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SUMMARY

We show that a system consisting of two interacting particles with mass ratio 3 or 1/3 in a hard-wall

box can be exactly solved by using Bethe-type ansatz. The ansatz is based on a finite superposition of

plane waves associated with a dihedral group D6, which enforces the momentums after a series of

scattering and reflection processes to fulfill the D6 symmetry. Starting from a two-body elastic colli-

sion model in a hard-wall box, we demonstrate how a finite momentum distribution is related to

theD2n symmetry for permittedmass ratios. For a quantum systemwith mass ratio 3, we obtain exact

eigenenergies and eigenstates by solving Bethe-type-ansatz equations for arbitrary interaction

strength. A many-body excited state of the system is found to be independent of the interaction

strength, i.e., the wave function looks exactly the same for non-interacting two particles or in the

hard-core limit.

INTRODUCTION

Exactly solvable models have played an important role in the understanding of the complexity of inter-

acting quantum systems, especially in one dimension (Albeverio et al., 1988; Sutherland, 2004; Gaudin,

2014; Takahashi, 1999; Gutkin, 1982). Prominent examples include the Lieb-Liniger model for interacting

bosons (Lieb and Liniger, 1963), the Gaudin-Yang model for two-component fermions (Yang, 1967), and

the extended family of multi-component Calogero-Sutherland-Moser (CSM) models (Sutherland, 1968).

These models provide ways of exploring and understanding the physics of quantum few-body and

many-body systems. An elegant example of solvable few-body models is the system of two interacting

atoms in a harmonic trap (Busch et al., 1998), which has become a benchmark in the exploration of in-

teracting few-body system, even in the accuracy estimate of numerical procedure for interacting few

particles.

Experiments with few cold atoms provide unprecedented control on both the atom numberNwith unit pre-

cision and the interatomic interaction strength by combination of sweeping a magnetic offset field and the

confinement induced resonance (Chin et al., 2010). The experiments have so far realized the deterministic

loading of certain number of atoms in the ground state of a potential well (Serwane et al., 2011), the

controlled single atom and atom pair tunneling out of the metastable trap (Zürn et al., 2012, 2013), the

preparation of quantum state for two fermionic atoms in an isolated double-well (Murmann et al.,

2015a), etc. The crossover from few-to many-body physics has been shown by observing the formation

of a Fermi sea one atom at a time (Wenz et al., 2013). In the strongly interacting limit an effective Heisen-

berg spin chain consisting of up to four atoms can be deterministically prepared in a one-dimensional trap

(Murmann et al., 2015b).

Although most of the exactly solvable interacting models are limited to the equal-mass case, recently

much attention has been drawn on one-dimensional (1D) mass-imbalance systems composed of hard-

core particles (Olshanii and Jackson, 2015; Harshman et al., 2017; Scoquart et al., 2016; Olshanii et al.,

2018; Dehkharghani et al., 2016; Volosniev, 2017). It is found that some few-body systems are solvable

if the hard-core particles with certain masses are arranged in a certain order. A quantum four-body

problem associated with the symmetries of an octacube is exactly solved for hard-core particles with

specific mass ratio, and its exact spectrum stands in good agreement with the approximate Weyl’s law

prediction (Olshanii and Jackson, 2015). In a Bose-Fermi superfluid mixture, especially of two mass-imbal-

ance species, macroscopic quantum phenomena are particularly rich owing to the interplay between

the Bose and Fermi superfluidity (Ferrier-Barbut et al., 2014; Yao et al., 2016). Different from the integrable
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systems with their integrability guaranteed by the existence of Yang-Baxter equation and a series of

conserved quantities (Gaudin, 1971; McGuire, 1964; Batchelor et al., 2005; Hao et al., 2006), reliable

criteria for the solvability of mass-imbalanced systems are still lacking.

For an interacting system with a finite interaction strength, the mass-imbalance system is generally not

exactly solvable (Deuretzbacher et al., 2008; Pecak et al., 2016; Pecak and Sowi�nski, 2016). Particularly,

when the system is in an external trap, the interacting problem with different masses becomes compli-

cated and it is hard to get an analytical solution even for a two-particle system since the external potential

brings about the coupling of center-of-mass and relative coordinates (Deuretzbacher et al., 2008; Chen

et al., 2011) and generally one cannot completely separate the relative motion of particles from the

others. In this work we study the mass-imbalanced two-particle system with finite interaction strength

in a hard-wall trap and give the Bethe-type-ansatz solution of the system with mass ratios 3 or 1/3. The

Bethe-type ansatz is based on finite superpositions of plane waves, which is generally not fulfilled for

the mass-imbalance system as each collision process generates a new set of momentums. When the

mass ratio takes some special values, we find that the motion of classical particles after multiple collisions

can be characterized by finite sets of momentums, which is associated with the nonergodicity condition

(Richens and Berry, 1981; Evans, 1990; Tempesta et al., 2001; Post et al., 2012) of the classical

elastic collisions of particles with different masses in the hard-wall box. When the mass ratios are at these

nonergodicity points, it is interesting to find that the permitted momentums of particles fulfill the symme-

try described by the dihedral group D2n.The existence of finite momentums enables us to take the wave-

function of the two-body quantum system as Bethe-type ansatz, i.e., as the superposition of all

plane waves with permitted momentums. Although the equal-mass case corresponds to the solvable

Lieb-Liniger model under the open boundary condition, we find that only the mass-imbalance case

with mass ratios 3 or 1/3 is exactly solvable, i.e., only the case with quasimomentums fulfilling the D6 sym-

metry is exactly solvable.

The paper is organized as follows. In Nonergodicity Condition for Collision in a Hard-Wall Trap, we first

discuss the nonergodicity condition for the classical collision problem in a hard-wall box and show how

the momentums with specific mass ratios are related to the D2n symmetry. In Solvable Quantum System

with Imbalanced Masses, we study the quantum system with mass ratio h = 3 by using the Bethe-type-an-

satz wavefunction, which permits us to get the Bethe-type-ansatz equations for all interaction strengths.

Solving the Bethe-type-ansatz equations, we can get the quasimomemtum distribution of the system

and thus the exact eigenstates and eigenvalues. A summary is given in the last section.
Nonergodicity Condition for Collision in a Hard-Wall Trap

First, we consider a classical collision problem of two particles with unequal masses m1 and m2 in a

one-dimensional hard-wall trap. There are two types of collision processes, namely, the scattering be-

tween particles and the reflection process when the particle hits the wall. Write the momentums of

two particles before and after the collision as vectors as k= ðk1; k2ÞT and k0 = ðk01; k02ÞT , respectively.
For the elastic scattering in which both total momentum and total energy of the particles are conserved,

we have

k1 + k2 = k01 + k02; (Equation 1)

k21
2m1

+
k22
2m2

=
k 02
1

2m1
+

k022
2m2

: (Equation 2)

From Equation 2, it is easy to get

k21 � k 02
1

m1
=
k022 � k22

m2
: (Equation 3)

Taking advantage of Equation 1, we see

k1 + k01
k2 + k02

= h; (Equation 4)

where the mass ratio h = m1=m2. By using Equations 1 and 4, it is straightforward to obtain the momentum

relation for particle scattering
182 iScience 22, 181–194, December 20, 2019



k0 = sk;with sðhÞ=

0
BB@

h� 1

h+ 1

2h

h+ 1

2

h+ 1

1� h

h+ 1

1
CCA: (Equation 5)

Here, s is an involutory matrix, which satisfies

sðhÞ2 = 1; (Equation 6)
sð1 = hÞ = sxsðhÞsx ; (Equation 7)

where sx,y,z are the Pauli matrices. In the case of reflection, one of the particles changes its sign of mo-

mentum. The momentum relation for reflection is

k0 = Gszk;with sz =

�
1 0
0 �1

�
; (Equation 8)

where the reflection matrix sz reflects k2 and�sz reflects k1. Notice that the scattering and reflection always

occur alternately and the momentum vector after multiple collisions is straightforwardly given by succes-

sive application of the scattering matrix s and reflection matrices Gsz onto the initial vector, e.g.,

k0 = sðhÞð�szÞsðhÞszsðhÞszk (Equation 9)

represents the final momentum vector after three pairs of scattering-reflection processes, one after

another.

Given the initial momentum vector, now we explore how many new vectors may come into being after

multiple collisions. The reflection matrix allows us to consider only the positive values of the momentum

since in the last step one can always invert the sign by applying either sz or �sz. To effectively study the

motion characteristics we may intentionally structure the collision trajectory such that the new mo-

mentum vector would appear in every pair of scattering-reflection processes. There exist basically two

types of trajectories with final momentum vectors expressed as ð�1ÞmðsszÞnk or ð�1ÞmðszsÞnk. In the n

pairs of scattering-reflection processes, there are m times reflection �sz and n�m times reflection sz.

Usually, the momentum distribution after multiple collisions becomes rather unpredictable for an arbi-

trary mass ratio. However, for some special mass ratios, it is possible that after multiple collisions

the momentum vector will go back to the initial value. Thus a finite number of momentum vectors

form a closed set with the corresponding collision trajectory being a closed loop, which is similar to

the fixed point in the regular and chaotic motion of particles bouncing inside a curve (Berry, 1981; Sinai,

1978). This means that

ðsðhÞszÞn
�
k1
k2

�
= G

�
k1
k2

�
(Equation 10)

or

ðszsðhÞÞn
�
k1
k2

�
= G

�
k1
k2

�
; (Equation 11)

where G corresponds even(odd) m, respectively.

After some algebras (see Transparent Methods A for details), we find that Equations 10 and 11 are satisfied

if the mass ratio h and the number of scattering-reflection pairs n, hereafter referred to as collision times,

fulfill the following condition:

h = tan2lp
�
2n; (Equation 12)

where l and n are positive integers. For given h, we aim to find the minimum collision times n, after

which the momentum sets would be closed. It suffices that let l be any coprime integer to n and 1 % l %

n. There exists a duality for mass ratio h and 1/h, and in Figure 1, we show all qualified mass ratios after

n-multiple collisions by blue dots, which are 2-fold degenerate for h and 1/h except the case of equal

mass. A trivial case is that for h = 0 or 1/h = 0, which means that there is only one particle left in the

hard-wall trap. The closed set contains but one momentum vector as the only collision process is the reflec-

tion on the left or right wall, which serves to change its sign.
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Figure 1. The Relation between the Mass Ratio h (or 1/h) and the Collision Times n: h= tan2lp=2n for Finite

Distribution of Momentums

The blue dots represent the solution corresponding to the minimum collision times n and pale blue dots represent the

repeated solutions. There exists a duality for mass ratio h and 1/h.
Equation 12 assures that, for a given initial momentum vector k, a closed set of finite numbers of the mo-

mentum can be obtained by repeatedly applying the scattering and reflection operations on it. In the case

of equal mass when h = tan2p=4 = 1, the full momentum set is

k; rk; r2k; r3k;szk; rszk; r
2szk; r

3szk;

where r = s(1)sz and r2 =�I, with I the 232 identity matrix. It is easy to find the collision operators fI; r; r2; r3g
form a cyclic group C4 and fI; r; r2; r3; sz ; rsz ; r2sz ; r3szg form a dihedral group D4. The first nontrivial case

arises when h = tan2p=3 = 3, and the full momentum set consists of

k; rk; r2k;/; r5k;szk; rszk; r
2szk;/; r5szk;

where r = sð3Þsz and r3 = �I. The collision operators fI; r; r2;/; r5; sz ; rsz ; r
2sz ;/; r5szg form a

dihedral group D6. Note that when h = tan2p=6 = 1=3, the operators fI; r; r2;/; r5;sz; rsz ; r
2sz;/; r5szg

with r = � sð1 =3Þsz also form a D6 group. This again shows the duality for mass ratio h and 1/h. So we

find that Equation 12 gives a series of classical nonergodicity points and the full momentum set can

be written as fdjk
��dj ˛D2ng. Here the dihedral group D2n with n= 2; 3;/ has 4n elements, i.e., D2n = fI; r;

r2;/; r2n�1; sz ; rsz ;/; r2n�1szg, where r =GsðhÞsz and r2n = I. Here the signs + and � are for h R 1 and

h < 1, respectively.

In Table 1, we list all candidates for the mass ratio h that fulfill the closeness of scattered momentum vector

and the corresponding dihedral group of the collision operators. As l and n are coprime, the value n solely

decides the dihedral group D2n. For different mass ratios, the number of momentum vector in the closed

set determines the order of the dihedral group. In Figure 2, we show the distribution of momentum in

the closed set for h = 1 and 3, with the emergingD4 andD6 symmetry, respectively. Each momentum vector

is represented by a point in the phase space ðk1; ffiffiffi
h

p
k2Þ where we rescale k2 by a factor

ffiffiffi
h

p
such that all

points are distributed on a circle owing to the energy conservation. It is straightforward to see that the

momentums are distributed on vertices of two 2n-sided polygons, which fulfill the D2n symmetry. To see

it more clearly, we represent the r-matrix as
184 iScience 22, 181–194, December 20, 2019



h n l The Dihedral Group

0,+N 1 1 D2

1 2 1 D4

1/3 3 1 D6

3 3 2 D6

3� 2
ffiffiffi
2

p
4 1 D8

3+ 2
ffiffiffi
2

p
4 3 D8

1� 2=
ffiffiffi
5

p
5 1 D10

5� 2
ffiffiffi
5

p
5 2 D10

1+ 2=
ffiffiffi
5

p
5 3 D10

5+ 2
ffiffiffi
5

p
5 4 D10

7� 4
ffiffiffi
3

p
6 1 D12

7+ 4
ffiffiffi
3

p
6 5 D12

« « « «

Table 1. The Relationship between Mass Ratio h and the Dihedral Group
r =

0
BB@

�cos
lp

n
cos

lp

n
� 1

cos
lp

n
+ 1 �cos

lp

n

1
CCA (Equation 13)

which is obtained by inserting the nonergodicity mass ratio Equation 12 into r = sðhÞsz . Then performing a

similar transformation on r, we get

R = UrU�1 =

0
B@ cos

mp

n
�sin

mp

n

sin
mp

n
cos

mp

n

1
CA; (Equation 14)

where m = n�l and

U =

�
1 0
0

ffiffiffi
h

p
�
:

Clearly, R is a two-dimensional rotation matrix, and the standard presentation of the dihedral group D2n is

given by

D2n =
�
R;sz

��R2n = s2
z = 1;szRs

�1
z = R�1

�
: (Equation 15)

Given an initial set of momentums, the other vertices of polygons are decided by applying the symmetry

operations of the D2n group.

Although the general mass-imbalance collision problem in the hard-wall trap does not possess discrete

symmetries, the momentum distributions in the phase space exhibit the emergent D2n symmetries in the

nonergodicity points, which includes 2n rotational symmetries and 2n reflection symmetries. If the noner-

godicity condition Equation 12 is not fulfilled, Equations 10 and 11 no longer hold true, and the momentum

distribution does not exhibit discrete symmetry. Instead, the momentums shall distribute on the entire cir-

cle with the increase of collision times.
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A B

Figure 2. Momentum Distributions of Classical Collision

Momentum distributions in the phase space ðk1; ffiffiffi
h

p
k2Þ for two particles withmass ratio (A) h= 1 and (B) h = 3, respectively.

The momentums are distributed on vertices of two polygons. Although vertices on each polygon fulfill C4 and C6

symmetries for (A) and (B), respectively, vertices on different polygons can be transformed into each other by axial

reflection transformations. The dashed lines shown in (A) and (B) are two reflection axes corresponding to axial reflection

transformations sz and Rsz, respectively.
Solvable Quantum System with Imbalanced Masses

Model and Bethe-Type-Ansatz Solution

Consider a quantum system of two particles with masses m1 and m2 confined in a 1D hard-wall trap of

length L. Two atoms interact with each other via the potential gdðx1 � x2Þ, where d(x) is the Dirac delta

function and g is the interaction strength. The Hamiltonian can be written as

H = � Z2

2m1

v2

vx21
� Z2

2m2

v2

vx22
+gdðx1 � x2Þ; (Equation 16)

and the wave function Jðx1; x2Þ satisfies the open boundary condition

Jðxi = G L = 2Þ = 0; (Equation 17)

for i = 1 and 2. The system with equal mass reduces to the well-known solvable Lieb-Liniger model under

the open boundary condition (Gaudin, 1971). If the mass ratio fulfills the nonergodicity condition Equa-

tion 12, the number of momentum vectors in the set is finite such that the wavefunction of the quantum

system can be taken in terms of Bethe-type hypothesis as

Jðx1; x2Þ= qðx2<x1Þ
X
j

Aj +e
iðdjkÞT ,x

+ qðx1<x2Þ
X
j

Aj�e
iðdjkÞT ,x;

(Equation 18)

where AjG are the coefficient of plane waves with different quasimomentums and q(x) is the step function.

x= ðx1; x2ÞT and k= ðk1; k2ÞT are the coordinate vector and the quasimomentum vector of particle 1 and 2,

respectively, and the collision operator dj˛D2n with j = 1; 2;/;4n. HereD2n is the same dihedral group as in

the classical model in the previous section. The wave function includes all possible terms in the scattering

process with the quasimomentums in the plane waves fulfilling the D2n symmetry. When h = 1, we have

dj˛D4 and Equation 18 reduces to the Bethe ansatz wavefuntion of two-particle Lieb-Liniger model under

the open boundary condition (Gaudin, 1971). Although the wavefunction of Equation 18 is represented in a

general form with dj˛D2n, in this work we study only the case with dj˛D6 corresponding to h = 3 or 1/3, as

we find that it is the only exactly solvable example of quantum mass-imbalance systems with h fulfilling

the nonergodicity condition Equation 12. In the following part, we focus on the h = 3 case, which occurs,

for example, in a quantum gas with the formation of trimers with three times the atomic mass. The case

of h = 1/3 can be exactly solved within the same scheme owing to the duality relation between h and
186 iScience 22, 181–194, December 20, 2019



1/h. For other cases corresponding to irrational h, we cannot find exact solutions by using the Bethe ansatz

method. The exact spectrum of the system is given for arbitrary interaction strength.

First, we consider the open boundary condition Equation 17. The definition of reflectionmatrix for particle 1

on the right wall and on the left wall is

Rjð1; G Þ = AjG

AjG
= � exp

"
HiL

X
l = 1;2

d1l
j kl

#
; (Equation 19)

whereG in R, respectively, corresponds to the region x2<x1 or x1<x2, and the superscripts of d indicate the

matrix element in the ðk1; k2ÞT space. For convenience, we use AjG denotes the coefficients corresponding

to the quasimomentum vector ðk01;k02Þ = ðdjkÞT , where, for example, k01 =
P

l = 1;2d
1l
j kl denotes the quasimo-

mentum of particle 1 after collision operator dj. We further let AjG represent the coefficients corresponding

to the quasimomentum vector ð� k01;k
0
2Þ =

	
dj k

T
, where

dj = � szdj; (Equation 20)

and the underline of j indicates the reflection of particle 1. In a similar way, we define the reflection matrix of

particle 2 on the left wall and on the right wall as

Rjð2; G Þ = AjG

AjG

= � exp

"
GiL

X
l =1;2

d2l
j kl

#
: (Equation 21)

Here, AjG represents the coefficients corresponding to the quasimomentum vector ðk01; � k02Þ = ðdjkÞT ,
where

dj = szdj (Equation 22)

and the overline of j indicates the reflection of particle 2.

Next, we discuss the scattering between two particles. In the relative coordinate the first derivative of wave

function is not continuous owing to the d interaction. We integrate the Schrödinger equation with Hamil-

tonian Equation 16 from x = �ε to x = +ε and then take the limit ε/0. The result is�
vJ

vx
jx = 0+

� vJ

vx
jx = 0�

�
� 2m

Z2
gJjx = 0 = 0; (Equation 23)

where the relative coordinate x = x1�x2 and the reducedmass m = m1=ðh + 1Þ = m1=4. Inserting the Bethe-

type-ansatz wave function Equations 18 into 23, we get the relation

i

 
d11
j k1 +d12

j k2

1+ h
� d21

j k1 +d22
j k2

1+ 1=h

!

3
	
Aj + � Ak + � Aj� +Ak�



=
2m

Z2
g
	
Aj� +Ak�



;

(Equation 24)

where AjG and AkG represent the coefficients corresponding to the quasimomentums ðdjkÞT and ðdkkÞT ,
respectively, and the collision operator dj is related to dk via the relation

dj = sdk : (Equation 25)

On the other hand, for quasimomentum vector ðk01;k02Þ = ðdjkÞT , there always exists ð� k01; � k02Þ = ð�djkÞT .
We denote d

j
^ = � dj and d

k
^ = � dk and the corresponding coefficients as A

j
^
G

and A
k
^
G
, which fulfills

i

 
d11

j
^ k1 +d12

j
^ k2

1+ h
�
d21

j
^ k1 +d22

j
^ k2

1+ 1=h

!

3
	
A

j
^
+
� A

k
^
+
� A

j
^� +A

k
^�



=
2m

Z2
g
	
A

j
^� +A

k
^�


;

(Equation 26)
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where d
j
^ = sd

k
^ because of Equation 25. Representing

A
j
^
G

= Tj;GAjG; (Equation 27)

we have

i

 
� d11

j k1 +d12
j k2

1+ h
+
d21

j k1 +d22
j k2

1+ 1=h

!

3
	
Tj;+Aj + � Tk;+Ak + � Tj;�Aj� +Tk;�Ak�



=
2m

Z2
g
	
Tj;�Aj� +Tk;�Ak�



:

(Equation 28)

From Equations 27, 19, and 21, we can get

Tj;G = exp

"
HiL

X
l = 1;2


d2l

j kl �d1l
j kl
�#

; (Equation 29)

such that Equation 28 actually represents the second relation between AjG and AkG.

The continuity of the wavefunction Jjx = 0+
=Jjx = 0� gives yet another pair of equations

Aj + + Ak + =Aj� +Ak� (Equation 30)

and

Tj;+Aj + + Tk;+Ak + =Tj;�Aj� +Tk;�Ak�: (Equation 31)

Obviously the two-particle scattering problemwith unequal mass is muchmore complicated than the equal

mass case. For each pair of k and j related by Equation 25, we have four homogeneous linear equations of

four coefficients AjG and AkG, given by Equations 24, 28, 30, and 31. Non-trivial solution of these coeffi-

cients requires the determinant of the corresponding matrix equations to be zero. Since dj˛D6, there

are altogether 24 different coefficients and we can get 6 equations, among which three equations are iden-

tical to the other three. This leads to the constraint of the momentum k1 and k2, which can be shown to be

equivalent to either the following pair of Bethe-type-ansatz equations

8>><
>>:

k1 + 3k2 � 2m

Z2
g

�
cot

ðk1 + k2ÞL
2

+ cot k2L

�
= 0;

k1 � 3k2 � 2m

Z2
g

�
cot

ðk1 � k2ÞL
2

� cot k2L

�
= 0;

(Equation 32)

or that of

8>><
>>:

k1 + 3k2 +
2m

Z2
g

�
tan

ðk1 + k2ÞL
2

+ tan k2L

�
= 0;

k1 � 3k2 +
2m

Z2
g

�
tan

ðk1 � k2ÞL
2

� tan k2L

�
= 0:

(Equation 33)

Here we would like to add a remark for the other mass-imbalanced cases, for example, the case with h =

3� 2
ffiffiffi
2

p
. In this case, we have dj˛D8 and there are altogether 32 different coefficients. By setting the deter-

minant of corresponding matrix equations of Equations 24, 28, 30, and 31 to zero, we can get eight equa-

tions, with four of them being identical to the other four. So, there are four independent equations with two

undetermined variables k1 and k2, which generally yields no solutions, i.e., it is impossible for k1 and k2 to

fulfill four independent equations simultaneously. This means that the Bethe-type-ansatz wavefunction

given by Equation 18 is not the eigenstate of the mass-imbalanced system with h = 3� 2
ffiffiffi
2

p
. We also veri-

fied analytically that for this mass ratio there is no solution in the hard-core interacting case g/ + N.
RESULTS AND DISCUSSIONS

By numerically solving the transcendental Equations 32 or 33, we can get the quasimomentums for any

given interaction g. Contrary to the classical model where the momentum can take any continuous values,

the quasimomentum here is quantized and can take only discrete values. For convenience, we introduce

the dimensionless interaction strength g= mgL

Z2
and adopt the natural units Z = m = L = 1. In Figure 3, we
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Figure 3. Quasimomentums k1 and k2 of Quantum System

Quasimomentums k1 and k2 for the ground state and the first excited state with mass ratio h = 3 for different interaction

strengths g = 0.1, 1, and 50. The triangles and squares show the quasimomentums of the ground state and the first excited

state, respectively.
display the solution of quasimomentums for different g when the system is in the ground state and the

first excited state. For a finite g, the quasimomentums in the figure can be generally classified into three

groups, denoted as ðGk1; Gk2Þ, ðGk01; Gk02Þ, and ðGk
0 0
1 ; Gk

0 0
2Þ, respectively. The phase space can be

divided into four quadrants, and every quadrant is sprinkled with three points. The points in the first

quadrant are related to those in the other quadrants by the reflection operators sz, �sz, and �I. Thus we

focus on the three points in the first quadrant: k = ðk1; k2ÞT , k0 = ðk01; k02ÞT , and k
0 0
= ðk 0 0

1 ; k
0 0
2Þ

T
. Once

we find a solution k from the Bethe-type-ansatz equations, it is easy to obtain k0 and k
0 0
by applying appro-

priate group operators on k, which necessarily fulfill the same equations. Take the ground state for g = 1

in Figure 3 as an example. From k = ð0:93667p; 1:17904pÞT , one immediately knows that

k0 = � szsszk= ð1:30023p; 1:05786pÞT and k
0 0
=szsk= ð2:2369p; 0:12119pÞT are all the solution of Bethe-

type-ansatz Equations 32.

Particularly, when g/0, we find that every two points of momentum in the ground state tend to be the

same and 1/3 of the points will be located on the straight line k2 = 0. Note that for the non-interacting

case, the transcendental Equations 32 reduces to8>><
>>:

cot
k1 + k2

2
+ cot k2 =N;

cot
k1 � k2

2
� cot k2 =N;

(Equation 34)

which leads to the single particle solution: k1 = n1p, k2 = n2p, where n1 and n2 are integers. The quantum

numbers of the ground state is (n1,n2)=(1,1), and the corresponding energy is p2/2. We find that k= k0 =
ðp;pÞT are equal, which holds for all other cases with n1 = n2. The coefficients for the plane waves with

k
0 0
= ð2p; 0ÞT , however, are vanishing in the non-interacting case, and the wave function is but the direct

product state of the two single-particle ground states. The plane waves with approximately ðG2p; 0Þ,
i.e., the four points near the k2 axis, prove to be emergent solutions uniquely in the weakly interacting

case, as the wave function of zero momentum, that is, a constant, violates the vanishing condition at

both left and right boundaries in the non-interacting case. More emergent solutions like these are found

for the excited states, which are prohibited in the non-interacting case and yet contribute in the super-

position of Bethe-type hypothesis of the interacting many-body wave function. For instance, the emergent

solutions for the first excited state corresponding to (n1,n2)=(2,1) with approximate energy 7p2/8 are plane

waves with the momentum taking the values near half-integer-multiple of p, specifically, k0zð5p=2;p=2ÞT ,
k

0 0
zðp=2; 3p=2ÞT . This is an intrinsic feature for the mass-imbalanced system as we have noticed that no so-

lutions emerge in the equal mass case.

On the other hand, when g/N, the ground state and the first excited state tend to be degenerate. In this

case the transcendental Equations 32 reduce to
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Figure 4. Energy Spectrum of Two Atoms with Mass Ratio h = 3 in the Hard-Wall Trap as a Function of the

Interaction Strength g

The red solid lines show the eigenstates with even parity, and the blue dashed lines those with odd parity.
8>><
>>:

cot
k1 + k2

2
+ cot k2 = 0;

cot
k1 � k2

2
� cot k2 = 0:

(Equation 35)

From the above-mentioned equations, it follows that k1 = n1p and k2 = n2p/3 with n1 and n2 being integers.

The symmetry in the quasimomentum set, however, constraints the values of n1 and n2 to some specific in-

tegers. This can be understood as following: in the momentum set, not only k, but also k0 and k
0 0
, which are

related by collision operators in the group D6, necessarily satisfy the above-mentioned equations. For

example, when n1 = 1, n2 = 1, the momentum values k0 = sszk= ð0; 2p=3ÞT violate the Equations 35, whereas

n1 = 1, n2 = 2, k0 = sk= ð3p=2;p=6ÞT again fail them, etc. It can be shownwhen n1 = 1, theminimum value of n2
to satisfy Equation 35 is n2 = 5. So the lowest values for the quasimomentum are k = ðp; 5p=3ÞT , k0 =
ð2p; 4p=3ÞT , and k

0 0
= ð3p;p=3ÞT . In the infinitely interacting case, the ground state and the first excited

state are degenerate with eigenenergy 7p2/6, which is a little bit larger than the first excited state energy

of the non-interacting case. The solutions at these two limits are consistent with the alternative analysis in

the Transparent Methods B.

The finite interaction case interpolates between these two limits as shown in Figure 3. We find that the mo-

mentum points in the weak interaction case g = 0.1 are very close to the free particle case g = 0. Neverthe-

less, the heavy and light particles in the interacting case are entangled and the wave function is no longer a

product state. The quasimomentum points for the ground state occupy the vertices of two regular hexa-

gons on a circle in the phase space ðk1;
ffiffiffi
3

p
k2Þ, whereas the overlapped points in the free particle case

start to be split into two when the interaction gradually sets in. The ground state circle then expands toward

that of the first excited state with the increase of the interaction strength and finally joins it in the infinitely

interacting case, leading to the degeneracy of the two states, which is already clearly seen for g = 50 as

shown in Figure 3.
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Figure 5. The Normalized Probability Density r(x1,x2) for Two Unequal Mass Particles in the Hard-Wall Trap

The columns represent results for three interaction parameters g = 0.1, 1, and 10, respectively. The rows from top to

bottom are for the ground state, the first state, and the seventh excited state, respectively.
In Figure 4, we plot the energy spectrum E = ðk21 + 3k22Þ=8 as a function of the interaction g. We find that

every energy level corresponds to a fixed parity, as the corresponding wavefunction fulfills the parity

symmetry:

Jðx1; x2Þ = GJð � x1; � x2Þ; (Equation 36)

where the even parity is with sign ‘‘+’’ and odd parity with ‘‘�.’’ With the increase of g, the eigenvalues

generally increase except for some special states, e.g., the seventh excited state as shown in Figure 5

does not change with g. In the limit case g = N, two levels with opposite parity tend to be doubly degen-

erate, and the wave functions vanish along the line x1 = x2.

We note that the seventh excited state is an even parity state whose energy is independent of the interac-

tion strength. The existence of such a state is related to the emergence of a triple degenerate point in the

noninteracting limit g = 0. These three degenerate states are labeled by quantum numbers (n1,n2)=(5,1),

(4,2), and (1,3), respectively, which have no correspondence in the equal mass case. In the presence of inter-

action, the triple degeneracy is usually broken. Nevertheless, we can construct a wavefunction composed

of a superposition of triple degenerate eigenstates, which is the eigenstate of the interacting Hamiltonian

with eigenvalue irrelevant to the interaction strength. Explicitly, the wavefunction of this state is given by

Jðx1; x2Þ= 1ffiffiffi
3

p ½f5ðx1Þf1ðx2Þ

�f4ðx1Þf2ðx2Þ+f1ðx1Þf3ðx2Þ�;
(Equation 37)
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where

fnðxÞ =
ffiffiffi
2

L

r
sin

np

L

�
L

2
+ x

�

is the n-th single-particle eigenstate of the hard well. After some straightforward algebras, it is easy to

check that Jðx1; x2Þjx1 = x2
= 0, i.e., the wavefunction takes zero at x1 = x2, indicating that the state given

by Equation 37 is the eigenstate of Hamiltonian Equation 16 irrelevant to the value of g. Actually, there

are a series of such excited states, corresponding to the higher triple degenerate points in the noninter-

acting limit. Generally, triple degenerate states are characterized by the quantum numbers (n1,n2), which

should fulfill three conditions, i.e., n1+n2 is even, n1sn2, and n1s3n2. The corresponding wavefunction

can be written as

Jðx1; x2Þ= 1ffiffiffi
3

p �
fn1 ðx1Þfn2

ðx2Þ

Gfn
0
1
ðx1Þfn

0
2
ðx2ÞGfn

0 0
1
ðx1Þfn

0 0
2
ðx2Þ

i
;

where the selections of "G" depend on the concrete values of quantum numbers n1 and n2. An example for

the next excited state, independent of g, is labeled by quantum numbers (n1,n2)=(2,4), ðn0
1;n

0
2Þ = ð7; 1Þ, and

ðn0 0
1 ;n

0 0
2Þ = ð5; 3Þ.

In Figure 5, we display the probability density distribution rðx1; x2Þ=
���Jðx1; x2Þj2 for the ground state and

the first excited state as well as the seventh excited state with three typical interaction strength parameters

g = 0:1;1; 10. Comparing with the equal mass case, the two-body wavefunction no longer has exchange

symmetry; nevertheless, it keeps the parity symmetry. It is obvious that the density distribution fulfills

r(�x1,�x2) = r(x1,x2). We find that, with the interaction increased, particles will avoid occupying the

same position and the density along the diagonal line x1 = x2 is greatly suppressed. In the strong interaction

region, the density of the ground and first excited states exhibit almost the same density patterns. In the

infinitely repulsive limit, the densities for the degenerate states are exactly same with zero distribution

along the diagonal line. For the seventh excited state, it is clear that the density distribution is independent

of g and always gives zero along the diagonal line.

In summary, we study the problem of two interacting particles with unequal masses in a hard-wall trap and

unveil that the system is exactly solvable by using Bethe-type ansatz only for the mass ratio h = 3 or 1/3.

Since the Bethe-type ansatz is based on the wavefunction hypothesis, which requires finite superpositions

of plane waves, the solvability of the mass-imbalance quantum system is thus related to a problem of

seeking nonergodicity conditions in the classical elastic collision in a 1D hard-wall trap. In general, each

collision and reflection process of two particles with unequal masses gives rise to a new set of momentums

k1 and k2, which shall not form finite momentum distributions after multiple collisions. Nevertheless, we find

that finite momentum distributions after multiple collisions are available at specific values of mass ratio,

which is determined by the nonergodicity condition. For h = 3 or 1/3, the permitted momentums fulfill

the D6 symmetry. Based on the Bethe-type ansatz, we then exactly solve the quantum system with mass

ratio 3 and give Bethe-type-ansatz equations for arbitrary interaction strength. By solving the Bethe-

type-ansatz equations, we give the energy spectrum and wavefunctions of the mass-imbalance system

with h = 3, which are found to display some peculiar behaviors with no correspondence in the equal-

mass system.
Limitation of the Study

Although nonergodicity condition for the classical collision problem in a hard-wall trap includes a series of

solutions of mass ratio, the extended Bethe ansatz method can only give the exact solution for the two-par-

ticle quantum system with the mass ratio h = 3 or 1/3. Our method cannot be directly applied to solve the

three-particle system. The properties of many-particle interacting models with unequal masses are still not

clear and worth further investigating.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods

A. Solution to equations for nonergodicity condition

Here we show the derivation of the nonergodicity condition

η = tan2 lπ/2n, (S1)

by solving the equations

(s (η)σz)
n

(

k1
k2

)

= ±
(

k1
k2

)

(S2)

and

(σzs (η))
n

(

k1
k2

)

= ±
(

k1
k2

)

. (S3)

A quite useful tool, Chebyshev identity, is used to derive the relation for the matrix elements
of the nth power of the matrix.

Consider a unimodular matrix M given by

M =

(

a b
c d

)

, (S4)

where DetM = ad − bc = 1. Suppose that eigenvalues of the unimodular matrix M are given
by

λ1 = eiq and λ2 = e−iq, (S5)

then the n-th power of the matrix M can be represented as (Yeh et al., 1977)

Mn =

(

a b
c d

)n

=

(

aUn−1 − Un−2 bUn−1

cUn−1 dUn−1 − Un−2

)

, (S6)

where the function Un is defined as

Un =
sin (n+ 1) q

sin q
, (S7)

and q is given by the eigenvalues of the matrix M via the relation

TrM =λ1 + λ2 = 2 cos q. (S8)

The details for the derivation of the Chebyshev identity Eq. (S6) can be found in Ref.
(Yeh et al., 1977).

Now we let

M =s (η)σz =

(

η−1
η+1

−2η
η+1

2
η+1

η−1
η+1

)

(S9)

and

M′=σzs (η) =

(

η−1
η+1

2η
η+1

−2
η+1

η−1
η+1

)

. (S10)
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It is easy to check DetM = DetM′ = 1. Comparing M and M′, we find that the diagonal
terms are the same, i.e. M11 = M′

11, M22 = M′
22 and off-diagonal terms are opposite numbers

with each other, i.e. M12 = −M′
12, M21 = −M′

21. So the eigenvalues for two matrices are the
same and can be represented as

λ1,2 =
η − 1± 2

√−η

η + 1
. (S11)

From (S8), we can get the relation

cos q =
η − 1

η + 1
. (S12)

To solve the equation (S2) or (S3) is equivalent to solve

(M)
n
= ±

(

1 0
0 1

)

(S13)

or

(M′)
n
= ±

(

1 0
0 1

)

. (S14)

Using the Chebyshev identity (S6), we can find that (Mn)11 = (Mn)22 = (M′n)11 = (M′n)22.
The solutions of M and M′ satisfy the same relation

(Mn)11 = ±1,

this is
η − 1

η + 1
Un−1 − Un−2 = cosnq = ±1. (S15)

The solutions of (S15) are

q =
lπ

n
, l = 1, 2, 3 · · · .

Then we can also get

Un−1 =
sinnq

sin q
= 0,

which ensures that the off-diagonal terms of M and M′ are 0. Solving the equation (S12), we
get

η =
1 + cos q

1− cos q
=

1

tan2 lπ
2n

, l = 1, 2, 3 · · · . (S16)

Because l and n are both integers, (S16) can be written as other form

η =
1

tan2 (n−l)π
2n

= tan2
lπ

2n
, l = 1, 2, 3 · · · .

The solutions requires that the diagonal terms of matrix Mn(M′n) equal ±1 and off-diagonal
terms equal 0, so the sign of the off-diagonal do not affect the solutions.
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B. The hard-core limit and g = 0 limit

We consider two limit cases. The first case is the hard-core limit with g = ∞, in which the
wave function satisfies the boundary condition

Ψ|x1=x2
= 0.

Inserting the Bethe-type wave function into the above equation, we get a pair of equations:

Aj± = −Ak±, dj = sdk (S17)

and
Tj,±Aj± = −Tk,±Ak±. (S18)

Combining Eq. (S17) with Eq. (S18), we get the relation

Tj,−

Tk,−

= 1,

i.e.,

exp



iL
∑

l=1,2

3d2lj kl − iL
∑

l=1,2

d1lj kl



 = 1,

which gives rise to three independent equations:

exp [iL (3k2 − k1)] = 1,

exp [iL (3k2 + k1)] = 1,

exp [2iLk1] = 1.

By solving the above equations, we can get a series of solution k1 = l1π/L and k2 = l2π/3L,

where l1 and l2 are integers and some of them are redundant. Given that k = (k1, k2)
T

is
a solution of the above transcendental equations, all the quasimomentums obtained via djk
should also be the solution of transcendental equations, which gives some restrictions to the
values of l1 and l2. According to the ratio relations of the coefficients described by reflection
matrixes and Eq. (S17), the wavefunction can be written as

Ψ(x1, x2) = θ (x2 < x1) [Φk(x1, x2)

−Φk′(x1, x2) + e−ik2LΦk′′(x1, x2)]

±θ (x1 < x2) [Φk(−x1,−x2)

−Φk′(−x1,−x2) + e−ik2LΦk′′(−x1,−x2)]

where k′ = sk, k′′ = sσzk and

Φk(x1, x2)

= ei(k1x1+k2x2) − e−ik2Lei(k1x1−k2x2)

−eik1Lei(−k1x1+k2x2) + e−ik2L+ik1Lei(−k1x1+k2x2)

= 4e−i
k1+k2

2
L sin k1

(

L

2
− x1

)

sin k2

(

L

2
+ x2

)

. (S19)

It is interesting to note that two mass-imbalance hard-core particles moving in a 1D box is
equivalent to a triangle billiard system (Zhang et al., 2016; Wang et al., 2014; Gorin, 2001),
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and thus our exact result is helpful for understanding quantum billiard systems from a different
perspective.

The other case is the non-interacting limit with g = 0. In this limit, we have k1 = n1π/L
and k2 = n2π/L, where n1 and n2 are integers. Since the system is composed of particles
with different masses, the wavefunction can be written as a product state of two single-particle
wavefunctions

Ψ(x1, x2) = φn1
(x1)φn2

(x2),

where

φn (x) =

√

2

L
sin

nπ

L

(

L

2
+ x

)

is the eigenstate of the 1D hard-wall potential.
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