAT
CTNNNNxxxxxxxxxxxXxGTGCCAGCMGCCGCGGTAA

and (5'-3') CGGTCTCGGCATTCCTGCTGAACCGCT
CTTCCGATCTNNNNxxxxxxxxxxxXxGGACTACHVGGG
TWTCTAAT wherein ‘XxXxXxxxxxxx’ represents the
sample-specific 12-mer barcode following the Illumina
adaptor sequence used for downstream library construction
[34]. Utilizing a BioMek Automated Workstation (Beck-
man Coulter), 2 uL. of sample DNA (5 ng/uL) was added to
a 96-well 0.2-mL PCR plate containing 10 uL of each pri-
mer per well (3.2 pmol/uL), followed by the addition of
20 uL of GoTaq 2X Colourless Master Mix (Promega).
Final plates were then sealed using PCR-grade adhesive
aluminium foil and placed in a Prime Thermal Cycler
(Technie). PCR reaction conditions were as follows: an
initial activation step at 95 °C, followed by 25 cycles of
95 °C for 1 min, 52 °C for 1 min, and 72 °C for 1 min. After
completion, the thermocycler was held at 4 °C, and ampli-
cons subsequently stored at —20 °C until further processing.

16S rRNA sequencing and data analysis

Processing of amplicon libraries was conducted at the
London Regional Genomics Centre (Robarts Research
Institute, London, Canada) in which amplicons were
quantified using PicoGreen (Quant-It; Life Technologies,
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Burlington, ON), pooled at equimolar ratios, and sequenced
on the MiSeq paired-end Illumina platform adapted for 2 x
250 bp paired-end chemistry. Sequence reads were then
processed, aligned, and categorized using the DADA2
(v1.8) pipeline to infer exact amplicon sequence variants
(SVs) from amplicon data [35]. Briefly, sequence reads
were filtered (reads truncated after a quality score of <2 and
forward/reverse reads truncated after 155/110 bases,
respectively) and trimmed (10 bases off 5’ end of reverse
reads) using optimized parameter settings as recommended.
Next, sequence reads were de-replicated, de-noised, and
merged using DADA2 default parameters with read
recovery rates ranging from 83.9% to 94.5%. Taxonomy
was assigned to SVs using a customized database consisting
of the SILVA non-redundant v132 training set and a pre-
viously established honey bee-specific seed alignment of
276 unique representatives [36]. Raw sequence reads were
uploaded to the NCBI Sequence Read Archive and are
accessible under BioProject ID PRINA525184.

In vitro inhibition assays for P. larvae

Vegetative P. larvae cells were cultivated via aerobic
growth in MY media at 37 °C for 48 h, followed by a 1:50
sub-culturing step, and then harvested during mid log-
phase. Bacterial suspensions were then adjusted to ODgg =
0.75 and spread over freshly prepared MY agar plates
(300 uL) as described previously [37]. Lactobacilli strains
of interest were grown to stationary phase under their
optimal growth conditions (described above). Subsequently,
cells were gently centrifuged at 4500xg and then washed
twice in 0.01 M PBS, followed by resuspension in 0.01 M
PBS at an adjusted concentration of 1 x 10° cells/mL. The
resultant suspensions (20 pL.) were spotted onto sterile filter
disks (7 mm diameter; Whatman) and placed onto MY
plates freshly spread with P. larvae. Plates were incubated
in microaerophilic conditions under 5% CO, at 37 °C and
zones of inhibition measured after 48 h. Sterile 0.01 M PBS
served as a negative control, which showed no effect on P.
larvae growth. All antibiotic control disks (diameter =
7 mm) contained 30 pg of either tetracycline, doxycycline,
or oxytetracycline hydrochloride (Oxoid; Thermo
Scientific).

Inhibition of P. larvae growth in solution was tested with
the incubation of cell-free supernatant (CFS) from Lp39,
LGR-1, and LkBR-1. All bacterial strains tested were cul-
tured in MY (with the addition of 10 g/L p-fructose for
LkBR-1; blank vehicle controls for this media failed to
demonstrate any inhibitory properties on P. larvae) under
each of their aforementioned optimal growth conditions,
and then were harvested in stationary phase and adjusted to
1 x 10° CFU/mL. Subsequently, bacterial suspensions were
0.2 puM filtered-sterilized to obtain CFSs, which were then

pH-adjusted (pH = 6.2; original pH of media) to eliminate
any non-specific influence that pH differences may have on
P. larvae growth. Vegetative P. larvae cells grown aero-
bically at 37 °C in MY were obtained in mid log-phase as
above, and then diluted to ODgyy = 0.1 in fresh MY media
with the addition of 12.5% CFS (v/v) or 12.5% 0.2 uM
filtered-sterilized MY vehicle. Suspensions were then added
to a 96-well U-bottom plate in 200 pL aliquots in technical
triplicate prior to sealing of wells with optically clear
adhesive films. Plates were incubated at 37 °C with 150
RPM orbital shaking for 48h with ODgyy measurements
taken every 30 min using a BioTek microplate reader.

Fluorescent-based bacterial cell viability assays

Log-phase harvested P. larvae and stationary-phase Lp39
were gently centrifuged at 4500xg for 10 min, washed twice
in 0.01 M PBS, and re-suspended in glucose-supplemented
Krebs—Ringer solution (120mM NaCl, 4.9mM KCl,
1.2 mM MgSO,, 1.7mM KH,PO,, 8.3 mM Na,HPO,, and
10mM glucose, pH 7.3). Co-incubation of Lp39 and P.
larvae was 1 h in duration and performed with 1 x 10’ CFU/
mL of each bacteria. Following incubation, bacterial cells
were stained using the ViaGram Red + Bacterial Gram
Stain and Viability Kit (Invitrogen) according to manu-
facturer's recommendations. Subsequently, samples were
sealed under a coverslip and visualized using the 60x oil-
immersion lens on a Nikon Eclipse Ti2-A confocal micro-
scope. Bacterial cells were identified on the basis of their
differential morphology, with long rod-shaped bacterium
representing P. larvae and short rod-shaped bacteria
representing Lp39.

Infection assays using laboratory-reared honey bee
larvae

First-instar honey bee larvae were removed from ten nearby
hives exhibiting no sign of disease using a Chinese grafting
tool, placed in 6-well tissue culture plates containing 2.5 mL
of RIbl media (50% (w/v) royal jelly, 0.9% (w/v) yeast
extract, 5.1% (w/v) p-glucose, and 5.1% (w/v) p-fructose),
and then were transported to laboratory conditions in an
insulated container maintained at 37 °C. Individuals were
then randomized without regard for their colony of origin,
pooled into groups of n =40, separated into 6-well tissue
culture plates containing 2.5 mL of RJbl media, and orally
supplemented either LX3 (1 x 10’ CFU/mL of each Lp39,
LGR-1, and LkBR-1) or vehicle (0.01 M PBS) for 24 h
prior to subsequent infection. Second-instar larvae were
then transferred to fresh individual wells in a 96-well flat-
bottom tissue culture plate containing 25 L. of RJb2 media
(50% (wlv) royal jelly, 1.3% (w/v) yeast extract, 6.4% (w/v)
D-glucose, and 6.4% (w/v) p-fructose) with the addition of
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1x10* spores of P. larvae or vehicle (sterile ddH,O) as
described previously [17]. On day 1 post-infection, honey
bee larvae were fed fresh RJb3 media (50% (w/v) royal
jelly, 1.7% (w/v) yeast extract, 7.7% (w/v) p-glucose, and
7.7% (w/v) p-fructose) for the remainder of the experiment
with incremental increases in volume of 10 pL/day with a
starting diet of 25 pL on day 1. Subsequently, larvae were
monitored for survival every 24 h via gentle surface agita-
tion using a sterile pipette tip. Individuals were considered
dead on the basis of an absent response to physical stimuli
and the sustained lack of movement or respiration [17].
Dead larvae were immediately removed from their well.

TRIzol-based RNA extraction and qPCR for host gene
expression

In vitro-reared honey bee larvae were surface-sterilized
using 0.25% sodium hypochlorite. RNA was then extracted
from whole larvae using 700 uL of TRIzol (Invitrogen)
following manufacturer’s instructions. Quality of RNA was
evaluated using a microvolume spectrophotometer (DS-11
Spectrophotometer; DeNovix) and determined to have
A260/280 absorbances ratios between 1.9 and 2.2. cDNA
was synthesized from 1500 ng of total RNA using a High-
Capacity cDNA Reverse Transcription Kit following man-
ufacturer’s instructions (Applied Biosystems, catalogue
number: 4368813).

Previously established oligonucleotide primers [38, 39]
were used for qPCR reactions and are listed in Supple-
mentary Table 2. Preliminary experiments identified honey
bee alpha-tubulin (XM_391936) to be most stably expres-
sed (compared to ribosomal protein S5 [XM_624081],
microsomal glutathione-S-transferase [XM_394313], and
UDP-glucuronyltransferase [XM_392727]) endogenous
control under our specific set of experimental conditions,
and thus was chosen as the internal standard for normal-
ization as per MIQE guidelines [40]. cDNA was diluted
tenfold and used for qPCR reactions with the Power SYBR
Green kit (Applied Biosystems) as previously described
[19]. All gPCR reactions were performed in DNase- and
RNase-free 384-well microplates using a Quant Studio 5
Real-Time PCR System (Applied Biosystems) and analyzed
with associated software. Relative gene expression was
calculated using the 2724 method [41]. PCR amplification
was confirmed via melt-curve dissociation analyses to
verify expected product and check for non-specific
amplification.

Simultaneous extraction of DNA following RNA
extraction

DNA was back-extracted from the TRIzol homogenates of
laboratory-reared honey bee larvae (described above) using
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a back-extraction buffer (BEB) consisting of 4 M guanidine
thiocyanate, 50 mM sodium citrate, and 1 M Tris base as
previously described [42]. Samples were diluted and then
used for qPCR as described above to assess the microbial
loads of major phylotypes in laboratory-reared honey bee
larvae during P. larvae infection.

Results

Retrospective analysis of BioPatty supplementation
following natural AFB outbreak

After 12 days of experimentation, classical signs of
AFB were detected using the qualitative in-field “rope-test”
[27]. This was confirmed by isolation of a non-pigmented
strain of P. larvae from brood samples exhibiting signs of
disease. Molecular identification via 16S rRNA gene
sequencing, followed by a BLAST search against the
GenBank Bacteria and Archaea 16S ribosomal RNA
sequences database (NCBI), demonstrated the isolate to
most closely match P. larvae strain DSM 7030 (Query
cover =99%, E-value=0.0, and Identity =99.45%;
NR_042947.1). Furthermore, ERIC-subtyping of the P.
larvae isolate using rep-PCR demonstrated a banding pat-
tern (Fig. la) that matched well with the previously char-
acterized P. larvae ERIC subtype I [43].

To determine differences in larval pathogen load
between treatment groups, P. larvae abundances were
enumerated in third- to fifth-instar larvae using a cultured-
based method [27]. Larvae from the BioPatty-supplemented
group exhibited significantly lower pathogen loads in
comparison to NTC and vehicle-supplemented groups (one-
way ANOVA with Tukey’s multiple comparisons, P <
0.0001 for both), with no observable differences between
the latter two groups (Fig. 1b).

Larval samples from vehicle-supplemented groups were
shown to have a significantly higher proteolytic index than
samples from NTC and BioPatty-supplemented groups
(one-way ANOVA with Tukey’s multiple comparisons,
P =0.0006 and P <0.0001, respectively; Fig. Ic). A trend
towards decreased proteolytic activity was observed in the
BioPatty treatment group relative to NTC (one-way
ANOVA with Tukey’s multiple comparisons, P = 0.0611;
Fig. lc).

Using a qPCR-based approach to enumerate low levels
of bacteria in honey bee larvae [32], the six major phylo-
types commonly associated with the microbiota of honey
bees were measured. Larval samples from the vehicle-
supplemented group displayed significantly higher levels
of Alphaproteobacteria, Betaproteobacteria, and Gamma-
proteobacteria (one-way ANOVA with Dunnett’s multiple
comparisons, P =0.0222, P=0.0084, P =0.0069,
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Fig. 1 Retrospective analysis of BioPatty supplementation following
natural AFB outbreak. a Molecular identification of Paenibacillus
larvae BMR43-81 by rep-PCR using ERIC primers. Red arrow =
970 bp confirmation band for P. larvae subsp. larvae. Black arrows =
characteristic banding pattern for previously established ERIC subtype
1 profile. b Pathogen load of whole honey bee larvae from inner brood
frames of experimental hives was determined by plating extracted
homogenates on MY agar media. Colony forming units (CFU)
obtained represent the mean + standard deviation (one-way ANOVA
with Tukey’s multiple comparisons) of n = 10 pooled larval samples
for each treatment group (three larvae per pooled sample). ¢ Pathogen
activity of whole honey bee larvae from inner brood frames of
experimental hives was determined via a modified Holst milk test

respectively) compared to the NTC group (Fig. 1d).
BioPatty-supplemented larvae, by contrast, had significantly
higher levels of Actinobacteria and Betaproteobacteria (one-
way ANOVA with Dunnett’s multiple comparisons, P =
0.0026, and P = 0.0431, respectively) compared to the NTC
group, but no differences were found in Alphaproteo-
bacteria and Gammaproteobacteria loads (Fig. 1d). More-
over, using species-specific primers, it was found that larval
samples from the BioPatty group had significantly higher
levels of L. plantarum, L. rhamnosus, and L. kunkeei
(Kruskal-Wallis test with Dunn’s multiple comparisons,
P=0.0080, P=0.0135, and P =0.0417, respectively)
compared to the NTC group on day 12 of the field
trial (Fig. le).

clearance assay. Mean casein hydrolysis + standard deviation (one-
way ANOVA with Tukey’s multiple comparisons) of n=6 pooled
larval samples for each treatment group (three larvae per pooled
sample) with triplicate technical repeats are shown. d, e qPCR-based
quantification of dominant microbiota phylotypes and supplemental
lactobacilli across treatment groups. Data represents the median (line
in box), IQR (box), and minimum/maximum (whiskers) of n=26
pooled larval samples for each treatment group (three larvae per
pooled sample) with duplicate technical repeats. Statistical compar-
isons shown for one-way ANOVA (dominant microbiota phylotypes)
and Kruskal-Wallis (supplemental lactobacilli) tests with Dunnett’s
and Dunn’s multiple comparisons, respectively. ns = not significant,
*P<0.05, ¥*P<0.01, ¥**¥*P <0.001, and ****P <0.0001

Total bacterial loads and 16S rRNA sequencing of
the adult honey bee gut microbiota during an AFB
outbreak under natural field conditions

To further examine potential polymicrobial interactions
and dynamic changes that occur in the bacterial commu-
nities associated with honey bees during the AFB outbreak,
16S rRNA gene sequencing was performed on the
gut microbiota of adult worker bees. Nurse-aged adult
bees were chosen for examination based on their close
association with brood and previous reports demonstrating
them to be good estimators of overall hive microbial
diversity [12]. After omitting control samples, the total
nurse bee microbiota dataset contained 579,789 reads,
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Fig. 2 Total bacterial loads and 16S rRNA sequencing of the adult
honey bee gut microbiota during an AFB outbreak under natural field
conditions. qPCR-based quantification of a total gut bacteria and
b total P. larvae loads in surface-sterilized adult nurse bees. Data
represent the median (line in box) and minimum/maximum (whiskers)
of eight adult gut samples in each treatment group with duplicate
technical repeats performed. Statistical analysis shown for two-way
ANOVA with Tukey’s multiple comparisons. ns =not significant,
*P<0.05, ¥**P<0.01. ¢ Bar plots represent the gut microbiota com-
positions of a single bee from each of their respective treatment groups

Timepoint:

ranging from 24,352 to 81,014 reads per sample. An
average of 8.96% of total reads were removed from each
sample following quality assurance measures using the
DADAZ2 pipeline [35], leaving a total of 527,824 filtered
reads. Taxonomy was assigned to SVs using a custom-
designed classification database consisting of the SILVA
non-redundant v132 training set and a honey-bee specific
database of high-quality reference sequences [36].
SVs identified as Wolbachia spp. or chloroplasts were
removed. After implementing a 1% abundance cut off, a
total of 112 unique SVs remained. A bar plot and dendro-
gram visually representing the relative proportions of taxa
in the samples is provided in Fig. 2c. These results are
consistent with past surveys demonstrating a simple and
distinctive community profile in the adult honey bee gut
microbiota [30, 32].

The dendrogram in Fig. 2c shows distinct clustering of
samples based on time-point (day O vs day 12) and between
samples on day 12 (NTC and vehicle-treated samples vs
BioPatty samples) based on Aitchison distances, a suitable
metric for the analysis of compositional data [44, 45]. No
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Gilliamella apicola/b

as determined by sequencing of the V4 region of the bacterial 16S
rRNA gene. Taxonomy was assigned using a custom database created
by combining a previously established dataset of bee-associated 16S
rRNA gene sequences with the SILVA NR v132 training set. Group
1 = no treatment, Group 2 = vehicle pollen patty only, and Group 3 =
BioPatty. Hierarchal clustering of samples is shown in the dendrogram
above the bar plot and was calculated using the ward.D method and
“hclust” function in R. Cluster 1 = grey, Cluster 2 =red, Cluster 3 =
blue

significant differences in total bacteria loads existed
between any of the treatment groups at any time-point
during the field trial, based on qPCR-based quantification of
total bacteria load using universal 16S rRNA primers and
honey bee f-actin as a loading control (Fig. 2a). However,
P. larvae levels in nurse bees from vehicle-treated hives
were significantly higher than in NTC and BioPatty treat-
ment groups on day 12 (two-way ANOVA with Tukey’s
multiple comparisons, P =0.0053 and P = 0.0245, respec-
tively; Fig. 2b).

Exploratory comparison of the gut microbiota in
adult nurse bees during AFB outbreak

Using the 112 unique SVs identified, samples were centred
log ratio (CLR) transformed to generate Aitchison dis-
tances, which were subsequently used to perform a principal
component analysis on the nurse bee microbiota dataset
(Fig. 3a). Principal components 1 and 2 explain 45.9% of
the total variance in the microbiota composition between
individual samples (Fig. 3a). Additionally, k-means
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clustering was used to partition samples into distinctive
groups that had similar microbiota compositions. Three
distinctive clusters were calculated and shown to be asso-
ciated with both experimental time-point and treatment. The

largest influencers were identified as species from Api-
bacter, Commensalibacter, Frischella, Paenibacillus, and
Pseudomonas (strength of association depicted by red
arrows; Fig. 3a).
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Fig. 3 Exploratory comparison of the gut microbiota in adult nurse
bees during AFB outbreak. a Principle Component Analysis (PCA)
plot of adult honey bee gut microbiota samples. Sequence variants
were collapsed at genus-level identification, with CLR-transformed
Aitchison distances used as input values for PCA analysis. Distance
between individual samples (points) represents differences in micro-
biota composition, with 45.9% of variance explained by the first two
principle components shown. Strengths of association for genera are
depicted by the length of the red arrows. Clustering of samples was
determined using the “k-means” function in R. b, ¢ qPCR-based
quantification of dominant microbiota phylotypes and Escherichia coli
in adult nurse bee gut samples. Data represent the median (line in box),
IQR (box), and minimum/maximum (whiskers) of ten individual gut
samples with duplicate technical repeats. Statistical analysis shown for
one-way ANOVA with Benjamini and Hochberg corrected multiple
comparisons. ns = not significant, *P < 0.05, **P < 0.01, ***P < 0.001

To further validate the 16S rRNA gene sequencing
dataset, bacteria in the gut microbiota of adult nurse bees
were quantified by qPCR using established phylotype-
specific primers [30-32]. NTC and vehicle-supplemented
groups were found to have significantly less Alphaproteo-
bacteria (one-way ANOVA with Benjamini and Hochberg
multiple comparisons, P=0.0190, P=0.0019), Betapro-
teobacteria (one-way ANOVA with Benjamini and Hoch-
berg multiple comparisons, P =0.0046, P =0.0001), and
Gammaproteobacteria (one-way ANOVA with Benjamini
and Hochberg multiple comparisons, P=0.0151, P=
0.0029) on day 12 (post-AFB detection) in comparison to
day O (pre-AFB detection; Fig. 3b). BioPatty-treated groups
had higher levels of Actinobacteria and Firmicutes (one-
way ANOVA with Benjamini and Hochberg multiple
comparisons, P =0.0083 and P = 0.0066, respectively) on
day 12 compared to day O (Fig. 3b). Based on observations
from the compositional dataset (Fig. 2¢ and 3a), Escherichia
coli was quantified via qPCR using species-specific primers
[33]. Absolute abundance of E. coli in adult nurses was
found to be significantly higher on day 12 compared to day
0 for NTC and vehicle-supplemented groups but not the
BioPatty-supplemented group (one-way ANOVA with
Benjamini and Hochberg multiple comparisons, P =
0.0351, P=0.0217, P =0.7302, respectively; Fig. 3c).

In vitro growth and cell viability of P. larvae is
reduced by Lp39

CFS from stationary-phase Lp39, LGR 1, and LkBR-1
grown in MY media were tested for their ability to inhibit P.
larvae growth in solution. Following incubation with 12.5%
CFS, time-coursed measurement of P. larvae growth
demonstrated that all lactobacilli strains negatively affected
the growth maxima of P. larvae in solution (Fig. 4a, b).
Using standard plate-based zone of inhibition assays [13],
we tested the P. larvae-inhibiting properties of several
common antibiotics, specific lactobacilli strains of interest,
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and previously derived honey bee isolates. All antibiotics
and bacteria, except Paenibacillus illinoisensis B0004,
showed some level of inhibition against P. larvae on solid
surface growth media (Fig. 4c). Lp39, LGR-1, and the
combination of Lp39, LGR-1, and LkBR-1 were as efficient
as the guideline recommended antibiotic, oxytetracycline, in
their ability to inhibit P. larvae (Fig. 4c). Other tetracycline-
related antibiotics, including tetracycline itself and dox-
ycycline, were significantly more effective at inhibiting P.
larvae than oxytetracycline (one-way ANOVA with Dun-
nett’s multiple comparisons, P <0.0001 for both; Fig. 4c).

These findings compliment numerous studies demon-
strating the inhibitory properties of various lactobacilli on P.
larvae both in vitro [37] and in vivo [46, 47]; however, they
did not explain whether the tested lactobacilli can kill P.
larvae cells or simply inhibit their growth similar to bac-
teriostatic antibiotics. A fluorescent-based cytotoxicity
assay on Lp39 and P. larvae cells demonstrated uptake of
SYTOX Green in P. larvae cells (long and rod-shaped) but
not Lp39 cells (short and rod-shaped) during co-incubation
for 1h in a glucose-supplemented physiological buffer
(Fig. 4d).

Prophylactic supplementation of Lp39, LGR-1, and
LkBR-1 (LX3) improves survival during natural P.
larvae infection

LX3 supplementation significantly improved overall survi-
val (log-rank (Mantel-Cox), y*=11.79, P =0.0081) and
reduced early time-point deaths (Gehan—Breslow—Wilcoxon
test, y* = 4.462, P =0.0347) during infection compared to
PBS-supplemented vehicles (Fig. 5b). In addition, LX3-
supplemented honey bee larvae exhibited significantly
reduced levels of P. larvae (Kruskal-Wallis test with
Dunn’s multiple comparisons, P =0.0005) at 3 days post-
infection compared to PBS-supplemented individuals
(Fig. 5¢).

Using a qPCR-based approach to enumerate low levels
of indigenous bacteria in the microbiota of in vitro-reared
honey bee larvae during infection, the same six major
phylotypes previously assessed in day 12 larval samples
from our field-trials were measured (Fig. 1d). Under
laboratory-controlled conditions, P. larvae infection had no
significant effect on any of the phylotypes tested when
compared with non-infected controls on day 3 post-
infection. Infected honey bee larvae supplemented with
LX3 demonstrated significantly lower levels of Gamma-
proteobacteria and Bacteroidetes (two-way ANOVA with
Tukey’s multiple comparisons, P = 0.0195 and P = 0.0046,
respectively) compared to non-infected PBS supplemented
controls (Fig. 5d). Consistent with field data, the use of
species-specific primers showed that both infected and non-
infected larvae supplemented with LX3 had significantly
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Fig. 4 In vitro growth and cell viability of Paenibacillus larvae is
reduced by Lp39. a Growth curves of P. larvae in MY media sup-
plemented with cell-free supernatant from lactobacilli strains of
interest. b Percent maximal growth was determined from growth curve
data (ODg) at 48 h using the area under the curve for P. larvae grown
in MY media supplemented with CFS from the specified lactobacilli.
Data are depicted as means + standard deviation (one-way ANOVA
with Dunnett’s multiple comparisons) of n =3 biological replicates
performed with duplicate technical repeats. ¢ Zone of inhibition
measurements represent the mean + standard deviation radius clear-
ance (minus the disk) on a P. larvae lawn grown on MY agar.
Experiments were performed in biological triplicate (n =3 for each
group) with technical duplicates. Statistical analysis is shown for one-
way ANOVA with Dunnett’s multiple comparisons made against
30ug of oxytetracycline. Enterobacter hormaechei B0003,

higher levels of L. plantarum, L. rhamnosus, and L. kunkeei
compared to infected and non-infected PBS-supplemented
larvae at 96 h following initial supplementation (Fig. 5d).

LX3 increases immune-related gene expression
during P. larvae infection

Increased expression of key immune-related genes has
been shown to parallel very closely with the ability of

Overlay

Texas Red-WGA SYTOX Green DAPI

Paenibacillus illinoisensis B0004, Hafnia paralvei BO00S, and Lac-
tobacillus apis BO011 represent isolates previously obtained from a
healthy hive. d Lp39 (short rod-shaped) and P. larvae (long rod-
shaped) were incubated in nutrient-limited media for 60 min and
subsequently stained with cell-permeable (4',6-diamidino-2-pheny-
lindole; DAPI) and non-permeable (SYTOX Green) nucleic acid
markers, as well as Texas Red-WGA that selectively binds to the
surface of gram-positive bacteria. Cells were visualized using a Nikon
Eclipse Ti2 confocal microscope. Increased uptake of SYTOX Green
indicates reduced cell viability based on plasma membrane integrity.
Yellow arrow points to P. larvae, white arrow points to Lp39. Bac-
terial cells that were incubated with 70% ethanol (EtOH) served as a
positive control to validate the assay. Scale bar =20 puM. ns = not
significant, **P <0.01, ***P <0.001, ****P <(.0001

honey bee larvae to resist P. larvae infection [48].
Here, prophylactic supplementation with LX3 (24 h) sig-
nificantly upregulated Def-1 and Pcbd at 72 h post-infection
compared to PBS-supplemented controls (one-way
ANOVA with Holm-Sidak’s multiple comparisons, P =
0.0079 and P =0.0110, respectively; Fig. 6). LX3 admin-
istration alone also significantly increased expression
of these genes in the absence of P. larvae inoculation
(one-way ANOVA  with Holm-Sidak’s multiple
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Fig. 5 Prophylactic supplementation of Lp39, LGR-1, and LkBR-1
(LX3) improves survival during natural P. larvae infection. a Sche-
matic diagram illustrating the experimental design for laboratory
rearing of honey bee larvae and infection timeline. b Survival curves
for laboratory-reared second-instar honey bee larvae that were sub-
jected to natural infection with P. larvae BMR43-81 with or without
24 h pre-supplementation with LX3 delivered orally (10’ CFU/mL for
each strain). All statistical symbols are representative of comparisons
made to respective vehicle control groups using the log-rank
(Mantel-Cox; n =40 individuals for each treatment group) test.
¢ Pathogen load of whole honey bee larvae at day 3 post infection was
determined by plating extracted homogenates on MY agar media.

comparisons, P=0.0146 and P =0.0106, respectively),
compared to PBS-supplemented controls. No changes
were observed in Ppo, Def-2, Hymenoptacein, or Apismin
(Fig. 6).
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Colony forming units (CFU) are represented by the median with 95%
confidence intervals (Kruskal-Wallis test with Dunn’s multiple com-
parisons) shown for 10-20 individual larvae in each group as depicted
by symbols on the graph. d qPCR-based quantification of dominant
microbiota phylotypes and supplemental lactobacilli across treatment
groups at day 3 post infection. Data represents the median (line in box)
and minimum/maximum (whiskers) of eight individual larval samples
per treatment group. Statistical analysis is shown for two-way
ANOVA with Tukey’s multiple comparisons made against the non-
infected PBS control group. nd = not detectable, ns = not significant,
*P<0.05, #*P<0.01, ***P <0.001, and ****P <0.0001

Discussion

This study demonstrated the utilization of lactobacilli, via
in-hive BioPatty supplementation, to improve honey bee



Novel probiotic approach to counter Paenibacillus larvae infection in honey bees 487

PBS + Vehicle
LX3 + Vehicle
PBS + Infection
LX3 + Infection

(RNl

>
@

Relative expression

ns ns

ns

A ) PR C R v ol
o° o e(\oo""° A GY\'\V“\(\ N"sm \l\P?\ o
Y
\,\\J(“ pe!

o°

Fig. 6 LX3 increases immune-related gene expression during P. larvae
infection. First-instar honey bee larvae were orally supplemented with
LX3 (Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1,
and Lactobacillus kunkeei BR-1) or vehicle for 24 h, followed by
inoculation with 10* spores of P. larvae. Expression of immune-
related and cellular-response genes were quantified via RT-qPCR at
72 h post-infection. All statistical comparisons are relative to the non-
infected PBS control group and calculated with raw AACt values.
Mean + standard deviation (one-way ANOVA with Holm-Sidak’s
multiple comparisons) of six larvae per treatment group with technical
duplicate repeats are shown. ns=not significant, *P <0.05, **P<
0.01, and ***P <0.001

survival and hive resilience against P. larvae—the spore-
forming bacterium responsible for AFB. Notably, endpoint
measurements following the 12-day field trial in which the
AFB outbreak inadvertently occurred showed pathogen
load and activity to be significantly lower in honey bee
larvae treated with the BioPatty, compared to vehicle con-
trols receiving only the base pollen patty ingredients
(Fig. 1b—d). These findings were further validated in vitro
by performing infection survival assays on laboratory-
reared honey bees. Under these controlled conditions,
prophylactic supplementation of LX3 (containing Lp39,
LGR-1, and LkBR-1 strains of lactobacilli present in the
BioPatty) significantly reduced pathogen load and markers
of disease, increased survival, and upregulated gene
expression of key antimicrobial peptides involved in host
defenses against P. larvae (Figs. 4b, c, 5). These results
expand on previous work demonstrating Lp39-mediated
priming of innate immunity in D. melanogaster [19] and
corroborate the findings that L. kunkeei [49] and other lactic
acid bacteria [37, 47] can inhibit P. larvae. Our findings are
contrary to a recent report that lactic acid bacteria have no
effect on P. larvae at the colony level [50]. Though, the
discrepancies might be explained by the fact that Stephan
et al. [50] administered their supplemental bacteria using a
15% sucrose solution vehicle—likely resulting in a stark
reduction of bacterial cell viability given this medium is
known to induce severe osmotic stress in lactic acid bacteria
[51]. This may also explain why the supplemented bacteria
failed to demonstrate any biological activity against P.
larvae in Stephan et al. [50] and suggests that delivery of
viable bacteria to the hive is of key importance.

A significant increase was found in proteolytic activity of
homogenized larvae (common marker for pathogen activity
and in-field detection of AFB) from vehicle pollen patty-
supplemented hives compared to NTC hives (Fig. 1c)—
despite no differences in pathogen load (Fig. 1b). These
results, alongside a significant increase in Alphaproteo-
bacteria, Betaproteobacteria, and Gammaproteobacteria in
honey bee larvae (Fig. 1d), raise the question of whether
pollen patty supplementation per se might stimulate the
growth of unwanted organisms. Eliminating the possibility
of these bacteria being saprophytic secondary invaders
following P. larvae infection, no changes were observed in
the abundance of these bacteria between infected and non-
infected honey bee larvae reared in vitro (Fig. 5d). These
results should be cautiously interpreted as in vitro rearing of
honey bee larvae cannot perfectly emulate the highly
complex microbial dynamics, nor the organized social
feeding behaviours that are present in a hive. However,
proteobacterial “blooming” in humans and mice is con-
sidered a signature of dysbiosis attributable to excess diet-
ary protein, an unstable microbial community structure,
and/or dysregulated immunity [52]. Thus, increased growth
of proteobacteria resulting from excess protein in the
vehicle pollen patties could explain these discordant results
given these bacteria have more than a ten-fold enrichment in
proteolytic enzymes compared to other phyla commonly
associated with animals [53].

There is limited evidence to support a causal linkage
between usage of pollen patties and incidence of AFB
outbreak; however, recent reports have demonstrated that
commercial pollen substitutes can significantly increase
Nosema spp. (microsporidian parasites) abundances [54],
and that protein-supplemented hives have higher titres of
Black Queen Cell Virus and greater queen losses compared
to natural forage-supplemented hives [55]. Here, we
demonstrate that nurse bees (young adult workers in close
association with brood and good estimators of overall hive
microbial diversity) exhibited a distinctive shift in their gut
microbiota during the AFB outbreak irrespective of treat-
ment group (Fig. 2¢). While a reduction in the abundance of
core phylotype members Alphaproteobacteria, Betaproteo-
bacteria, and Gammaproteobacteria was observed in NTC
and vehicle-supplemented groups, an increase in Actino-
bacteria and Firmicutes was found in the BioPatty-
supplemented group (Fig. 3b). Despite these differential
shifts in  microbiota composition, only vehicle-
supplemented nurse bees experienced significantly higher
levels of P. larvae on day 12 (Fig. 2b). Together with the
findings of similar P. larvae loads in NTC and vehicle-
supplemented honey bee larvae (Fig. 1b), these results
suggest that standard pollen patties are likely not the pri-
mary initiators of disease but may increase overall hive
burden through exacerbating P. larvae growth in
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asymptomatic carriers. Importantly, no detectable changes
in pathogen burden were observed in adult nurse bees from
the BioPatty-supplemented group, and larval samples from
this group had significantly lower levels of P. larvae on day
12—further substantiating the benefits of infusing pollen
patties with lactic acid bacteria [26, 56-58].

In corroboration with compositional data (Figs. 2c and
3a), absolute abundance of E. coli in adult nurse bees from
NTC and vehicle-supplemented groups was significantly
increased (Fig. 3c), suggesting a partial substitution of core
microbiota members with opportunistic pathogens during
the AFB outbreak. Supporting these observations further,
it’s been shown that core microbiota members, such as
Snodgrassella alvi (Betaproteobacteria), help to suppress
the growth of E. coli in honey bees [59]. Interestingly, the
protein-catabolizing enzyme xanthine dehydrogenase
secreted by Escherichia spp. [60] can facilitate oxidative
metabolism of purines to uric acid—a known requirement
for P. larvae germination [61]. Future studies will be
required, however, to determine whether AFB outbreaks
arise through a microbiota-driven process similar to other
bee diseases [59, 62-64] or if the infection itself is the root
cause of microbiota alterations.

The factors affecting honey bee gut dysbiosis remain
largely unknown [65], though innate immune response [66]
and environmental landscape [67] are thought to be primary
influencers. Thus, the ability of Lactobacillus spp. to
modulate honey bee immunity could explain some of the
differential microbiota changes and lower E. coli loads
observed in adult nurse bees from BioPatty-supplemented
hives (Fig. 3c). Moreover, Lactobacillus spp. are largely
enriched in uric acid catabolism enzymes including uricase
(EC 1.7.3.3), allantoinase (EC 3.5.2.5), and allantoicase
(EC 3.5.3.4) [68]. Here, we demonstrated Lp39 (uniquely
possessing tyrosine decarboxylase (EC 4.1.1.25); an
enzyme capable of breaking down tyrosine—another
essential germinant of P. larvae) was able to induce cyto-
toxic effects against P. larvae cells through an unchar-
acterized mechanism (Fig. 4d). Furthermore, prophylactic
supplementation of LX3 significantly improved survival
and decreased P. larvae loads in experimentally infected
laboratory-reared honey bee larvae (Fig. 5b, c). These
in vitro findings support observations from our hive
experiments and suggest that the lactobacilli strains tested in
this study could offer a distinct advantage over antibiotics,
such as oxytetracycline, through both directly inhibiting
germination and actively reducing cell viability of P. larvae.

Another way in which honey bees rely on beneficial
bacteria for protection against infectious disease is through
immune modulation. Infected honey bee larvae that were
prophylactically supplemented with LX3 demonstrated
significant upregulation in Def-1 and Pcbd (Fig. 6)—which
encode an antimicrobial peptide and peritrophic matrix-
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related protein important to resisting P. larvae infection,
respectively [6, 69]. Furthermore, LX3 supplementation
alone strongly upregulated Def-1 (an isoform of honey bee
Defensin primarily involved in social immunity) indepen-
dent of infection with P. larvae but had no effect on Def-2
(an isoform responsible individual immunity) expression
under any of the conditions tested [70]. As in previous
studies [38, 69], infection with P. larvae failed to elicit an
observable change in the gene expression of other major
honey bee antimicrobial peptides (Fig. 6). Together, these
results suggest hive administration of lactobacilli may
support broad-spectrum protection towards infectious dis-
ease through priming the innate immune system. As an
aside, Ppo expression showed a trend towards down-
regulation in P. larvae-infected groups during the in vitro
larval infection assays. Ppo is believed to be a suitable
biomarker for hemocyte abundance based on the findings
that its expression is directly correlated with hemocyte
counts during parasitism by Varroa destructor—a deleter-
ious mite parasite that reduces hemocyte concentrations by
feeding on the fat body of honey bees [71, 72]. The pos-
sibility of a synergistic interaction between P. larvae and V.
destructor on immunity supports the growing theory that
multi-faceted pest and pathogen networks are at the centre
of global bee decline [73].

From an ecological perspective, controlling the spread of
enzootic pathogens in managed bees is critical to main-
taining wild pollinators as well, which are suspected to be
declining in concert as a result of interspecies pathogen
transmission within the pollinator assemblage [74].
Addressing this issue without routine usage of antibiotics,
which pollute the environment and lead to accumulation of
antibiotic-resistance genes [25], will be paramount in the
ongoing fight to save pollinators.

In summary, although this was only a single field trial
study, the serendipitous nature in which AFB occurred
facilitated the identification of several unique factors that
may help better understand the aetiology of P. larvae—
particularly aspects influencing its highly elusive germina-
tion cycle in the hive. Observations from the field trial were
well supported by laboratory-controlled experiments, which
further demonstrated that the triple-strain lactobacilli con-
sortium could: (i) improve honey bee survival towards P.
larvae infection, (ii) directly inhibit P. larvae cells in vitro,
and (iii) beneficially modulate innate immunity and other
host-response  genes during experimental infection.
Although the lactobacilli tested in this study were shown to
be beneficial under infectious conditions, further studies
will be needed to determine their long-term impacts on
healthy honey bee hives.
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