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Abstract

Many surrogate-based motion models (SMMs), proposed to guide motion management in 

radiotherapy, are constructed by correlating motion of an external surrogate and internal anatomy 

during CT-simulation. Changes in this correlation define model break down. We validate a 

methodology that incorporates fluoroscopic images (FL) acquired during treatment for SMM 

construction and update. Under a prospective IRB, 4DCT scans, VisionRT surfaces, and 

orthogonal FLs were collected from five lung cancer patients. VisionRT surfaces and two FL 

time-series were acquired pre- and post-treatment. A simulated annealing optimization scheme 

was used to estimate optimal lung deformations by maximizing the mutual information between 

digitally reconstructed radiographs (DRRs) of the SMM-estimated 3D images and FLs. Our 

SMM used partial-least-regression and was trained using the optimal deformations and VisionRT 

surfaces from the first breathing-cycle. SMM performance was evaluated using the mutual 

information score between reference FLs and the corresponding SMM or phase-assigned 4DCT 

DRRs. The Hausdorff distance for contoured landmarks was used to evaluate target position 

estimation error. For four out of five patients, two principal components approximated lung surface 

deformations with submillimeter accuracy. Analysis of the mutual information score between 

more than 4,000 pairs of FL and DRR demonstrated that our model led to more similarity between 

the FL and DRR images compared to 4DCT and DRR images from a model based on an a priori 

correlation model. Our SMM consistently displayed lower mean and 95th percentile Hausdorff 

distances. For one patient, 95th percentile Hausdorff distance was reduced by 11mm. Patient-

averaged reductions in mean and 95th percentile Hausdorff distances were 3.6mm and 7mm for 

right-lung, and 3.1mm and 4mm for left-lung targets. FL data were used to evaluate model 

performance and investigate the feasibility of model update. Despite variability in breathing, use 

of post-treatment FL preserved model fidelity and consistently outperformed 4DCT for position 

estimation.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided 
that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0
*These authors have contributed equally.

HHS Public Access
Author manuscript
Phys Med Biol. Author manuscript; available in PMC 2021 February 26.

Published in final edited form as:
Phys Med Biol. ; 66(4): 045035. doi:10.1088/1361-6560/abcbcf.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/3.0/


Introduction

Thoracoabdominal tumors are different from other tumors because they move and deform 

as the patient breaths. Tumor motion management strategies play an important role in the 

planning and delivery steps of modern thoracoabdominal radiation therapy (RT). Since 

direct monitoring of internal motion and deformation is not possible on the majority of 

today’s linear accelerators (LINACs), alternative methods for long-term monitoring are 

required to estimate the internal anatomy during treatment delivery. To date, significant 

efforts have been made to construct models that use an easily accessible external surrogate to 

estimate internal lung and tumor motion.(McClelland, Hawkes et al. 2013) These surrogates 

serve to provide signals of high temporal resolution that when combined with acquired 

images, are used to develop time-dependent surrogate-based motion models (SMMs). 

Generation of such surrogate-based motion models (SMMs) requires estimating of internal 

lung motion from 4D imaging protocols, along with its a priori observed correlation with 

respect to the simultaneously acquired external surrogate.(Low, Parikh et al. 2005, Zhang, 

Pevsner et al. 2007, Zhang, Xu et al. 2008, Li, Lewis et al. 2011, Hinkle, Szegedi et al. 2012, 

Steiner, Shieh et al. 2019) For each observation of the surrogate, utilization of the model 

permits the generation of a new volumetric estimate of the internal anatomy. However, 

because of the large variability in human respiration, as well as the limited duration 

and availability of 4D imaging data over the course of RT, the training dataset used by 

these models is severely limited in terms of capturing cycle-to-cycle variations. Therefore, 

SMMs may resort to extrapolation beyond their training data when deviations from the 

training datasets are encountered. Expanding the model training dataset reduces this need 

for extrapolation which could potentially lead to improvements in model performance in the 

presence of cycle-to-cycle variations. For example, by using 25–30 fast helical CT scans 

acquired over a 2-minute duration (the 5D model), the image quality and temporal resolution 

of the training dataset can be improved. (Liu, Zhang et al. 2015) However, changes in the 

correlation between internal and external motion can compromise SMM performance. For 

example, prior studies in CyberKnife patients showed that tumor position prediction error 

significantly increased over 10-minute blocks (~1.6mm up to 5mm), indicating changes 

between tumor and respiratory surrogate displacement, which suggests the need for model 

update. (Pepin, Wu et al. 2011) As a result, commonly encountered variations in the a priori 
correlation can compromise model accuracy and limit clinical applicability. Consequently, 

the clinical use and implementation of such models require the ability to update the a priori 

model correlation. In addition, the model must be validated relevant to the in-situ setting 

that accounts for commonly encountered intra- and inter-fractional changes in the breathing 

pattern.

Current SMMs can be classified as imaging-based, biomechanical-based, or a hybrid of the 

two, depending on the approach used to estimate internal anatomical motion. Imaging-based 

models utilize the a priori observed correlation between the measured surrogate and the 

internal motion estimated using deformable image registration techniques.(Zeng, Fessler et 

al. 2007, McClelland, Hughes et al. 2010, Hinkle, Szegedi et al. 2012, McClelland, Hawkes 

et al. 2013, Ranjbar, Sabouri et al. 2018, Ranjbar, Sabouri et al. 2019, Steiner, Shieh et 

al. 2019) The multidimensional nature of motion in the thoracoabdominal region results 
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from the presence and interaction of several conditions including the complex nature of the 

airflow dynamics, engagement of several muscles with various levels of involvement, the 

presence of lung-chest wall sliding motion, and the existence of cardiac and esophageal 

motions such as swallowing. These conditions can limit model performance by interfering 

with the ability to compute accurate deformation vector fields (DVFs) or by creating motion 

that is absent in the external surrogate and not correlated to respiration. To overcome these 

difficulties, several intensity-based deformable image registration methods utilize multiple 

masks to separate anatomical regions, and adopt modifications such as penalty functions on 

voxel displacements, or regularization of sliding motion during optimization steps.(Rietzel, 

Pan et al. 2005, McClelland, Blackall et al. 2006, Al-Mayah, Moseley et al. 2007, Wu, 

Rietzel et al. 2008, Kyriakou and McKenzie 2011, Vandemeulebroucke, Rit et al. 2011) 

These methods can produce accurate DVFs in regions with high image gradient such as 

the lung boundaries. However, accurate DVF estimation inside the lung is challenging 

because of the inherent lack of intensity variations. Use of different deformable registration 

algorithms can potentially lead to substantially different DVFs for the lung interior. For 

example, Fatyga et al. compared algorithms selected to represent three classes of deformable 

image registration algorithms. While all three algorithms accurately estimated lung total 

volume and lung interface deformations, voxel-by-voxel subtraction of deformable image 

registration maps of the lung interior resulted in errors of more than one centimeter. (Fatyga, 

Dogan et al. 2015) Another multi-institutional evaluation of eight DIR algorithms using 

images from a deformable lung phantom reported maximum errors ranging between 5.1 and 

15.4 mm, with greatest discrepancies observed inside the lung at areas of uniform image 

intensity with motion discontinuity. (Kashani, Hub et al. 2008) This study also highlighted 

the sensitivity of registration accuracy to the implemented technique, parameter setting and 

user differences. Aside from the noted image registration difficulties, another limitation of 

imaging-based models is that they rely on the a priori observed external-internal correlation 

without any consideration for physiological and mechanical principles. Because of the 

complex motion of the lung, and variations in the correlation between external surrogate 

and internal motion, these models can exhibit lower predictive power inside the lung. 

(McClelland, Hawkes et al. 2013, Han, Hawkes et al. 2014, Han, Dong et al. 2017)

Biomechanical-based models use numerical methods such as finite element analysis (FEA) 

to estimate respiration-induced deformations. These models take advantage of underlying 

physiological principles by considering tissue properties, lung topology, and lung surface 

boundary geometry to offer a realistic and robust mechanism for estimating the internal 

motion of the lung. (Brock, Dawson et al. 2006, Al-Mayah, Moseley et al. 2007, Werner, 

Ehrhardt et al. 2009, Tehrani, Yang et al. 2015, Cazoulat, Owen et al. 2016, Seyfi, 

Santhanam et al. 2016) Accurate lung surface boundary geometry conditions capture 

the expansion and contraction of the lung-surface during respiration to form a critical 

component of biomechanical-based SMMs. Assumptions regarding the material properties, 

and more importantly, simplifying the forces involved in the breathing, pose limitations 

in realistic modeling of the lung motion during respiration. Some of the limitations of 

imaging- and biomechanical-based models can be mitigated by using hybrid techniques, that 

combine the two. These techniques obtain the lung surface boundary geometry conditions 

from registration of 4D imaging data, and estimate internal motion of interest by FEA using 
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the optimized tissue material properties. Applicability of hybrid models for real-time motion 

management or post-treatment motion analysis is restricted by the lack of accurate lung 

surface boundary geometry and material properties. To date, the majority of these models 

have been restricted to variations in the “average” breathing cycle derived from 4D imaging 

data but have not been attempted for capturing intra- and inter-cycle variations that are 

commonly encountered in thoracic tumors.

In a previous study, we described an imaging-based SMM constructed using the 4DCT 

simulation data, and evaluated model performance using fluoroscopic (FL) scans of a 

single patient that were spread out over three RT fractions.(Ranjbar, Sabouri et al. 2019) 

Our results highlighted the ever-changing nature of the internal-external correlation and 

emphasized the breakdown of the a priori correlation with the external surrogate. These 

changes can stem from the relative nature of the surrogate (a limitation of currently available 

surrogates), or change in physiologic conditions. Several earlier studies have noted that 

the correlation between the external surrogate and internal motion is susceptible to change.

(Vedam, Kini et al. 2003, Mageras, Pevsner et al. 2004, Fayad, Pan et al. 2011, Ehrhardt 

and Lorenz 2013) In this work, we present and validate a methodology that uses the 

thoracoabdominal surfaces as surrogate to generate new estimates of lung surface geometry 

that could potentially be used for numerical modeling of lung motion. Our methodology 

departs from the above noted literature, including our previous work, because it is not 

based on the a priori surrogate-internal correlation observed at the time of the initial CT 

simulation. Our current model uses the simulation data only to derive a mathematical 

representation of possible lung surface deformations and is constructed using the correlation 

observed during treatment delivery session, as constructed from FL imaging. Post-treatment 

FL data was used to evaluate the feasibility of exploiting additional FL imaging for model 

update. We present a qualitative and quantitative validation of our methodology and report 

our model accuracy under an in-situ setting during RT delivery sessions.

Methods

We propose an SMM that generates new estimates for lung surface boundary geometry 

by monitoring the thoracoabdominal surface via photogrammetry. The methodology for 

our proposed SMM is outlined in Figure 1 and is demonstrated using data collected from 

five lung cancer stereotactic body radiotherapy (SBRT) patients. The data processing and 

analysis consisted of three main procedures: (i) generation of the lung boundary surface 

deformations observed in 4DCT images, (ii) derivation of the relationship between a FL 

image and the lung surface deformation that resulted in that FL image, and (iii) generation 

of a model that related the external thoracoabdominal surface with the corresponding lung 

surface deformations. Subsequently, we validated our model by comparing the estimated 

motion of anatomical landmarks with their motion observed in FL projections that were used 

as “reference”. The details associated with each procedure are described in the following 

sections.
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Patient Data Collection

Data from five lung cancer stereotactic body radiation therapy (SBRT) patients (four males, 

one female with average age of 75) was acquired under IRB approval. These data consisted 

of 4DCT images, FL projections, and simultaneous photogrammetry surfaces obtained at the 

time of initial patient simulation and treatment sessions.

In our model construction, we used 10 phase-binned 4DCT images acquired on a Philips 

16-slice Brilliance Big Bore scanner. The 4DCT scan lasted about 80 seconds and contained 

between 100–120 3-mm thick axial slices reconstructed on a 512×512 matrix, with pixel 

sizes ranging between 0.8 to 1.1 mm. The field of view was selected to capture the lung 

interface in all phases of the 4DCT. Concurrent with the 4DCT, VisionRT (VRT) surface 

data was acquired at ~15 Hz using a prototype, portable, couch mounted, VRT system. The 

prototype VRT unit consists of a speckle pattern projector and two cameras that are mounted 

on a portable frame. Figure 2-A shows the patient setup prior to the 4DCT and VRT surface 

data acquisition.

Prior to patient placement on the couch, the VRT system underwent standard calibration 

procedures. Following patient setup, the VRT system was placed over the patient’s thighs, at 

approximately 80 cm from the xiphoid process. Further adjustments of the speckle pattern 

were performed according to the room lighting conditions, patient skin tone, and surface 

distance with respect to the camera.

FL projections and VRT surfaces were also acquired during treatment sessions and used for 

model construction, update, and validation. For each session, the collected data consisted 

of two sets of ~30 to 50 seconds-long FL projections with concurrently acquired VRT 

surfaces. After patient setup with cone beam-CT (CBCT), FL projections were acquired 

using the on-board kV imager (OBI) of the TrueBeam LINAC at the rate of 7 fps. For each 

scan, kVp was selected based on the patient’s size with a source potential of 100–120kVp 

used for lateral projections (source at 270°) and a source potential of 80–100 kVp used for 

posterior-anterior (PA) projections (source at 180°). The FL and VRT data were acquired 

immediately prior to the start of the first treatment beam (start), and immediately following 

the last treatment beam (end). “Blade tracking”, an option on the machine to reduce imaging 

dose, was used to collimate the kV source in congruence with the kV imager. The kV imager 

position was selected to best enable visualization of diaphragm motion. Table 1 reports the 

total number of continuous FL images and their duration used in this work.

Generation of Lung Surface Mesh and Deformable Image Registration

4DCT scans were imported into the RayStation (RS) Treatment Planning System (TPS, 

RaySearch Laboratories, Sweden), and the lung volume was manually contoured in all 

ten phases of the 4DCT. For image registration, the anatomically constrained deformation 

algorithm (ANACONDA) available in RS was used to deform the EE image (reference 

phase) into the remaining nine phases. (Weistrand and Svensson 2015, Kadoya, Nakajima 

et al. 2016) The deformations of the EE lung surface to other 4DCT phases were stored 

as lung surface-DVFs (SDVFs). The contoured lung surface was exported as a mesh of 

triangular elements containing nodes and connectivity (faces). Additionally, lung SDVFs, 
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the deformed EE lung mesh, and manual contours of the lung for each phase, body and the 

vertebral bodies mesh were stored for subsequent analysis. For numerical accuracy, a fine 

mesh representation of the lung surfaces was used. Total number of vertices in the EE lung 

surface mesh, and the EI and EE lung volumes are reported in Table 1. The mesh extraction 

process and examples of the acquired meshes are shown in the top row of Figure 3.

SDVF Dimensionality Reduction

Lung SDVFs for the N vertices belonging to the EE lung mesh (Table 1) were stored in a 

motion matrix S = Sj ∈ ℝ9 × (3 × N) with j denoting the rows of the motion matrix. Each 

row consisted of a lung SDVF from EE to the other 4DCT phases. Matrix S has 3 × N 
columns which describe the 3D motion of each node. Since a fine triangular mesh was used 

to represent the lung surface, the motion matrix, S, contained approximately 360,000 entries. 

Principal component (PC) decomposition was used as a dimensionality reduction technique 

and each row of S was represented as a weighted sum of the mean deformation Smean and 

the first n PC vectors, such that (Candès, Li et al. 2011, Hauberg, Feragen et al. 2014):

S50% j
n = Smean  + ∑i = 1

n α50% j
i Ui    for j

∈ 0%, 10%, …, 40%, 60%, …, 90%
(1)

where 0% and 50% denote the EI and EE phases respectively, Ui is the ith PC vector, the 

scalar α50% j
i  represents the ith PC coefficient, and S50% j

n  is the approximated jth row of 

S when the first n PCs were used in the summation.

The PC vectors Ui form an orthonormal set that represents the data stored in the motion 

matrix S. For each vector Ui, the set of vertices with non-zero entries correspond to regions 

whose motion is correlated along the direction Ui. Because of the orthonormal condition 

of the PC vectors, the magnitude of the coefficients α50% j
i  depends on the number of 

non-zero entries in Ui which in turn depends on the discretization of the lung surface. A 

larger magnitude α50% j
i  is required to describe motion in densely populated vectors Ui 

such as the 1st or 2nd components. To avoid scaling artefacts in model generation, these 

coefficients were normalized to have zero mean and unit variance (calculated with respect to 

the 4DCT data-set) prior to their use.

Equation (1) provided a mechanism for reducing the dimensions of the dependent variables 

(lung SDVF) from three-times the number of mesh nodes to the n PC coefficients scalars 

αj. For reasons explained in the results section, the first two PC coefficients (i = 1,2) were 

stored in the coefficient matrix Y = αj
1, αj

2  and used for the subsequent analysis.

The 99th percentile absolute SDVF error (in mm) was used to examine the convergence 

rate of the PC approximation given by equation (1). The SDVF absolute error for the 

deformation from EE to phase j using the first n components was computed as:

ϵj
n = S50% j

n − Sj (2)
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where | | represents the Euclidean distance.

Reconstruction and Dimensionality Reduction of VRT Surfaces

Surface Reconstruction and Feature Extraction—The portable couch mounted VRT 

camera (AlignRT Inc, UK), shown in Figure 2, captured the thoracoabdominal surface at 

~15 Hz during the initial CT simulation and RT delivery sessions. The benefit of using this 

system was that the same field of view was always maintained despite motion of the couch 

(e.g. during the CT-simulation). However, in comparison to clinical VRT systems, which 

typically have 2–3 units mounted on the ceiling, the single unit couch mounted system sat 

at a lower height over the patient’s body and was more susceptible to geometric distortions. 

Examples of missing patches resulting from geometric and lighting distortions are shown in 

the VRT surface presented in Figure 4-A. To recover the missing data, we used the Poisson 

surface reconstruction algorithm to generate a water-tight surface on a 0.5×0.5 mm2 grid 

(Figure 4-B). Previous phantom studies performed by our group have found this technique to 

have a 1 mm accuracy for tracking targets on the surface. (Ranjbar, Sabouri et al. 2019)

A region of interest (ROI) with a dimension of ~28×13 cm2 that covered parts of thorax 

and abdomen was extracted from the VRT surfaces and used in all subsequent analysis. This 

region was selected to yield a signal-to-noise ratio (calculated using a cut-off frequency of 

1/30 bpm) greater than 5% (100:5). Based on previous phantom studies by our group, this 

region typically lies about 2 cm interior of the point-cloud boundary. (Malinowski, McAvoy 

et al. 2012, Ranjbar, Sabouri et al. 2019)To further isolate and suppress the noise, compress 

the data, and interpolate the surface data into the FL time domain, we took advantage of 

isometric feature mapping (Isomap) as a dimensionality reduction technique.(Tenenbaum, 

De Silva et al. 2000) Using Isomap, three VRT surface features and the velocity of the first 

feature β (t) = β1(t), β2(t), β3(t), β̇1(t)  were extracted and used as model input. Figure 4-D 

presents the variations of the first surface feature β1(t) with the second and third features 

β2(t) and β3(t). The elongated elliptical path traced by the first surface feature and its 

derivative, β̇1(t), is shown in Figure 4-E.

Synchronizing Surface and Fluoroscopic Measurements—To temporally 

synchronize the captured VRT surfaces and FL projections, we used intensity-based 

segmentation to approximate the motion of a patch on the diaphragm in the SI direction. 

Following data standardization, the motion of this patch was synchronized with the mean 

VRT ROI AP displacement. A camera frequency of 14.7 Hz with FL frequency of 7 Hz led 

to the best overlap between the two signals. This camera frequency was previously derived 

from phantom measurements.(Ranjbar, Sabouri et al. 2019) Two examples of the overlap 

for Patient 1 and 5 are shown in Figure 4-E and 4-F. For all patients, internal diaphragm 

patch motion, and external VRT signals overlapped well. Some differences between the 

two signals were particularly visible at the EI. Simulation and treatment setup for Patient 5 

included an abdominal compression belt and larger deviations between the two signals were 

observed at the EE. By synchronizing the data temporally, we were able to associate each FL 

image with its corresponding surface features.
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Model Construction and Validation

Associating Fluoroscopic Images with Lung SDVFs—We used FL images to derive 

a correspondence model between the external surrogate (VRT surfaces), and lung SDVF PC 

coefficients α . To do this, we assumed that the optimal PC coefficients, α opt = α1
opt, α2

opt , 

results in a deformed lung surface whose projection, computed as a digitally reconstructed 

radiograph, most closely matches the corresponding FL frame. For each estimate of α , the 

corresponding EE lung surface was deformed using the SDVF approximated by equation 

(1). This deformed mesh was subsequently rasterized into a volumetric image with a 1 mm3 

resolution and assigned a density of 0.25 g/cm3.(Pantaleoni 2011) In addition, the EE body 

and the vertebrae contours were rasterized onto the same image and assigned densities of 1.0 

and 1.4 g/cm3. Subsequently, a raytracing algorithm was used to reconstruct a radiographic 

projection of this volumetric image.(van Aarle, Palenstijn et al. 2015) Using the image 

mutual information score as the objective function, a simulated annealing optimization 

routine was used to arrive at the α opt that maximized the mutual information between the 

deformed lung radiograph, and the FL frame.(Xiang, Gubian et al. 2013) A search grid 

spanning four times the α1and α2 magnitude that was observed at the time of the 4DCT 

was used to search for the optimal PC coefficients. Convergence was typically rapid and was 

reached within 100 iterations.

Correspondence Model between Surface Features and Lung SDVF Components

We used the extracted surface features, and optimized PC coefficients α opt(t) belonging to 

FL images in the first complete respiratory cycle (training set) to train a partial least square 

regression (PLSR) correspondence model. PLSR is a multivariate technique that has been 

applied in situations where few observations are available, and in a variety of fields such 

as medicinal chemistry, process control, and tumor classification to arrive at the relation 

between predictor and predicted variables. (Cramer, Patterson et al. 1988)

Using PLSR, the training data-set Y = α n(t) , and the corresponding surface feature 

components matrix, X = β n(t)  were approximated as (Abdi and Williams 2013):

X TPT (4)

Y TBCT (5)

where T is an orthonormal matrix referred to as the score matrix, P is the loading matrix 

with orthogonal columns, C is a weight matrix of dependent variables, and B is a diagonal 

matrix of regression weights. Utilizing the orthonormal property of the score matrix T, and 

equations (4) and (5), the relation matrix BPLS = (PT)−1BCT was used to generate new 

estimates of the lung SDVF PC coefficient vector y (t) = α (t) for each new observation of 

surface features x = β (t).
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Model Validation and Performance

We manually tracked visible anatomical landmarks in FL images (assumed reference) and 

compared their positions with those visible in reconstructed radiographs of 3D lung surfaces 

generated by: 1) the model presented in this work, and 2) the corresponding 4DCT phase. 

For each FL frame in the validation data-set, its temporally corresponding surface features 

were input to the model and a new deformed lung mesh was estimated. Subsequently, the 

deformed lung mesh was rasterized and converted into a volumetric image, and a model 

estimated radiograph was reconstructed. Lung interface landmarks visible in each of these 

projections were contoured using the 3D-Slicer Software and their overlap was quantified 

using the 99th percentile Hausdorff distance metric (in mm).(Fedorov, Beichel et al. 2012, 

Taha and Hanbury 2015) This process was performed for the pair of FL time series that were 

acquired during one of the patient’s treatment delivery session.

Qualitative model performance was evaluated by comparing the image mutual-information 

scores between the reference FL image and digitally reconstructed radiographs generated 

from three possible methods to estimate lung surface motion: 1) the model presented in this 

work, 2) the corresponding 4DCT phase, and 3) the 4DCT+VRT model that was proposed in 

our previous work. (Ranjbar, Sabouri et al. 2019) This analysis was performed for the pairs 

of FL time-series acquired over nine treatment delivery sessions of five lung SBRT patients 

(see Table 1).

Results

Lung Surface Deformation Vector Fields

Figure 5-A presents the motion map for the two lung SDVF PCs derived from 4DCT of 

Patient 1. The motion map highlights the relative motion of the lung surface and identifies 

regions that move together. Black regions correspond to locations on the lung surface where 

the PC vector, Ui, value was zero. Bright regions correspond to areas on the lung surface 

with non-zero entries signifying greater motion (white represents the maximum normalized 

motion). The third component had non-zero entries in only a few localized regions on 

the lung periphery and the pericardial sac. Analysis of the motion map for all patients 

showed that the region of motion becomes more localized and lower in magnitude for higher 

components.

Variation of the first PC coefficient with different 4DCT breathing phases is shown in Figure 

5-B. While the sign of the coefficients depends on the specific direction for which vectors 

Ui in equation (1) were defined, the general pattern observed in most patients was that PC1 

reached its extrema at the EE and returned near its EI value at 90% phase. Presence of 

binning artifacts that were present in Patient 3 violated this pattern (Patient 3). Figure 5-C 

presents the nearly identical circular pattern that was observed in all patients and depicts the 

variation between PC1 and PC2 representative of the average breathing cycle.

Convergence of the 99th percentile absolute SDVF error (in mm) with the increasing number 

of PCs used in equation (1) is shown in Figure 5-D. For four out of five patients, the absolute 

error converged to submillimeter accuracy after two components and plateaued thereafter 

with a slow convergence to zero. Convergence for Patient 3 was slower and plateaued after 
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four PCs. Analysis of this patient’s 4DCT showed presence of binning artifacts particularly 

in the intermediate phases. As seen in Figure 5-E, intermediate phases such as 40%, and 

60% also exhibited slow convergence.

Associating Fluoroscopic Images with Lung SDVFs

An example of the optimal lung with respect to a reference FL frame is shown in Figures 

5-A and B respectively. The mutual information score as function of the PC coefficients, and 

the optimal values of those coefficients are shown in 5C. The mutual information score had a 

higher sensitivity with respect to α1 than α2. Figure 5D shows in this example (Patient1) the 

effects of those coefficients: α1 affected the posterior portion of the diaphragm interface and 

α2 affected the anterior portion of the diaphragm interface.

The deformations associated with the coefficients at the periphery of the search grid 

resulted in non-physical lung surfaces and distorted digitally reconstructed radiographs. 

These digitally reconstructed radiographs had a low mutual information score suggesting 

that the search grid was bounded.

Correspondence Model between Surface Features and Lung SDVF Components α

Figures 7-A and B present a comparison of the first PC coefficient α1(t) estimated by the 

model with and without update, 4DCT and our previous 4DCT+VRT model for the pre- 

and post-treatment fluoroscopic acquisitions. Data used for model training is shown in the 

shaded region. During the pre-treatment FL acquisition, 4DCT and 4DCT+VRT models 

estimated a cycle amplitude that was approximately twice the model estimated values, 

with the largest differences consistently observed at the peaks and valleys in the graph (EI 

and EE phases). Large differences between each method are also observed for the second 

PC coefficient α2(t) shown in Figure 7-C and D. Pre-treatment and post-treatment models 

also estimated different α1 and α2 values (green and black curves in Figure 7-B and D) 

suggesting a change in model coefficient.

A comparison of the model and 4DCT digitally reconstructed radiographs with the pre-

treatment FL frame at t=13s is shown in Figure 7-C. The differences between the 4DCT 

radiograph and the reference FL image (2nd column) highlight some of the difficulties 

associated with using 4DCT when cycle-to-cycle breathing variations are encountered. 

Differences in diaphragm position at EE suggest a shift in the base line, with shallower 

exhales observed in comparison to the time of simulation, which the model correctly 

accounted for.

Model Validation

Figure 8 A–E presents box plot distributions of the mutual information calculated between 

reference FL images collected from nine pairs of pre- and post-treatment acquisitions (start 

and end), and the digitally reconstructed radiographs calculated from the current model 

(with and without updates), 4DCT lung surfaces (in red), and our previous 4DCT+ VRT 

model (in yellow). The reported model mutual information scores (in green) were calculated 

using the model trained with the pre-treatment FL (without update). Mutual information 

scores for the model updated with the post-treatment data are shown for the post-treatment 
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FLs (in black). In all instances, use of the model led to higher minimum and median mutual 

information scores, and smaller standard deviations (p<0.001). As observed from Figure 

8-A, B, C, and E, for several acquisitions there were notable improvements compared to 

4DCT or 4DCT+VRT. The higher mutual information scores imply better match between 

model digitally reconstructed radiographs and FL over 4DCT and suggest that digitally 

reconstructed radiographs generated from the model-estimated lung surfaces are a closer 

match to the reference FL over 4DCT. The smaller standard deviations imply a better 

consistency of these improvements. Some instances such as FX1-end for patient 1 (Figure 

8-A) required model updates to preserve model fidelity. The pre-treatment model under 

performed in comparison to 4DCT while model fidelity was preserved in all cases when 

model was updated. In some cases, such as FX2 in panel B, and FX1-end in panel E, use of 

the 4DCT+VRT model led to degraded performance over 4DCT.

Model and 4DCT Hausdorff distance box plot distributions for five patients (P1–5) are 

shown in Figure 9 A1–A5. The second column of the figure displays the contoured 

landmarks (T) in each image set. For all patients and contoured landmarks, with the 

exception of P2-T4, model had smaller mean and 95th percentile errors (ϵmean and ϵ95). 

4DCT and model errors for P2-T4 target were within 1 mm. For several landmarks, 

improvements in model mean error and 95th percentile errors surpassed 3 mm, which is the 

lung SBRT planned-target-volume expansion margin at our institute. Differences between 

model and 4DCT 95th percentile error, Δ95, were notable for the diaphragm-right lobe 

interface such as P1-T1 (Δ95 =9mm), P2-T3 (Δ95 =8 mm), P3-T3(Δ95 = 9 mm) and P4-

T2,T3 (Δ95 =8 and 5 mm). Improvement in mean and 95th percentile error for the right lobe 

diaphragm, averaged over all patients, were Δmean = 3.6 and Δ95 = 6.5 mm, respectively. 

In comparison, improvements in model performance for the diaphragm-left lobe interface 

were slightly reduced. Notable examples include P1-T2 (Δ95 =4.6mm), P3-T1 (Δ95 = 3.44 

mm) and P4-T1 (Δ95 =11 mm). For the diaphragm-left lobe interface, difference between 

model and 4DCT Mean and 95th percentile errors for all patients were Δmean = 3.1 and Δ95 

= 4.1 mm, respectively. The largest errors were observed for structures associated with the 

pericardial sac such as P4-T4 (ϵmean model = 15 mm, Δ95 = 0.3 mm), and P5-T4 (ϵmean model = 7 mm, 

Δ95 = 4.2).

Discussion

We presented a motion model that estimates lung surface DVFs by monitoring the motion 

of an ROI on the thoracoabdominal surface. Our proposed model employed a mathematical 

framework of the possible deformations derived from deformable image registration of 

4DCT images and integrated additional FL images to derive and update the internal-external 

correlation. To date, 4DCT based volumetric motion models have been constructed based 

on the a priori correlation between the external surrogate and internal anatomy that was 

observed at the time of 4DCT simulation. (Zhang, Pevsner et al. 2007, Li, Lewis et al. 2011, 

Ranjbar, Sabouri et al. 2019) Our methodology departed from this approach and exploited 

FL images to relate the external surrogate to the internal motion of the lung surface and 

to derive an internal-external correlation that was more accurate and applicable during RT 

delivery sessions. Additionally, our methodology permitted for continuous model updates, 
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which preserved model fidelity in cases where inter- or intra-fraction changes in correlation 

were observed. Finally, we presented a model-agnostic, in-situ validation technique based on 

the comparison of the image mutual information and the motion of anatomical landmarks 

that were manually tracked in model-generated radiographic projections, 4DCT-radigraphic 

projections, and reference FL projections. Our results indicated a marked improvement 

over the current standard-of-care 4DCT with average reduction in 95th percentile Hausdorff 

distance of 7 mm for the left-lobe diaphragm interface, and 4 mm for the right lobe 

diaphragm interface.

In a previous study, we presented a preliminary investigation of a volumetric based SMM 

that used the external-internal correlation observed at the time of 4DCT to generate new 

estimates of the internal anatomy.(Ranjbar, Sabouri et al. 2019) The present study differs 

from that work in the utilized image registration algorithms, dimensionality reduction 

procedure for the imaging data, as well as the surrogate extraction and its dimensionality 

reduction technique. More significantly, the current study departs from our previous work, 

as well as most published volumetric motion models, in its training data-set. The training 

data-set forms the foundation of the motion model and is used to arrive at the correlation 

between the internal anatomy and the continuous external surrogate. The training data for 

our previous study was composed of VRT surfaces and 4DCT data acquired at the time of 

the initial CT simulation. However, as a byproduct of the axial 4DCT data acquisition and 

binning, the reconstructed 4DCT image set does not correspond to any physical anatomical 

state but rather phase-sorted and binned axial slices that represent discrete approximations 

of the patient’s “average” anatomy during each breathing phase. As a result, it is difficult to 

relate these images with the concurrently acquired external VRT surrogate. In the previous 

study, we resorted to using a synthetic surface data-set that was generated by averaging all 

VRT surfaces belonging to a specific phase. In addition to the previously noted limitations 

that arise from the application of this a priori correlation to the upcoming RT sessions, 

a major drawback of this approach is the pairing of two incoherent measurements: an 

axially acquired phase-binned 4DCT image with a temporally averaged VRT surface. Such 

incoherence is accentuated in the cases of departure from periodic breathing such as the 

presence of cycle-to-cycle variations. One immediate example of such an incoherence is 

encountered when 4DCT images that suffer from commonly encountered binning artifacts 

are paired with temporally phase-averaged VRT surfaces. A consequence of such artifacts 

is the erroneous patterns for the evolution of the first PC coefficient as seen for Patient 

3 in Figure 5-B. However, given the spatially instantaneous nature of the VRT surface, 

such a pattern was not present in the temporally phase-averaged VRT surfaces of this 

patient. The present study not only avoids this association altogether, but also derives and 

updates the internal external correlation at the time of the RT sessions. In our proposed 

methodology, 4DCT images are used solely to derive a mathematical basis of internal 

anatomical motions. Subsequently, the internal-external correlation is derived and updated 

using the continuous FL images with simultaneous VRT surfaces. With respect to respiratory 

motion, both of these measurements can be considered instantaneous such that their pairing 

into the training data-set is coherent. Qualitative analysis of model performance (Figure 

8) showed that in comparison to our previous 4DCT+VRT model, the current strategy 

systematically generated projections that more closely matched the reference fluoroscopy 
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and yielded higher image mutual information scores observed for all patients. For the 

single patient studied in our previous work (Patient 1 of this study), the 4DCT+VRT model 

was affected by temporal changes in the external-internal correlation, and had inconsistent 

performance, with errors as large as 15 mm for diaphragm motion. The current motion 

model integrates a few FL images (equivalent to one respiratory cycle) to establish the 

external-internal correlation for ~30–50s FL acquisitions. Using the proposed methodology, 

the diaphragm motion error for this patient was reduced to 6 mm (Figure 9-A). This strategy 

was found to preserve model fidelity in the cohort of five patients presented in this study. We 

presented a model validation by comparing image similarity for nine pairs of FL acquisitions 

-approximately 10 minutes of data. The higher image similarity coefficients provided a 

qualitative assessment of the model performance while tracking the manually contoured 

anatomical landmarks provided a quantitative validation.

High image contrast facilitated DVF estimates at the lung boundary. Additionally, the strong 

correlation between the external surrogate and the motion of the lung-diaphragm interface 

has been reported in multiple studies.(Li, Xie et al. 2009, Fayad, Pan et al. 2011) Those 

characteristics provided us with the confidence to estimate deformations of the lung surface 

based on the thoracoabdominal surface. Moreover, the visible nature of the lung boundary 

in lateral and fluoroscopic images provided a framework to validate our estimated lung 

deformations. Previous applications of PCA to DVFs in RT, including our previous work, 

present a feasible way to provide an estimate for the deformations of the lung tumor.(Zhang, 

Pevsner et al. 2007, Li, Lewis et al. 2011, Garau, Via et al. 2019, Ranjbar, Sabouri et al. 

2019) However, there are multiple factors that challenge the accuracy of model estimates of 

tumor/GTV motion. There is the complexity of lung interior motion, including deviations in 

tumor trajectory, temporal phase differences in the GTV motion, possible registration errors 

within the lung, and the inherently low contrast of fluoroscopic images in this anatomical 

region that strongly limit the visibility of targets. For these reasons, we have not applied the 

technique presented in this work to estimate DVFs of the entire volumetric image including 

the GTV-even though it would be possible to do so. Our group is currently pursuing 

finite-element modeling of internal lung motion that exploits the biomechanical properties 

of the lung and underlying physical and biomechanical principles to estimate motion in 

the lung-interior. To date, the high accuracy of such models reported for estimation of 

GTV motion within the same CT series provides a promising approach for application to 

treatment. The lung surface deformations presented in this work would serve as boundary 

condition input for such a model to estimate tumor motion during RT delivery.

This study employed dimensionality reduction at multiple stages to reduce the complexity 

of the model, synchronize different modalities of measurements, and increase computational 

speeds. Using isometric embedding (Isomap), we recovered three independent features from 

the thoracoabdominal surfaces captured by photogrammetry. These first feature signals 

were temporally correlated with the SI motion of a region on the diaphragm (Figure 

4 F and G), which was temporally used to associate the external surrogate with each 

frame in the fluoroscopic time-series. While further investigation is required, the presence 

of these independent signals may be related to the fashion in which respiratory motion 

is physiologically actuated by independent muscle groups such as the major abdominal 

muscles including the diaphragm, as well as the intercostal muscles of the thorax.
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Non-linear manifold learning techniques such as Isomap excel at finding a low dimensional 

embedding of the original data. However, the transformations associated with such methods 

are not invertible and there does not exist a reliable reconstruction from the low dimensional 

space back to the original high dimensional space. (Choi and Choi 2007) For this reason, 

in instances where recovery of the data after dimensionality reduction was required, 

we resorted to linear dimensionality reduction techniques such as PCA. In the field of 

mathematical lung motion models, PCA has been widely used for the reduction of DVF 

dimensions.(Zhang, Pevsner et al. 2007, Li, Lewis et al. 2011, Ranjbar, Sabouri et al. 

2019) Our analysis of five patients showed that two components are generally adequate for 

approximation of lung SDVFs (Figure 5D). These findings are in agreement with reports 

of Zhang et al., and Li et al. who presented 90 convergence of volumetric DVFs for two 

thoracic patients.(Zhang, Pevsner et al. 2007, Li, Lewis et al. 2011)

One major limitation in this work is the use of single direction projection fluoroscopy in 

deriving appropriate model coefficients. It has been accepted in RT that the anatomy can 

be appropriately localized using two orthogonal radiographs. This principle is routinely 

applied during patient setup with kV orthogonal radiographs. Our study presented results 

for both posterior-anterior, and lateral projections. However, at each time instance, the 

single kV imager on the TrueBeam only permitted FL acquisition in a single direction, 

so that simultaneous orthogonal image acquisition was not possible. This limitation can 

be alleviated through the use of other commercially available imaging systems such as 

Exac Trac (BrainLAB, Germany), or the CyberKnife Synchrony (Accuray, CA), ProBeam 

(Varian, Germany).(Matney, Parker et al. 2011, Pepin, Wu et al. 2011) We believe that 

the use of two orthogonal radiographs will increase the sensitivity of the optimization 

function to higher order PC coefficients, and provide more accurate estimates for higher 

order coefficients.

Another limitation in this work stems from its use of phase-binned 4DCT images. While 

this protocol is the current standard-of-care in thoracic RT, previous studies have noted 

that more than 90% of such CT scans suffer from imaging artifacts.(Yamamoto, Langner 

et al. 2008) Use of principle component analysis has been shown to potentially reduce 

some of these artifacts.(Gao, Cai et al. 2011) Phase-sorting related errors can also generate 

artifact contaminated DVFs which hinder convergence with increasing PCs (e.g. Patient 

3 in Figure 6-D). These errors are subsequently propagated into the motion model and 

manifest themselves as incorrect model-estimated deformations. Use of repeated fast helical 

CT protocols that integrate multiple scan samples of the same breathing cycle have been 

shown to remove 4DCT phase-binning artifacts and produce superior image quality in the 

presence of irregular breathing. Such scans can provide more accurate DVFs, as well a 

higher quality pivot phase image EE image and are expected to improve overall model 

accuracy. (Thomas, Lamb et al. 2014) Other techniques to reduce 4DCT image artifacts 

include integration of motion models in the CT reconstruction algorithm. Recently, Chee 

et al. proposed an imaging based SMM for CBCT reconstruction artifact reduction that 

used DVFs between reference and target frames of binned 4DCT images that were derived 

from the surrogate-estimated diaphragm displacement amplitude and its derivative. (Chee, 

O’Connell et al. 2019) While computationally expensive (requiring 200 hours for model 

construction), a virtual phantom study of their model using the XCAT phantom showed 
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high spatial accuracy DVF estimations with errors of 1.08±0.81 mm. While their model 

requires validation with patient data, their methodology has the potential to significantly 

reduce artifacts associated with 4DCT imaging protocols.

Higher image quality produces more accurate DVFs and improves overall model 

performance. However, the major drawback associated with the use of 4DCT is the lack 

of adequate observations, which hinders derivation of a robust mathematical basis of 

possible anatomical deformations. In our study, we generally observed degraded model 

performance for regions near the GI tract (e.g. left lung lobe-diaphragm interface). Short-

term displacement of the lung interface in this region is primarily due to respiratory motion, 

with a correlated motion expected between the two lobes (e.g. Figure 6-A); however, filling 

and displacement of organs in the GI tract can result in the shift of a single lobe from the 

base-line observed at the time of 4DCT. Since such displacements are not present in the 

4DCT scan session, they cannot be accounted for in the orthonormal DVF expansion from 

these images. With the advent of a more imagebased adaptive RT, routine QA-4DCT scans, 

and in-situ 4D-CBCTs are becoming a part of the standard-of-care in particle therapy or 

dose-escalated SBRT. Integration of additional imaging data can potentially generate more 

accurate DVF basis and improve overall model performance.

Another limitation of this work was the relatively short duration of FL data acquisition 

(~30–50 seconds) to limit the unnecessary exposure of the patient to radiation. One of 

the main goals of this study was to validate the model. Therefore, we maximized the 

data available for validation by using only one to two cycles for training. Using more 

cycles for training may improve the model performance and robustness but requires 

further investigation and additional data for validation. For example, longer and safer data 

acquisition maybe possible using non-radiological imaging modalities such as MRI.

Our model used kV fluoroscopic projections and a global optimization scheme to arrive at 

optimal DVFs. The wide availability of kV images in external beam radiation therapy makes 

their integration into a CT based motion model valuable. However, the compounding nature 

of kV images which are convoluted by the many layers of information that they possess 

makes their use a particularly difficult task. Recently, Garau et al. attempted to mitigate 

the effects of cycle-to-cycle variations by integrating in-vivo 2D cine MRI data acquired 

on an MR-LINAC system.(Garau, Via et al. 2019) Their model estimates time-resolved 

virtual 3D-CT volumes describing the patient anatomy during treatment. However, due to 

the registration strategy between breath-hold MR and 4DCT images, the model was unable 

to capture inter-fractional changes. While limited in its availability, integration of in-vivo 

MR data with the global optimization strategy presented in this work can potentially lead to 

realistic estimation of GTV motion in time resolved 3DCT images.

Our model generated estimates of the lung surface including the location of the diaphragm-

lung interface at each lobe. The motions of these landmarks are commonly assessed and 

used as an internal surrogate prior to treatment delivery under breath-hold and free-breathing 

gated RT delivery. While requiring faster computational times, one possible application of 

our model is to permit visualization and verification of these landmarks during treatment 

delivery. Additionally, coupled with a biomechanical model of the lung interior, our model 
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has the potential to provide internal motion estimation for dose accumulation over the course 

of treatment delivery. Knowledge of the internal anatomical motion can reduce uncertainties 

in the process, and subsequently help identify uncertainties in delivery/planning. A hybrid 

biomechanical intensity-based model with the BCs generated using our methodology can aid 

in determining accurate deformations at the time of patient treatment delivery, and serve as a 

gold standard for the comparison and validation of imaging-based motion models.

Conclusion

We constructed and updated a volumetric motion model that used the correlation observed 

from in-situ fluoroscopic projections acquired at the time of treatment delivery. This 

model consistently out-performed 70 4DCT for position estimation of targets on the lung 

surface. Despite changes in the breathing pattern, including base-line shifts, routine update 

of the internal-external correlation preserved model fidelity. Our model provides input 

boundary conditions for hybrid and/or biomechanical-based lung motion models and also 

has the potential to improve delivery verification and accuracy by providing the motion of 

internal surrogates which are often used to assess tumor position during breath-hold and 

free-breathing gated radiation treatment delivery.
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Figure 1- Flowchart of the methodology used to construct and validate our proposed motion 
model:
Deformable image registration (DIR) was used in the RayStation Treatment Planning 

System and principal component analysis (PCA) was applied to arrive at a mathematical 

basis of lung surface deformations (lung SDVFs). During the treatment delivery, two ~30–

50s of fluoroscopic data (FL) with concurrent VisionRT(VRT) surfaces were acquired pre-

and post-treatment. Isometric embedding (Isomap) was used to extract three features from 

the VRT surfaces. Temporal relation between two data sets was established and the data was 

partitioned into training and validation datasets. For each FL image in the training dataset, 

a simulated annealing optimization routine was used to arrive at optimal lung SDVF PC 

coefficients. These coefficients, along with the corresponding surface features were used to 

train a motion model that was subsequently validated using the validation dataset.
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Figure 2- Setup for patient data acquisition during CT simulation and treatment delivery.
A) The couch mounted VisionRT (VRT) system was placed on the CT couch and used 

to monitor the thoracoabdominal surface during the CT simulation. B) During treatment 

delivery, prior to the first beam, and following the last beam, two ~30–50s long fluoroscopic 

timeseries with concurrent VRT surfaces were acquired.

Ranjbar et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2021 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3- Mesh contouring, extraction and rasterization process for the SMM.
Following contouring and deformable image registration in RayStation TPS, fine triangular 

meshes of the body, lung, and vertebrae were exported. Mesh structures were rasterized to a 

3D image, and digitally reconstructed radiographs were generated and used as part of model 

input. The SMM provides lung surface boundary deformations, which can be used as BCs in 

a finite element model of the lung and tumor.
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Figure 4- Captured point clouds, reconstructed surfaces, Isomap extracted surface features, and 
their relations with diaphragm motion.
A) VisionRT point clouds containing points and connectivity. Geometric distortions result 

in missing patches. B) Water-tight surface generated using the Poisson reconstruction 

algorithm. An ROI patch was used for subsequent analysis. C) Relation between the first 

three surface features extracted via Isometric Embedding. D) Relation between the first 

feature and its time derivative. E) Overlap between mean surface displacement, and a patch 

on the diaphragm tracked from fluoroscopic images for patient 1. F) Overlap between mean 

surface displacement, and patch on the diaphragm tracked from fluoroscopic images for a 

patient treated with compression belt (patient 5).
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Figure 5- 
A) Representation of the first two lung SDVF PC vectors U1 and U2: light regions represent 

regions that exhibited motion. B) Variation of normalized 1st coefficient α50% j
1  oefficient 

with breathing phase for five patients studied in this work. C) Variation of the normalized 

two PC coefficients α50% j
1  and α50% j

2  for all patients. D) Convergence of the 99th 

percentile absolute error (maximum value over all phases) with increasing PC used in 

equation (1). E) Convergence of 99th percentile absolute error with increasing number of 

PC used in equation (1) for different breathing phases of Patient#3A slower convergence is 

observed for phases 60% and 90% due to presence of artifacts.
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Figure 6- Examples of lung surface deformation vector field optimization process for Patient 1.
A) Optimal right lateral digitally reconstructed radiograph for Patient1 was generated by 

deforming the lung surface using optimal PC coefficient α opt. B) Right lateral FL frame 

used as the target image in the optimization procedure. C) Impact of the variations in the 

first two PC coefficients as observed in right lateral radiographs. D) Surface of image mutual 

information (MI) parameterized with first two PC coefficients.
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Figure 7- 
A) Comparison of phase-assigned 4DCT (red), model (green), and our previous 4DCT+VRT 

model (yellow) estimated PC1 normalized coefficient α1 for Patient1. B) Effect of 

model update (dotted black) on the normalized PC1 coefficient for the post-treatment FL 

acquisition. C) Comparison of model, 4DCT phase-assigned, and our previous 4DCT+VRT 

model for estimated PC2 coefficient α2 for Patient1 during FX3-start acquisition. D) Effect 

of model update (dotted black) on the normalized PC2 coefficient. E) Comparison of model, 

FL image, 4DCT, and 4DCT+VRT images at t=13s of FX3-start.
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Figure 8- Image Mutual Information score for 9 pairs of FL acquisitions in five lung-SBRT 
cancer patients, as a function of treatment fraction number and timing around dose delivery.
Patients 1–5 correspond to panels A-E. Model constructed using the pre-treatment data is 

shown in green, updated model using post-treatment data is shown in black, 4DCT is shown 

in red, and the 4DCT+VRT from our previous work is shown in yellow. (Ranjbar, Sabouri et 

al. 2019)
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Figure 9- Comparison of model and 4DCT performance for landmark position estimation.
In the left column, A1-A5 are the Hausdorff distances from the fluoroscopic reference, for 

model and 4DCT-estimated landmarks (in mm). On the right, B1-B5 show the landmarks 

used in the computation for patients 1–5.
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Table 1

Lung volumes at end of inspiration (EI) and end of expiration (EE) for the cohort of patients. Each lung 

surface was discretized as fine triangular meshes using the reported number of nodes (# nodes (N)). (RLL: 

Right Lower Lobe, RL: Right Lung, LUL: Left Upper Lobe, RUL: Right Upper Lobe).

Patient Sex EI 
(cm3)

EE 
(cm3)

# nodes 
(N)

Age Tumor Size 
(cm3)

Location #kV images 
(duration)

VRT ROI 
Length×Width 

(cm2)

1 M 5,090 4,420 139,478 74 2.4 RLL 1679 (240 s) 34×15

2 M 2,790 2,551 95,410 70 2.34 RL 402 (57 s) 28×15

3 * F 3,755 3,523 119,193 91 10.5 LUL 1425 (203 s) 29×12

4 M 3,142 2,512 101,350 65 0.14,1.81,1.35 LUL,RUL,RLL 370 (53 s) 28×13

5 M 5,107 4,609 143,090 77 9.82 RUL 365 (52 s) 28×12

AVG 3,977 3,523 119,704 75 4 TOTAL 4241 (605s) 31×13

*
4DCT for patient 3 suffered from phase miss-assignment. Maximum and minimum lung volumes are reported as volumes for EI and EE.

Phys Med Biol. Author manuscript; available in PMC 2021 February 26.


	Abstract
	Introduction
	Methods
	Patient Data Collection
	Generation of Lung Surface Mesh and Deformable Image Registration
	SDVF Dimensionality Reduction
	Reconstruction and Dimensionality Reduction of VRT Surfaces
	Surface Reconstruction and Feature Extraction
	Synchronizing Surface and Fluoroscopic Measurements

	Model Construction and Validation
	Associating Fluoroscopic Images with Lung SDVFs

	Correspondence Model between Surface Features and Lung SDVF Components
	Model Validation and Performance

	Results
	Lung Surface Deformation Vector Fields
	Associating Fluoroscopic Images with Lung SDVFs
	Correspondence Model between Surface Features and Lung SDVF Components α
	Model Validation

	Discussion
	Conclusion
	References
	Figure 1-
	Figure 2-
	Figure 3-
	Figure 4-
	Figure 5-
	Figure 6-
	Figure 7-
	Figure 8-
	Figure 9-
	Table 1

