
MINI REVIEW
published: 21 January 2022

doi: 10.3389/fcvm.2021.801077

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 January 2022 | Volume 8 | Article 801077

Edited by:

James J. H. Chong,

The University of Sydney, Australia

Reviewed by:

Michele Miragoli,

University of Parma, Italy

*Correspondence:

Rong Wang

wangrongd@126.com

Specialty section:

This article was submitted to

Cardiovascular Biologics and

Regenerative Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 24 October 2021

Accepted: 29 December 2021

Published: 21 January 2022

Citation:

Huang W, Huo M, Cheng N and

Wang R (2022) New Forms of

Electrospun Nanofibers Applied in

Cardiovascular Field.

Front. Cardiovasc. Med. 8:801077.

doi: 10.3389/fcvm.2021.801077

New Forms of Electrospun
Nanofibers Applied in Cardiovascular
Field
Weimin Huang 1,2, Mengen Huo 3, Nan Cheng 2 and Rong Wang 2*

1 Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China, 2Department of Cardiac Surgery,

Chinese PLA General Hospital, Beijing, China, 3 Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences,

Beijing, China

Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent

years, regenerative medicine, tissue engineering and the development of new materials

have become the focus of attention this field, and electrospinning technology to prepare

nanofibrous materials for the treatment of cardiovascular diseases has attracted people’s

attention. Unlike previous reviews, this research enumerates the experimental methods

and applications of electrospinning technology combined with nanofibrous materials in

the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels

and cardiovascular patches from the perspective of cardiovascular surgery. In the end,

this review also summarizes the limitations, unresolved technical challenges, and possible

future directions of this technology for cardiovascular disease applications.
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INTRODUCTION

In 1985, Weinstein and Stason (1) have reported that coronary heart disease (CHD) is the leading
cause of death and disability in the United States. One in five Americans develops CHD on their
sixtieth birthday. Of these, 11% did die suddenly and another 44% suffered a non-fatal myocardial
infarction, with an economic burden of well-over $100 billion.

In today’s society, cardiovascular disease is still the leading cause of death throughout the world,
causing more than 17.9 million deaths each year (2). According to the American Heart Association
(AHA) estimates, by 2035, 46.1% of the US population will have some form of cardiovascular
disease, when the total cost associated with cardiovascular disease will be 1.1 trillion dollars (3),
which is enough to see the great harm and burden of cardiovascular disease to humans.

Myocardial infarction is usually due to the lack of oxygen and nutrients in the myocardium,
resulting in the death of cardiomyocytes (4). The myocardial tissue after infarction lacks the ability
of regeneration. Implanting tissue-engineered myocardium into diseased heart seems to be the
simplest way to repair infarcted myocardium. At present, the limitations of myocardial tissue
regeneration include the inability to fully summarize the structure and mechanical environment of
natural heart tissue (5). Scaffolds made of electrospinning nanofibers have been actively explored
for myocardial tissue regeneration.

As shown in the Figure 1, in order to improve the survival rate of stem cells in repairing
myocardial injury, electrospinning scaffolds are used to mechanically support and mimic
extracellular matrix structure to improve cell adhesion, viability, and regeneration (6).
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FIGURE 1 | Schematic diagram of cardiac patch repairing myocardial infarction. (A) When myocardial infarction occurs, collagen fibers proliferate and form scar

tissue. (B) Several weeks after treatment. (C) Several months after treatment. (D) Cardiac patch is made by electrospinning combined with 3D printing technology.

The patch simulates extracellular matrix (ECM) to provide mechanical support for cells. Created with BioRender.com.

More than 50% of all deaths caused by CVD are attributed
to vascular injury induced by vascular plaque aggregation, which
leads to vascular obstruction and sclerosis (7). People have been
trying to develop appropriate alternative vessels from autologous
vascular transplantation, allografts and synthetic grafts. However,
these sources could not meet the needs of alternative vessels,
especially the long-term patency rate of small-diameter vascular
transplantation has always been a difficult problem in the
world (8).

For more than 50 years, conventional coronary artery bypass
grafting (CABG) has been the gold standard for the treatment
of coronary heart disease (9). There are hundreds of thousands
of coronary artery bypass procedures in the world each year, for
small diameter grafts (<6mm), these synthetic grafts often failed
due to rapid occlusion and thrombosis, so there is still no effective
alternative to autologous vascular grafting (10, 11).

The patency and biocompatibility of small-diameter vascular
grafts synthesized by traditional tissue engineering strategies are
poor (32), and their clinical transformation is seriously limited
by high cost and long production time (20). In recent years,
tissue engineering using rapidly degradable materials can induce

the regeneration potential of the host, and summarize natural
tissue regeneration through reasonable graft design, including
structural optimization (30, 33) and functionalization (5, 34).

It is not only required that the small-diameter vascular stent
should have the characteristics of maintaining the blood flow
in the lumen without leakage, but also that it should have
anticoagulant and antithrombotic ability in function to prevent
stenosis and occlusion (35). Therefore, many researchers are
engaged in electrospinning technology to prepare grafts with
different materials, and study the methods to promote the
proliferation of vascular intimal endothelial cells and control
the proliferation of smooth muscle cells (SMCs). The general
method is to fold the electrospinning membrane into a tubular
structure through a rolling rod collector, and load heparin (22),
growth factors (36) and other active substances (37) on its
surface for the study of vascular tissue regeneration. As shown
in the Table 1, Animal models, included rat abdominal aorta
(19, 20, 29), rabbit carotid artery (21–23, 29), sheep carotid
artery (31) and canine femoral artery (38), are often used to test
the performance of vascular stents, ranging from several weeks
to months.
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TABLE 1 | Construction strategies and vivo/vitro experiments of electrospun fiber membrane in the reviews.

Nanofiber materials Diameter/Aperture Thickness (µm) Drugs or cells Animals Experiments Time

(weeks)

References

PCL Inner: 300 ± 100 nm

Out: 2.8 ± 0.13 µm

100µm Cardiomyocytes /fibroblasts Mice In vitro 1 (12)

PLGA N/A 110 ± 10µm Endothelial cells, VEGF

granules, dexamethasone

Mice Cardiac patch 2 (13)

PCL-Gelatin 578 ± 184 nm 115 ± 11µm hiPSC-CMs N/A In vitro 2 (6)

PCL 200–5,500 nm 50µm Bone marrow and heart

stem cells

Mice LAD in rats (suture) 3 (14)

β-PVDF N/A N/A TiO2 N/A In vitro 6* (15)

AuNRs 500 nm/20–60 nm 60–80/100–120µm Left ventricular

cardiomyocytes

Mice Cardiac patch (Near IR) 1 (16)

PCL/GelMA-Ppy

nanoparticles

948 ± 153 nm N/A Cardiomyocytes/fibroblasts Mice Cardiac patch 1.5 ×

1.5cm

4 (17)

PCL/NO 690 nm/3.4µm 600µm NO2 Mice Cardiac patch 0.4 ×

0.6cm

4 (18)

PCL/Heparin coating -/21.2 ± 0.79µm 295 ± 5.52µm Heparin Mice Aortic replacement 3 (19)

PLCL 6 µm/300 nm 500µm Hyaluronan Mice Aortic replacement 24 (20)

PELCL/chitosan-

hydrogel

Inner: 754 ± 385 nm

Out: 1,087 ± 526 nm

N/A Inner: VEGF

Out: PDGF

Rabbits Carotid artery

transplantation

4 (21)

PLCL 821 ± 102.87 nm 300 ± 17µm Heparin / Silk Fibroin Rabbits Carotid artery

transplantation

32 (22)

PCL 263.1 ± 90.2 nm N/A KSNO Rabbits Carotid artery

transplantation

4 (23)

PLA-PCL N/A 40 ± 7/175 ± 4µm Human fibroblast N/A In vitro 8 (24)

ADF4(C16) 1.6 ± 0.2µm N/A N/A Mice Arteriovenous loop

model

4 (25)

ESM/TPU 435.86 ± 173.27 nm 50–70µm HUVEC N/A In vitro 1 (26)

CS-PVA-CNT 255 ± 3.5 nm N/A MSCs N/A In vitro 3 (11)

CS/PLCL 110.09 ± 16.33nm 50µm Dextran Sulfate Mice In vivo 4 (27)

SF/TPU N/A 100–500µm SF (Silk Fibroin) Dogs Aortic wall repair 2 ×

1 cm

12 (28)

SF/PU 1.32 ± 0.78µm 100µm SF (Silk Fibroin) Mice Aortic wall repair, 0.3 ×

0.6 cm

24 (29)

PLA/PCL

PU/PCL

N/A 15.47 ± 1.31 µm

127.87 ± 2.38 µm

19.96 ± 1.18µm

HUVCEs/VSMCs N/A In vitro evaluation,

0.6 cm

1 (30)

PCL/collagen scaffolds 4.45 ± 0.81µm 400µm ECs/SMCs Sheep Carotid artery, 4.75mm

× 5 cm

24 (31)

PELCL/chitosan

hydrogel

754 ± 385 nm

1,124 ± 529 nm

N/A VEGF/PDGF Rabbits Carotid artery, 2.2mm 4 (21)

PCL, polycaprolactone; PLCL, poly(L-Lactide-co-caprolactone); PLGA, poly-lactic-co-glycolic acid; β-PVDF, β-polyvinylidene fluoride; AuNRs, albumin electrospinning fibers and gold

nanorods; GelMA-Ppy, methacrylic anhydride-gelatin-polypyrrole; PELCL, poly-(ethylene glycol)-b-poly(L-lactide-co-caprolactone); PLA-PCL, poly-L-lactide-co-poly-ε-caprolactone;

KSNO, NO donor of S-nitrosated keratin; ADF4(C16), one of the spider silk protein; ESM/TPU, double-layered eggshell membrane/thermoplastic polyurethane; CS-PVA-CNT, chitosan,

polyvinyl alcohol, carbon nanotube; HUVEC, human umbilical vein endothelial cell; MSCs, mesenchymal stem cells; VEGF, vascular endothelial growth factor; PDGF, platelet-derived

growth factor; ECs, endothelial cells; SMCs, smooth cells.

The “*” symbol represents the unit of data mentioned in the literature as hours, not weeks. The “N/A” symbol is not available which means that the data cannot be extracted or not

mentioned in this article.

With the development of tissue engineering technologies
in recent years, a series of nanofibrous materials based on
electrospinning technology have attracted much attention of
researchers (39).

In the field of cardiovascular tissue regeneration, compared
with traditional regeneration technology, electrospinning
technology has the following advantages:

1. The cardiac patches loaded with stem cells can repair the
infarcted myocardial region without limiting the later cardiac
systolic activity.

2. Simulating the unique physical structure of
natural cardiac leaflets, the leaflet structure with
the same anisotropy and mechanical strength
is provided.
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3. The vascular scaffold can be used to match the proliferation of
vascular endothelial cells with the degradation of the material,
so as to ensure a higher patency rate.

4. It can provide intelligent health monitoring function,
which can early evaluate and prevent acute and chronic
cardiovascular diseases.

In this study, we would focus on nanofibers, introduce the
progress of different electrospinning technologies in the field of
heart and vessel-related tissue engineering, compare the effect
of some nanofiber materials, and forecast the development
of electrospinning technology in the field of cardiovascular
medicine and the problems to be broken through.

Myocardial Infarction Repair
From the microstructure,Sharon Fleischer (12) divided the
myocardium into three fiber groups with specific effect and
different sizes: nanoscale endomysial fibers, perimysial fibers
with a diameter of 1µm and epimysium fibers with a diameter
of several microns. He also reported that the electrospinning
fiber stent with spring-like coiled fiber structure was conducive
to cardiac tissue engineering. Later, the team (13) designed a
cage structure with microgrooves and sidewall microchannel
albumin stent to arrange the cardiac tissue and accommodate
the growth of endothelial cells. This cage structure can also
accommodate the particle system, control the release of VEGF,
promote vascularization, and even load dexamethasone drugs
to achieve the effect. In addition, Zhu et al. (18) mixed
the polymer caprolactone with caprolactone NO2 to prepare
nitric acid-functionalized cardiac patches to implant the site of
myocardial infarction using the electrospinning method. The
results showed that NO was gradually released from the patch
under ischemic microenvironment, and the effect of NO patch
group was significant. What attracts our attention is an aligned
polycaprolactone (PCL) -Gelatin coaxial nanofiber patch was
fabricated by Kuma (6) using electrospinning. The results show
that cells on cardiac patches exhibit synchronous contraction
and exhibit a rapid response to cardiac drugs. The patches could
be scaled to serve as an in vitro drug screening platform for
cardiotoxicity studies.

Despite some success with cell-loading techniques, many
scaffolds have limited cell infiltration and low cell survival (40).
In order to overcome the limited cell infiltration of cardiac
patches and also consider the supporting mechanical properties
of these patches, Chen and Kan (14) designed the thickness of
the patches to about 50µm. Both bone marrow and human
cardiac stem cells cultured on these patches had good survival
and infiltration (∼30µm). In addition, the tensile strength of the
patch could withstand the severe pumping effect of myocardium,
confirming that the material prepared by this method has the
potential to be used as a scaffold for cardiomyocyte repair
and application. Unlike the above ideas, the glycosaminoglycan
(GAG) mimetic peptide nanofiber gel synthesized by Rufaihah et
al. (41) was injected into the infarct site, emphasizing its approach
of repairing the myocardium and inducing neovascularization
without adding any biologically derived factors or stem cells. This

predicts the possibility of electrospinning technology combined
with nanofibrous hydrogels in tissue engineering.

In order to avoid the problem of additional damage caused
by suturing the patch to the heart using surgical means in
the past, Malki et al. (16) developed a nanocomposite scaffold
composed of albumin electrospinning fibers and gold nanorods
(AuNRs), which was positioned and irradiated with a near-
infrared laser (808 nm), and AuNRs were able to absorb light
and convert it into thermal energy, locally change the molecular
structure of the fibrous scaffold, eventually attach it strongly
but safely to the heart wall. Subsequently, He et al. (17)
were inspired by mussels to design conductive nanofibrous
membranes to repair myocardial infarction by enhancing cardiac
function and revascularization. The result showed that 4
weeks after patch transplantation on the infarcted heart, the
infarct size was reduced by about 50%, the percentage of left
ventricular fraction was increased by about 20%, and the density
of neovascularization in the infarcted area was significantly
increased by about 9-fold compared with the control group.

In order for the patches to exhibit mechanical and conductive
properties similar to those of autologous myocardium, Walker
et al. (42) developed cardiac gaskets, first of which was gelatin
methacryloyl (GelMA), followed by highly adhesive fibrous
scaffolds modified with conjugated choline-based biological ionic
liquids (bio-IL), based on the formation of ionic bonds between
Bio-IL and native tissue, and the engineered patches adhered
strongly to rat myocardium without suturing.

In order to establish a model for evaluating the performance
of engineered heart in vitro, Polylactic acid (PLA) and poly-ε-
caprolactone (PCL) were used to fabricate the porous scaffold
via 3D printing and electrospinning, and then cardiomyocytes
from neonatal Sprague Dawley (SD) rats were cultured on the
PLA/PCL scaffold to construct the engineered cardiac tissue
(ECT). The strength and biocompatibility of the scaffold were
verified via evaluating the cell viability and mechanical beating
status (43). This work provides a new approach for evaluating
ECT, which is expected to be applied to pharmaceutical studies.

Tissue Engineering of Heart Valves
At present, biological valves also have some limitations, especially
in young patients, so it is critical to continue to develop
new materials. But heart valve tissue engineering still faces
challenges, for example, the valve component has three layers,
which are circumferential, random and radial, respectively,
which increases the difficulty of material preparation. Wu et al.
(44) began to believe that the hydrogel system of methacrylic
hyaluronic acid (Me-HA) and methacrylate gelatin (Me-Gel)
mixed with each other can simulate the unique 3D physiological
microenvironment of the ECM of native aortic valve leaflets,
but it was later found that these hydrogel materials lacked
macroscopic anisotropic structure and had weak extension
ability, so it was thought to compensate for the disadvantages of
hydrogels by adding fibrous components.

In order to better simulate the direction, Jana and Lerman
(45) from Mayo Clinic firstly designed three new collectors
to fabricate three nanofiber layers with these directions from
polymeric biomaterials in electrospinning systems.
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Cardiac Surgeries
In order to develop a new generation of biomaterials for closure
of atrial septal defect, Kaiser firstly designed chamber-deficient
patches using medical grade polyurethane loaded with bioactive
agents chitosan nanoparticles and collagen, followed by coating
with heparin (46). In the postoperative aspect of cardiac surgery,
sternal and epicardial adhesions increase the risk and complexity
of cardiac reoperation, which is a significant challenge for
the later rehabilitation of all patients who underwent cardiac
surgery again. Feng et al. (47) fabricated a bioabsorbable GT/PCL
compositemembrane to prevent adhesions in cardiac surgery in a
rabbit model and proposed its use as a novel pericardial substitute
for cardiac surgery.

Small-Caliber Vascular Grafts
At present, there are practical non-tissue engineered grafts for
large vessels in clinical practice, but doctors often face failure in
front of small-caliber vascular grafts due to the easy thrombosis.
To prevent thrombosis, Zhang et al. (21) developed two modified
coaxial electrospinning techniques, which are to achieve vascular
compliance. Interestingly, previous studies have been observed
in vascular transplantation experiments for a maximum of 3
months (19), while Qin et al. (20) reported the time up to 6
months. They agreed that the vascular smooth muscle layer is
essential for maintaining the mechanical strength and vasoactive
reactivity of blood vessels, so hyaluronic acid was loaded on
rapidly biodegradable vascular grafts in the study and concluded
that it promotes vascular smooth muscle regeneration.

However, Kuang et al. (22) considered that smooth muscle
cells (SMCs) are prone to excessive proliferation and cause
restenosis at the late stage of implantation. In order to
develop a safe and unobstructed artificial blood vessel, they
prepared a small-caliber artificial blood vessel with composite
nanofiber nucleocapsid structure by a combination of conjugated
electrospinning and lyophilization technology. The inner layer
providesmechanical support during vascular reconstruction. The
shell, heparin/silk fibroin layer, enhances the biocompatibility
of the graft, and the release of heparin at the early stage after
transplantation can regulate the microenvironment, promote
endothelial cell growth and inhibit smooth muscle proliferation.
This animal experiment showed that the graft patency time
remained more than 8 months, which far exceeded 3 months
which Wu has reported (19).

In order to better promote the endo-thelialization of
transplanted vessels and simulate the extracellular matrix,
hyaluronic acid oligosaccharide-modified collagen was fabricated
into nanofibers by electrospinning technique in Kang et al. (48)
from Shandong University. The in vitro experimental results
supported that it promoted endothelial cell proliferation and had
antithrombotic properties. Lee et al. (39) of Seoul University
encapsulated human ASC spheres in alginate-based scaffolding
structures by a combined 3D printing/electrospinning system.
In order to treat peripheral arterial occlusive disease, Dorati
preliminarily explored the replacement of artificial blood
vessels in damaged peripheral arteries, which showed that
the electrospinning technique was suitable for obtaining grafts

<6mm in diameter and between 140 ± 7 and 175 ±

4µm in thickness. Finally, vascular grafts with the best
mechanical properties similar to natural bovine blood vessels
were designed (24).

In order to reduce the toxicity of transplanted blood
vessels, Li et al. (23) synthesized a low-toxic NO donor of
S-nitrosated keratin (KSNO) and then co-electrospinning with
poly-ε-caprolactone to obtain NO-releasing small-diameter
vascular grafts. In order to improve the biocompatibility of
transplantation, Yan et al. (26) reported a wavy structure of small-
diameter, double-layered eggshell membrane/thermoplastic
polyurethane (ESM/TPU) vascular graft.

It is not easy to maintain good supporting performance of
transplanted blood vessels and make their cell adhesion strong.
To obtain vascular graft with stronger mechanical properties
and cell-guided growth ability, Liu has developed a biomimetic
three-layer vascular graft with strong mechanical properties and
cell-guided growth ability (30).

Of course, the strategy of vascular tissue engineering is
eventually to combine autologous vascular cells with tubular
biodegradable scaffolds, and Ju et al. did manufacture vascular
substitutes (31). This study demonstrates that electrospinning
double-layer vascular scaffolds combined with autologous
vascular cells may be a clinically applicable alternative to
conventional graft substitutes.

Vascular Patches
Vascular patches currently used in cardiovascular surgery
have several disadvantages, including material degeneration,
calcification, and pseudointimal hyperplasia leading to
hemodynamic disturbances (28). Initially Chantawong et
al. (29) created three patches of different composition using
an electrospinning method, all of which were made of a
combination of silk fibroin (SF) and a synthetic polymer
thermoplastic polyurethane (TPU). They implanted each type
of patch (n = 18) into the abdominal aorta of rats and assessed
histopathology at 1, 3, and 6 months after implantation, and
concluded that the increase in SF concentration in SF/PU patches
had a positive effect on vascular remodeling. Later, Shimada et al.
(28) in the team replaced part of the descending aortic wall of the
dog with SF/TPU patches for this experiment, and the patches
were removed 3 months later for histological examination.

Surgical Induction of Angiogenesis
Although encouraging results have now been achieved with tissue
engineering, the short-term integration of tissue-engineered
constructs with the host vasculature remains one of the major
obstacles (25). In addition to integrating endothelial cells (49)
or angiogenic growth factors (50), surgery-induced angiogenesis
appears to be a promising strategy to improve vascularization.
In 1980, Erol and Sira (51) demonstrated that neovascularization
of the skin through arteriovenous fistula is possible. A vascular
bed can be created by use of long inter-positional vein grafts.
In 2019, Steiner conducted a similar experiment which resulted
that spider silk proteins have good biocompatibility and slow
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biodegradation, thinner electrospinning fibers showed faster
biodegradation and vascularization (25).

DISCUSSION

Limitations and Challenges
In the past two decades, through electrospinning technology,
cell-loaded nanofiber scaffolds have been widely studied
in wound healing (52), drug delivery (53), and cardiac
patches (14, 15, 46, 54–56) have shown good performance
in preclinical studies of cardiac repair, there are still many
problems before clinical implementation (57), such as cardiac
patch therapy currently requiring open-heart surgery, which
causes anxiety in most patients with myocardial infarction (58),
low degree of cell infiltration and cell survival on electrospinning
scaffolds (40, 59), insufficient mechanical support performance
(60), and biocompatibility that cannot meet clinical
needs (61).

The current nanofiber scaffold technology is plagued by
some limitations that must be overcome in order to produce
highly functional and treatment-related functional engineered
cardiac tissues (fECTs), including: (1) Low porosity hinders the
deep penetration of seed cells, (2) When cardiomyocytes are
cultured on a rigid substrate mimicking a post-infarct fibrotic
scar, they lose their synchronized beating, and (3) It is difficult
to expand the technology currently used in human applications
(62, 63).

In terms of small vessel tissue engineering, Kuang et
al. transplanted composite nanofibrous small vessel grafts
prepared by a combination of conjugated electrospinning
and lyophilization techniques into rabbit carotid arteries (22).
Although this team considers matching the degradation rate
of vascular stents with the rate of tissue remodeling, it
remains a challenge to synchronize the stent degradation
rate and new tissue formation rate over a period of time
(64, 65).

Potential Development Direction of
Electrospinning
The primary goal of electrospinning technology in cardiovascular
tissue regeneration is to prepare good biomimetic scaffolds in
vitro to regenerate myocardium or vascular tissue and restore
their function, and then study their biocompatibility and specific
function in vivo tests (11, 27).

We may try to do the combination of electrospinning with
nanofiber hydrogels (66) to improve their mechanical properties.
We can also continue to develop more 3D printed scaffolds as
templates to promote cardiomyocyte infiltration (67).

The continuously updated electrospinning technology
will certainly promote the development of cardiovascular
tissue engineering, such as the melt electrospinning fabricated
sinusoidal fibers showing great potential in cardiac tissue
regeneration (68, 69).
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