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Abstract

In practical applications of computed tomography (CT) imaging, due to the risk of high radiation dose imposed on the
patients, it is desired that high quality CT images can be accurately reconstructed from limited projection data. While with
limited projections, the images reconstructed often suffer severe artifacts and the edges of the objects are blurred. In recent
years, the compressed sensing based reconstruction algorithm has attracted major attention for CT reconstruction from a
limited number of projections. In this paper, to eliminate the streak artifacts and preserve the edge structure information of
the object, we present a novel iterative reconstruction algorithm based on weighted total difference (WTD) minimization,
and demonstrate the superior performance of this algorithm. The WTD measure enforces both the sparsity and the
directional continuity in the gradient domain, while the conventional total difference (TD) measure simply enforces the
gradient sparsity horizontally and vertically. To solve our WTD-based few-view CT reconstruction model, we use the soft-
threshold filtering approach. Numerical experiments are performed to validate the efficiency and the feasibility of our
algorithm. For a typical slice of FORBILD head phantom, using 40 projections in the experiments, our algorithm outperforms
the TD-based algorithm with more than 60% gains in terms of the root-mean-square error (RMSE), normalized root mean
square distance (NRMSD) and normalized mean absolute distance (NMAD) measures and with more than 10% gains in terms
of the peak signal-to-noise ratio (PSNR) measure. While for the experiments of noisy projections, our algorithm outperforms
the TD-based algorithm with more than 15% gains in terms of the RMSE, NRMSD and NMAD measures and with more than
4% gains in terms of the PSNR measure. The experimental results indicate that our algorithm achieves better performance in
terms of suppressing streak artifacts and preserving the edge structure information of the object.
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Introduction

As an extremely valuable diagnostic tool, computed tomogra-

phy (CT) has been widely used in medical area. With this powerful

tool, many valuable internal features can be extract without

cutting the object [1,2]. However, during clinical exams, excessive

X-ray radiation exposure may increase the lifetime cancer risk

[3,4]. Thus, it has great significance to use shorter time of

radiation exposure and lower patient radiation dose to reconstruct

numerically accurate tomographic images. To reduce radiation

dose, few-view CT has been an important CT imaging modality.

In this scanning data situation, tomographic image is reconstruct-

ed from the projection data collected by sparse angular sampling

[5–9]. For few-view CT, due to the projection data obtained is not

theoretically sufficient for exact reconstruction of tomographic

images, conspicuous streak artifacts are present in reconstructed

images by conventional analytic algorithms such as filtered back-

projection [5,10–12]. In this paper, we mainly focus the iterative

reconstruction algorithm for few-view CT.

Since the development of the large computational capacities in

graphical processing unit and the ongoing efforts towards lower

doses have made in CT, iterative reconstruction has become a hot

topic for all major vendors of clinical CT systems in the past years

[13–17]. The algebraic reconstruction technique and simultaneous

algebraic reconstruction technique (SART) are two classical

reconstruction algorithms for CT image reconstruction [18,19].

Since the projection data are incomplete, using the two algorithms,

obvious artifacts and noise are present in reconstructed images.

With the development of compressed sensing theory [20–22],

compressed sensing based iterative reconstruction algorithm has

drawn much attention in the medical imaging and other

tomographic imaging modalities. By adopting the compressed

sensing based iterative reconstruction algorithm, the image can be

reconstructed from rather limited projection data [23]. In

mathematics, actually, CT image reconstruction with few-view
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projection data is taken as an ill-posed inverse problem. To solve

this problem, regularization method is usually adopted, and

corresponding unconstrained optimization problem can be

formulated [24]. In the unconstrained optimization problem, the

objective function usually contains two terms. The first term is

data fidelity term which constraints the data consistency between

measured projection data and model data. The second term is

regularization term which is designed according to the priori

information of the image.

In the CT reconstruction field, it is likely that images are not

sparse themselves, but image coefficients in some transform

domains show sparsity. In image gradient transform, the L1 norm

of the image gradient magnitudes (also known as total variation

(TV) of image) are approximately sparse. If Dh and Dv represent

the horizontal and vertical gradient operators respectively, then

TV regularization term can be expressed as

TV(u)~
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dhu)2

i z(Dvu)2
i

q
. This regularization term which

was originally proposed for image denoising [25], has been

extended in the field of few-view CT image reconstruction [5].

Subsequently, many other related reconstruction algorithms have

been developed [6–8,23,26].

In 1996, Li and Santosa suggested that total difference (TD)

which was defined as TD(u)~DDDhuDD1zDDDvuDD1, was a reliable

and computationally efficient approximation to the TV in image

restoration [27]. In 2010, by constructing a pseudo-inverse of the

discrete TD, a TD minimization algorithm with soft-threshold

filtering (TDM-STF) was developed for few-view CT. It can

improve the convergence and efficiency of TV based minimization

methods [28]. In the TDM-STF algorithm, TD is taken as the

regularization term. Later, the TDM-STF algorithm was applied

to a multisource x-ray interior imaging system [29]. In their work,

they accelerated the convergence speed of TDM-STF by

incorporating a fast iterative shrinkage thresholding algorithm

[30]. It shows that when obtaining the same image quality, the

TDM-STF may need less iterations and total computational cost

for practical application. However, the TD seeks the gradient

sparsity horizontally and vertically, but fails to enforce the gradient

continuity. Thus, the TD is prone to recovering an image of sharp

horizontal and vertical edges. To overcome this shortcoming of

TD, a new measure (called weighted total difference (WTD)

measure hereafter) was utilized by Shu and Ahuja for compressive

sampling [31]. In their work, they proposed a hybrid compressive

sampling method for recovering a piecewise smooth image from

limited measurements. Since the WTD measure exploits the

continuity and sparsity simultaneously in the partial gradient

domain, all possible sharper edges of the image can be recovered

from limited measurements. In [31], WTD measure was taken as

the regularization term. Note that model investigated in [31] is

different from the model for CT reconstruction since WTD

combines two complementary sampling systems for image

recovery. In this work, we consider incorporating WTD measure

into the model for CT reconstruction due to the good property of

WTD.

With the aim to eliminate the undesired streak artifacts and

preserve the edge structure information of the object, in this paper,

we propose a novel reconstruction algorithm based on WTD

minimization for few-view CT. The proposed reconstruction

model combines the CT imaging model and the WTD measure.

In the proposed reconstruction model, the WTD measure is taken

as the regularization term. The differences between the WTD in

current study and in the study [31] lie in the application fields and

the corresponding problems need to solve. To solve our model

effectively, the soft-threshold filtering (STF) method and a fast

iterative shrinkage thresholding algorithm are employed to

accelerate the converging speed of our algorithm. For simplicity,

in the following sections, we referred to our algorithm as WTDM-

STF.

The rest of the paper is organized as follows. In section Method,

we illustrate the CT imaging model and describe the WTDM-STF

reconstruction algorithm for few-view CT, together with an

efficient iterative scheme. Moreover, the data acquisitions and

performance evaluations are also outlined in this section. In the

following section, numerical results and discussion are presented

and conclusions are given in final section.

Methods

CT imaging model
The model of fan beam CT imaging can be approximated as

following discrete linear system [19]:

Au~g, ð1Þ

where g~½g1,g2,:::,gM �T[RM is the measured projection data

which can be represented by a vector of size M, M is the number

of the transmission rays, gi is the ray-sum measured with the ith

ray, u~½u1,u2,:::,uN �T[RN denotes the image to be reconstructed

which can be represented by a vector of size N, N is the number of

image pixels. A~(ai,j) [RM|RN is the system matrix which

represents forward projection. The system matrix weight ai,j

represents the contribution of the jth pixel to the ith ray-sum. In

our experiments, the system matrix weights ai,j are computed by

calculating the intersection length of the ith ray through the jth
pixel. Given the projection data acquired from the detector, the

aim for image reconstruction is to solve the Eq. (1) for u from the

measured data g. As for few-view CT problem, the number of the

measured projection data M is much smaller than the number of

image pixels N, then, the Eq. (1) is underdetermined. Therefore,

Figure 1. A typical slice of the FORBILD head phantom.
doi:10.1371/journal.pone.0109345.g001
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how to reconstruct approximately accurate CT image is important

for practical applications.

The WTDM-STF algorithm
Inspired by the wok in [31], the WTD measure not only

enforces the gradient sparsity horizontally and vertically, but also

enforces the gradient continuity. By the WTD measure, the sharp

and clear edges can be better preserved than TD. The WTD of

image u is defined as follows

Figure 2. Images reconstructed by SART (first row), TDM-STF (second row) and WTDM-STF (third row) algorithms after 50, 100, 200,
400 iterations using noise-free projections, respectively. The gray scale window is set to [1.03, 1.08].
doi:10.1371/journal.pone.0109345.g002

Figure 3. Zoom-in views of images reconstructed by SART (first row), TDM-STF (second row) and WTDM-STF (third row) algorithms
after 50, 100, 200, 400 iterations, respectively. The gray scale window is set to [1.03, 1.08].
doi:10.1371/journal.pone.0109345.g003
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WTD(u)~DDDhuDD1zDDDvuDD1za(DDDhvuDD1zDDDvhuDD1)

~
X

i

X
j

DDhui,j DzDDvui,j Dza(DDhvui,j DzDDvhui,j D)
ð2Þ

Where Dh, Dv, Dhv and Dvh are respectively horizontal, vertical

and two diagonal partial gradients operators, i.e.,

Dhui,j~uiz1,j{ui,j , Dvui,j~ui,jz1{ui,j , Dhvui,j~uiz1,jz1{ui,j ,

Dvhui,j~ui,jz1{uiz1,j . The first two terms measure the gradient

sparsity; the last two terms measure the gradient continuity, and

the parameter a plays a crucial role in balancing the gradient

sparsity and the gradient continuity. In this work, we combine the

WTD (see also in Eq. (2)) and CT imaging model (see also in Eq.

(1)) to formulate a novel reconstruction model for few-view CT.

Using WTD(u) as the regularization term, the developed image

reconstruction model can be expressed as

min
u

DDAu{gDD22z2v:
X

i

X
j

Duiz1,j{ui,j DzDui,jz1{ui,j D

za(Duiz1,jz1{ui,j DzDui,jz1{uiz1,j D),
ð3Þ

From the model above, the TD-based image reconstruction model

[28] is one special case of model (3), which is equivalent to the

model (3) when a equals to zero. In our work, we fix the parameter

a equals to 1.0, which equally penalizes the gradient sparsity and

the gradient continuity. The difference between TD-based image

reconstruction model and our model lies in the original TD-based

regularization just enforces the sparsity horizontally and vertically

in the gradient domain, while the sparsity diagonally and the

directional continuity of gradients are not considered. Therefore,

the sharp and clear edges in the CT image can be well preserved

along more directions by our reconstruction algorithm.

To solve the above model in (3), there are many ways, such as

soft-threshold filtering (STF) method [32,33] and Split Bregman

method [34]. The STF method, whose convergence and efficiency

have been theoretically proven, has already been applied for CT

reconstruction in [28,29]. Similar to [29], in this work, we solve

our reconstruction model in the soft-threshold filtering framework.

After the soft-threshold filtration, we need to construct a pseudo-

inverse of the WTD. The detailed iterative steps of our WTDM-

STF algorithm can be summarized as the following:

(1) Initialization:

n~0, u(n)~0, utemp~0, tn~1, a~1:0.

(2) The data constraint step. Update u(n) using the SART

formula:

~uunz1
j ~un

j {cn 1

PM
i~1

ai,j

XM
i~1

ai,jPN
j~1

ai,j

(gi{Aiu
n), j~1,2, . . . ,N:

where cn is a relax parameter.

(3) Soft-threshold filtering step, the pseudo-inverse of u
(nz1)
i,j is

constructed similar to reference [28],

u
(nz1)
i,j ~

1

4z4:a
(q(v,~uu(nz1)

i,j ,~uu(nz1)
iz1,j )zq(v,~uu(nz1)

i,j ,~uu(nz1)
i,jz1 )zq(v,~uu(nz1)

i,j ,

~uu(nz1)
i,j{1 )zq(v,~uu(nz1)

i,j ,~uu(nz1)
i{1,j )za:((q(v,~uu(nz1)

i,j ,~uu(nz1)
iz1,jz1)zq(v,~uu(nz1)

i,j ,

~uu(nz1)
iz1,j{1)zq(v,~uu(nz1)

i,j ,~uu(nz1)
i{1,j{1)zq(v,~uu(nz1)

i,j ,~uu(nz1)
i{1,jz1)),

where

Figure 4. 1D profiles of the images reconstructed by different algorithms using noise-free projections. (a) Horizontal profiles (240th
row, 200th column to the 300th column); (b) Vertical profiles (258th column, 180th row to the 260th row).
doi:10.1371/journal.pone.0109345.g004

Table 1. Evaluations of the results reconstructed by different algorithms (with 400 iterations from noise-free projections for a
typical slice of the FORBILD head phantom).

RMSE PSNR NRMSD NMAD

SART 0.0843 21.9048 34.4883 0.0618

TDM-STF 0.000266 71.9376 0.1087 0.000155

WTDM-STF 0.000102 80.2738 0.0416 0.000037

doi:10.1371/journal.pone.0109345.t001
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q(v,y,z)~

(yzz)=2, if Dy-zDvv

y{v=2, if y-z§v

yzv=2, if y-zƒ{v:

8><
>:

the threshold v~maxi Dri D, r~A�(g{Au) [33].

(4) Acceleration technique:

h~u(n);

tnz1~
1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z4t2

n

p
2

;

u(nz1)~hz(
tn{1

tnz1
)(h{utemp);

utemp~h;

(5) Initialize next loop:

n~nz1, u(n)~u(n{1);

Return to step (2) until the stopping criteria is satisfied.

From the iterative reconstruction algorithm mentioned above,

each main loop of WTDM-STF algorithm is divided into three

steps. These three steps are performed in the manner of

alternating iteration in each of main loop. The first step is the

data constraint step, which utilizes SART formula to reduce the

data discrepancy between original projection data and the forward

projection of the reconstructed image. The second step is the soft-

threshold filtering step, which is adopted to reduce the WTD of

the image. In the third step, an acceleration technique is employed

to accelerate the converging speed of the WTDM-STF algorithm.

From the Soft-threshold filtering step mentioned above, it is found

that the pseudo-inverse of u
(nz1)
i,j not only related to the results of

soft-threshold filtration function q(v,y,z), but also related to the

parameter a. The parameter a here determines the weight of the

contribution of four diagonal pixels to the center pixel. By this

process, the directional continuity of gradients can be effectively

enforced. Thus, the edge structure information of the object can

be effectively preserved and the streak artifacts can be significantly

reduced.

Data acquisitions
To demonstrate the validity of our WTDM-STF algorithm, we

implemented it on a PC (2.67 GHz Intel Core i5 CPU, 4.0 G

Figure 5. Different performance evaluations as a function of iteration numbers on the reconstructions by TDM-STF and WTDM-STF.
doi:10.1371/journal.pone.0109345.g005
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memory, Windows 7 operating system) coded in Microsoft Visual

C++2008. We tested the reconstruction algorithms for few-view

CT using a typical slice of low-contrast FORBILD head phantom

with matrix size 5126512 [35] shown in Figure 1. Since the high-

frequency and high-contrast fine inner ear structures caused severe

artifacts overlapping with the low-contrast structures, more

projections were used to reconstruct low-contrast structures well.

In our experiments, the projection data is generated at 40 view

angles specified by:

hi~
90|(i{1) 1ƒiƒ20

90|(i{0:5) 20viƒ40

�
ð4Þ

Though sparse, the angles cover 3600 about the object. We

chose a circular scanning locus of radius 51.1 cm and fan-beam

geometry. The object was fixed, the X-ray source and the detector

rotated around the rotation axis synchronously. The distance

between source and rotation axis was set to 293.1 cm. The pixel

size of the reconstructed image was 0.160.1 cm2. The equi-

distance virtual detector array we used had 1025 elements, each of

which had an aperture 0.05 cm. The noise-free projection data are

generated by applying the system matrix to the typical slice of the

FORBILD head phantom. For the noisy case, the noisy projection

data are generated by adding Gaussian noise to the noise-free

projection data generated previously. The standard deviation of

the Gaussian noise is 0.05% of the maximum value of the

projection data and the average value is zero.

Performance evaluations
To evaluate the performance of the WTDM-STF for few-view

CT image reconstruction, the following four metrics were utilized:

(1) root-mean-square error (RMSE); (2) peak signal-to-noise ratio

(PSNR); (3) normalized root mean square distance (NRMSD) [36];

(4) normalized mean absolute distance (NMAD) [36]:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q

XQ

m~1

(u(m){utrue(m))2

vuut ð5Þ

PSNR~10 log10

MAX 2(utrue)

1
Q

PQ
m~1

(u(m){utrue(m))2

0
BBB@

1
CCCA ð6Þ

NRMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ
m~1

(u(m){utrue(m))2

PQ
m~1

(utrue{utrue(m))2

vuuuuuut ð7Þ

NMAD~

PQ
m~1

Du(m){utrue(m)D

PQ
m~1

Dutrue(m)D
ð8Þ

where u denotes the image reconstructed, utrue denotes the original

phantom image, MAX (utrue) denotes the maximum density value

of the original phantom image, DxD denotes the absolute value of x,

utrue denotes the average of the densities in the interest of region

(ROI) wherein m indexes the pixels in the ROI. Q is the number

of pixels in the ROI. Both the values of NRMSD and NMAD are

close to 0 if the reconstruction is approximately equal to original

phantom image. The NRMSD and NMAD measures emphasize

different aspects of image quality. A large difference in a few places

causes the value of NRMSD to be large. Note that the value of

NRMSD is 1.0 if the reconstruction is a uniformly dense image

with the correct average density. As opposed to NRMSD, NMAD

emphasizes the importance of a lot of small errors rather than of a

few large errors. Note that the value of NMAD is 1.0 if the

reconstruction is a uniformly dense image with zero density.

Statistical Analysis
Statistical analysis is performed using a user-friendly statistical

software (MedCalc [37], Ostend, Belgium). To assess the

performance evaluations of image quality (RMSE, PSNR,

NRMSD, NMAD) presented in (5)–(8), the tests of statistical

significance are performed using 500 slices of the FORBILD head

phantom. First, we perform the F-test. If the associated (two-sided)

P-value is less than the conventional 0.05, the null hypothesis is

rejected and the conclusion is that the two variances do indeed

differ significantly. If the P-value is low (P,0.05), the variances of

the two samples cannot be assumed to be equal and it should be

considered to use the t-test with a correction for unequal variances

(Welch’s t test, [38]). The variables are expressed as Mean 6 SD

(standard deviations). For Welch’s t test, when the P-value is less

than the conventional 0.05, the null hypothesis is rejected and the

conclusion is that the two means do indeed differ significantly.

Results and Discussion

In order to verify the superiority of our WTDM-STF algorithm,

we made the comparison with the following two algorithms: (1) the

classical SART algorithm and (2) the acceleration version of

TDM-STF algorithm [28], respectively. For all the above

reconstruction algorithms, the stopping criterion was defined as

reaching the maximum iteration number 400. In all the

experiments, we set the relax parameter cn~0:1 in the SART

iteration formula. For all iterative reconstruction algorithms, the

initial image was u(n)~0.

Figure 2 shows the images reconstructed by different algorithms

using 40 noise-free projections. The images from up to bottom are

reconstructed by SART, TDM-STF and WTDM-STF, respec-

tively. The images from left to right are reconstructed with 50,

100, 200, 400 iterations respectively. The gray scale window is set

to [1.03, 1.08]. It can be found that the images reconstructed by

SART have severe streak artifacts due to the few-view projection

data. While the artifacts can be better suppressed by TDM-STF

and WTDM-STF after certain iterations. In the earlier iterations

(such as 50 and 100 iterations), the reconstructed images are

distorted nearby the high-contrast fine inner ear structures. With

the increase of the iteration numbers, the streak artifacts are

effectively reduced by WTDM-STF and TDM-STF. As can be

seen from the first column of Figure 2, the WTDM-STF has more

advantage of reducing the streak artifacts than TDM-STF. From

the following two columns of Figure 2, we also come to the

conclusion that the streak artifacts can be suppressed more

effectively by WTDM-STF than TDM-STF. From the last column

of Figure 2, it shows that when the iteration number is big enough,

the reconstruction results have similar quality of vision. However,

since the WTD measure enforces the gradient sparsity and the

Image Reconstruction for Few-View Computed Tomography
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gradient continuity, the streak artifacts can be better suppressed by

WTDM-STF than TDM-STF.

To further demonstrate the superiority of our algorithm, the

zoom-in views of the images reconstructed corresponding to the

selected region in Figure 1 are shown in Figure 3. It illustrates that

the images reconstructed by WTDM-STF have superior image

quality for different iterations. And the streak artifacts are

significantly reduced by WTDM-STF and TDM-STF with the

increase of iterations. Moreover, it shows that the edges are more

accurate and better preserved by WTDM-STF in term of

maintaining the structure information of ROI.

To visualize the difference between WTDM-STF and TDM-

STF, Figure 4 displays the horizontal and vertical profiles of the

images reconstructed by WTDM-STF and TDM-STF. Figure 4(a)

shows the horizontal profiles across the 240th row from the 200th

column to the 300th column. Figure 4(b) shows the vertical

profiles across the 258th column from the 180th row to the 260th

row. It can be seen that the profiles of WTDM-STF match well

with that from the typical slice of original phantom. The results

indicate that the gains than from the WTDM-STF are more

noticeable compared with those from the TDM-STF.

In addition to visual inspection of the results, Table 1 lists the

RMSE, PSNR, NRMSD and NMAD measures of the images (as

shown in Figure 3) reconstructed by SART, TDM-STF and

WTDM-STF with 400 iterations. The quantitative results from

both the TDM-STF and WTDM-STF exhibited better results

than that from the SART algorithm in terms of the four measures.

As can be observed from the Table 1, the WTDM-STF

outperforms the TDM-STF with more than 60% gains in terms

of the RMSE, NRMSD and NMAD measures and with more

than 10% gains in terms of the PSNR measure. In Table 1, the

WTDM-STF shows better performance since the artifacts near the

edge of the object affect the accuracy of the image reconstructed.

Considering the gradient sparsity and gradient continuity simul-

taneously in WTDM-STF, the reconstruction is more closer to

typical slice of original phantom image, where the edge structure

information of the object has been better preserved. In the

experiments, it finds that the more the iterations, the better the

image quality. Thus, to clearly demonstrate the superiority of

WTDM-STF, the reconstructions after 150 iterations are consid-

ered. Figure 5 shows different performance evaluations as a

function of iteration numbers on the reconstructions. It can be

observed that the WTDM-STF consistently outperforms TDM-

STF in these profiles.

In the practical applications, the projection data usually

contains measurement noise. Then, we repeated the aforemen-

Figure 6. Images reconstructed by SART (first row), TDM-STF (second row) and WTDM-STF (third row) algorithms after 50, 100, 200,
400 iterations using noisy projections, respectively. The gray scale window is set to [1.03, 1.08].
doi:10.1371/journal.pone.0109345.g006

Table 2. Evaluations of the results reconstructed by different algorithms (with 400 iterations from noisy projections for a typical
slice of the FORBILD head phantom).

RMSE PSNR NRMSD NMAD

SART 0.0858 21.7519 35.1011 0.0630

TDM-STF 0.0030 50.7433 1.2467 0.0019

WTDM-STF 0.0024 52.8677 0.9762 0.0016

doi:10.1371/journal.pone.0109345.t002
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tioned experiments. Figure 6 gives the reconstructed images from

noisy projection data. It can be found that the SART suffers severe

streak artifacts. Compared with TDM-STF and SART, WTDM-

STF causes fewer artifacts and the edges are better kept. Table 2

lists the same quantitative evaluations as in Table 1 but from noisy

cases with 400 iterations. From Table 2, it shows that the results

by our algorithm have better performance which are consistent

with the results presented in Table 1. As can be observed from the

Table 2, the WTDM-STF outperforms the TDM-STF with more

than 15% gains in terms of the RMSE, NRMSD and NMAD

measures and with more than 4% gains in terms of the PSNR

measure. The good performance of WTDM-STF is attributed to

the WTD measure which can better suppress noise and preserve

the edge of the object. Figure 7 also shows different performance

evaluations curves as Figure 5. It can be observed that, for noisy

case, the WTDM-STF slightly outperforms TDM-STF in terms of

these performance evaluations. Therefore, the WTDM-STF is a

more robust algorithm for few-view CT.

To further support the conclusion statements and assess the

performance evaluations of image quality presented in Tables 1

and 2, we performed the tests of statistical significance using 500

slices of the FORBILD head phantom. For the experiments

mentioned above, we perform the F-test first. Since the P-values

are low (P,0.05), the variances of the these samples cannot be

assumed to be equal. Thus, we perform the Welch’s t test. The

statistical analysis results of performance evaluations of image

quality between different algorithms with 100 iterations for 500

reconstruction images are summarized in Tables 3 and 4,

respectively. The variables are expressed as Mean 6 SD. From

Table 3, there are obvious statistical differences in the values of

RMSE, PSNR, NRMSD, NMAD between any two algorithms

(P,0.0001). And the values of RMSE, NRMSD, NMAD by

Figure 7. Different performance evaluations as a function of iteration numbers on the reconstructions by TDM-STF and WTDM-STF
from noisy projection data.
doi:10.1371/journal.pone.0109345.g007

Table 3. Summary of Welch’s t test analysis results of performance evaluations of image quality between different algorithms
(with 100 iterations from noise-free projections for 500 slices of the FORBILD head phantom).

P-value

Item SART (A) TDM-STF (B) WTDM-STF (C) A vs. B A vs. C B vs. C

RMSE 0.0384960.01882 0.00272860.002386 0.00220860.001087 ,0.0001 ,0.0001 ,0.0001

PSNR 34.592165.3182 57.840064.2862 58.867563.0864 ,0.0001 ,0.0001 ,0.0001

NRMSD 0.0667160.02806 0.00478660.003732 0.00393560.001619 ,0.0001 ,0.0001 ,0.0001

NMAD 0.0322360.01181 0.00169260.001054 0.00128460.0006269 ,0.0001 ,0.0001 ,0.0001

doi:10.1371/journal.pone.0109345.t003
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WTDM-STF are significantly lower than that of TDM-STF and

SART. The value of PSNR by WTDM-STF is higher than that of

TDM-STF and SART. From Table 4, the values of RMSE,

PSNR, NRMSD, NMAD of WTDM-STF and TDM-STF had

significant statistical difference from that of SART (P,0.0001). It

shows that both WTDM-STF and TDM-STF have better

performance than SART. There are significant statistical differ-

ences between WTDM-STF and TDM-STF in RMSE

(P = 0.0021,0.05), NRMSD (P = 0.0006,0.05), NMAD (P,

0.0001). The values of RMSE, NRMSD, NMAD show that

WTDM-STF has better performance than TDM-STF. There is

no obvious statistical difference in the PSNR value between

WTDM-STF and TDM-STF (P = 0.0925.0.05).

For the experiments implemented mentioned above on a PC

(2.67 GHz Intel Core i5 CPU), the average computation time per

iteration of WTDM-STF, TDM-STF and SART are 2.01 s,

1.97 s and 0.95 s respectively. The average computation time of

WTDM-STF, TDM-STF are longer than SART, which are due

to the extra time that takes by soft-threshold filtering step. And

there is small difference between the average computation time of

WTDM-STF and TDM-STF. However, the parallel technique

such as GPU implementation can be adopted to speed up these

algorithms.

Conclusion

To solve the problem in few-view CT image reconstruction, we

present a novel iterative reconstruction algorithm based on

weighted total difference minimization with soft-threshold filtering

(WTDM-STF). In this algorithm, the weighted total difference

(WTD) is taken as our regularization term to constrain the

gradient sparsity and the gradient continuity for image recon-

struction in space domain. Compared with TDM-STF algorithm

in which the total difference (TD) acts as the regularization term,

our WTDM-STF algorithm is more effective for few-view CT. It is

inferred from the experiments that from limited projection data,

our WTDM-STF algorithm shows more advantages than other

algorithms in terms of image quality and convergence speed. The

streak artifacts can be better suppressed and more accurate images

can be generated by our WTDM-STF algorithm for few-view CT.

And more edge structure information of the object can be

preserved compared with the traditional ones. While for limited-

angle CT, that is the projections are collected in a limited angular

range less than p, our algorithm may need to be improved since

the artifacts caused by this case are more complicated than that of

few-view CT. As limited-angle CT is also an important CT

imaging modality for reducing the patient radiation dose, we will

investigate the method for this case in the future work. For this

work, while the few-view reconstruction problem was investigate

only in fan-beam CT, the WTDM-STF algorithm can be

extended to cone-beam CT straightforward.
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