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Abstract
The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. 
The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made 
it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of 
Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds 
have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus 
analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's 
endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signal-
ing pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune 
system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which 
is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical 
COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory 
and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical 
trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in 
these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating 
the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood 
vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and 
their possible mechanisms of action are also described.
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Introduction

The newest member of the coronavirus family, named SARS-
CoV-2 or formerly 2019 novel coronavirus (2019-nCoV)—a 
beta-coronavirus from RNA viruses—is a causative agent 
of a crucial respiratory infection known as COVID-19 in 

patients [1]. The genetic material of SARS-CoV-2, which is 
attached to the virus's Nucleocapsid protein, consists of 26 
to 32 Kbps [1, 2]. This virus was first identified in December 
2019 in Wuhan, Hubei Province, Mainland China [3]. In 
March 2020, SARS-CoV-2 spread to more than 114 coun-
tries, prompting the World Health Organization to announce 
a pandemic for SARS-CoV-2 [4]. The virus is hypothesized 
to have been originally a zoonotic virus transmitted from 
animals to humans, although human-to-human transmission 
of the 2019-nCoV has led to its spread [5].

Coronaviruses are generally classified into four primary 
groups: alpha, beta, delta, and gamma [6]. SARS-CoV-2, 
as a beta-coronavirus, has various structural proteins. Spike 
protein, nucleocapsid protein, and membrane proteins are 
among the most crucial structural proteins of SARS-CoV-2 
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that can stimulate the immune system [1, 2]. The virus enters 
host cells through endocytosis by binding to Angiotensin-
Converting Enzyme 2 (ACE2) receptors present on the cell 
membrane and begins to replicate by exploiting the host cell 
replication machine [7]. In addition to the lungs, ACE2 is 
present on the cell membrane of other tissues such as the 
heart, kidneys, testes, and intestines, enabling SARS-CoV-2 
to infect these organs [8, 9].

COVID-19 is generally considered a respiratory disease 
that involves the lungs. It can cause disparate symptoms such 
as fever, dry cough, fatigue and headache. [10]. Although 
in most patients SARS-CoV-2 results in mild symptoms, 
however in some patients, this infection may cause acute 
and widespread damages such as septic shock, acute kid-
ney injury (AKI) and acute respiratory distress syndrome 
(ARDS) [11, 12]. In COVID-19, like other infectious dis-
eases, fever occurs due to the release of various cytokines 
and their effects on the hypothalamus. All symptoms of 
SARS-CoV-2 infection occur due to the stimulation of the 
immune system and activation of innate and acquired immu-
nity against this virus [13]. When SARS-CoV-2 enters the 
body, it is firstly detected by innate immunity cells and their 
receptors (such as Toll-like receptor 3 (TLR-3)) [14] which 
results in the formation of NLRP3 inflammasomes and 
inflammatory responses [15]. CD4 + and CD8 + cells have a 
remarkable role in the synthesis of cytokines and chemokine 
and acquired immunity activation [16]. CD8 + cells clear 
viruses from the body by activating cytotoxic pathways 
[17]. CD4 + cells are involved in synthesizing and releasing 
chemokines and cytokines from the immune cells by dif-
ferentiating into T-helper 1 cell (Th1) [18]. Cytokines and 
various compounds such as interleukins (ILs)-1 ɑ/β, IL-2, 
IL- 4, IL-6, IL-10, IL-17 and TNF-ɑ. [19], are produced 
when cells get infected by SARS-CoV-2, culminating in 
the migration of lymphocytes and leukocytes to the lesion 
site [20]. This mechanism can lead to the overproduction 
of cytokines (known as cytokine storm), damage to normal 
lung cells, destruction of lung tissue, and even critical con-
dition or death [13, 18]. A detailed account of COVID-19 
impacts on the immune system as well as its immunopathol-
ogy ramifications is illustrated in Fig. 1.

It is hypothesized that the application of immunomodula-
tory drugs can neutralize these cytokines or prevent critical 
conditions in patients by inhibiting the function of harm-
ful molecules [21]; for this reason, these drugs have been 
considered for the treatment of COVID-19. So far, only one 
particular antivirus drug called Molnupiravir is suggested 
for COVID-19 treatment [22]. However, various antiviral 
agents with different mechanisms of action have been used 
for COVID-19 patients in clinical trials, which sometimes 
have been effective and sometimes ineffective [23]. This 
review paper is aimed at summarizing the immunomodula-
tory drugs administered to treat COVID-19 or alleviate its 

symptoms. It also tries to investigate the possible mechanism 
of action and clinical trials implemented to express their 
effectiveness or ineffectiveness. In the following section, the 
most critical immunomodulatory agents from different drug 
families are reviewed.

Main text

The following describes the possible mechanism of action 
and pharmacological properties of some critical agents from 
various family drugs, which are discussed or seem to be 
effective for modulating immune system responses after 
SARS-CoV-2 infection.

Anakinra

Anakinra is an anti-inflammatory drug that is primarily 
applied to treat Rheumatoid arthritis (RA). Interleukin-I and 
other cytokines are involved in the development of RA [24]. 
This issue has drawn the attention of scientists and research-
ers to anti-rheumatoid medications because in COVID-19 
infection, like RA [25], over activation of the immune sys-
tem and overproduction of cytokines such as IL-1 worsen 
the patient's condition [26]. In 1980, after discovering Inter-
leukin-I Receptor Antagonist (IL-I Ra)—which is naturally 
present in the synovial membrane—various proteins and 
antagonistic compounds were adopted for RA treatment 
via inhibiting the function of interleukins or other path-
ways [27, 28]. After the detection of endogenous IL-1Ra, 
it was isolated. After the purification and determination of 
its amino acid sequence, its mRNA and synthesized cDNA 
were inserted into the Escherichia coli (E. coli) genome for 
protein expression [29]. This produced human recombinant 
protein in E. coli, which had IL-1R antagonistic properties, 
was called Anakinra. This therapeutic protein with a molecu-
lar weight of about 17 kDa can exert its effect by binding 
to Interleukin-I Receptors (IL-1Rs) that are present on the 
surface of T cell membranes [30]. It is primarily capable of 
inhibiting the function of both IL-1ɑ and IL-1β. Anakinra's 
mechanism of action against IL-1 is conducted by suppress-
ing the natural binding of IL-1 to IL-1Rs and IL-1 accessory 
portion (IL-1Acp) that are present on the exterior of T cell 
membranes. In fact, in the absence of Anakinra, IL-1 binds 
to IL-1R and IL-1Acp to activate intracellular signaling 
pathways and stimulates T cells [28]. IL-1 can also stimu-
late the production of Prostaglandin E2 (PEG2) or metal-
loprotease enzymes and the degradation of peptidoglycans 
[28, 31]. Anakinra also inhibits IL-1-induced hyaluronic 
acid (HA) production in cartilage [32]. It is hypothesized 
that these positive effects of Anakinra can effectively block 
the destruction of lung tissue and its harmful heterogeneous 
regeneration. Various cohort studies have been conducted 
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on the application of this drug in COVID-19 patients. In 
one of these studies, the utilization of Anakinra reduced the 
requirement of mechanical ventilation in patients and also 
decreased the demand for ICU hospitalization and fatal-
ity rate [33]. This cohort study [33], along with available 
information on the mechanism of action in this therapeutic 
agent as well as other studies, has set forth Anakinra as an 
appropriate candidate to hinder the destructive effects of the 
cytokine storm.

Tocilizumab

As noted before, Interleukin 6 (for short, IL-6) is a sig-
nificant pro-inflammatory protein and cytokine that can 
be freely present in serum [34]. The concentration of this 

cytokine in a normal situation is not high in a healthy person. 
Its concentration, however, increases following an infection 
or inflammation. This interleukin has an influential role in 
initiating and inducing biochemical reactions and can regu-
late inflammation and the immune response in two ways 
[35]: Classical and Trans pathways. In the classical path-
way, IL-6 attaches to the membrane-bound receptor for IL-6 
(mbIL-6), which is present on various immune cells' mem-
branes. Then this complex acts as a ligand and binds to a gly-
coprotein structure called Glycoprotein-130 (gp-130) [36]. 
Next, it stimulates the innate immune response (via mac-
rophages and neutrophils) and acquired immunity (through 
T and B cell stimulation) [37]. In the Trans pathway, IL-6 
can cause the production of large volumes of pro-inflam-
matory agents by attachment to a structure called soluble 

Fig. 1   The investigation of COVID-19 immunopathology indicated 
that the infected individuals' immune patterns include increased acti-
vation of T cells, which is accomplished by the higher expression 
of some receptors in the T cell membrane. Lymphopenia is a criti-
cal immune pattern in COVID-19 patients. Overproduction of some 

cytokines and chemokines caused by SARS-CoV-2 infection may 
result in cytokine storm and even ARDS. Lymphocytes dysfunc-
tion, abnormalities in WBCs, and increased antibodies are also other 
important immunopathological patterns in COVID-19 that can be 
observed in detail
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receptor for IL-6 (srIL-6), which is amply present on the 
surface of endothelial cells (rather than immune cells) [38]. 
Tocilizumab, a humanized monoclonal antibody, can act as 
an antagonist against IL-6 and bind to both mIL-6R and sIL-
6R receptors to prevent IL-6 from attaching to them. This 
attachment ultimately results in the prevention of signaling 
pathways leading to inflammation. The United States Food 
and Drug Administration (US-FDA) approved phase III of 
Tocilizumab's clinical trial for COVID-19 patients [39]. 
Nevertheless, extensive studies are still required to evalu-
ate the effectiveness of Tocilizumab and its mechanism of 
action.

Infliximab

Infliximab is a chimeric monoclonal antibody with the 
molecular formula C6428H9912N1694O1987S46, which is capa-
ble of binding to either soluble or membrane-bound TNF-ɑ 
[40]. The attachment of Infliximab to soluble TNF-ɑ pre-
vents it from binding to the cellular receptors and suppresses 
the initiation of signaling cascades caused by this binding. 
The attachment of this therapeutic agent to membrane-bound 
TNF-ɑ has also been proved to cause cell lysis through dif-
ferent immunological mechanisms such as antibody-depend-
ent cellular cytotoxicity (ADCC) [40, 41]. This medication 
is vastly applied for treating RA via suppressing the harmful 
effects of cytokines [42]. The utilization of Infliximab can 
also reduce the concentration of C-Reactive Protein (CRP) 
as well as IL-6 in the patients' blood [43] and appears to be 
able to prevent cytokine storms in COVID-19 patients. The 
synovial biopsy also indicated that consumption of Inflixi-
mab could reduce TNF-ɑ production followed by a reduc-
tion in IL-1 synthesis [44, 45]. These findings suggest that 
Infliximab may be a viable option for preventing cytokine 
storm incidence and the patients' severe condition. Finally, 
Mohsen Farrokhpour et al. [46] investigated the impact of 
Infliximab prescription for COVID-19 patients. All patients 
in this study were in severe condition and admitted to the 
ICU. This study revealed that the patients who received Inf-
liximab survived more than the ones in the control group 
(63% vs. 37.2%, respectively) [46]. In this study, the mortal-
ity rate was reported to be only 37% in the Infliximab group, 
while it was 62.8% for the control group [46]. However, fur-
ther studies are warranted to determine the precise efficacy 
of this drug in the treatment of COVID-19 patients.

Baricitinib

As mentioned earlier, SARS-CoV-2 results in cytokine 
storm and severe inflammation by stimulating the secre-
tion of pro-inflammatory factors [26, 47]. Baricitinib, 
under the commercial name of Olumiant, is a Janus kinase 
(JAK) 1/2 inhibitor drug applied to treat RA. It has potent 

anti-inflammatory properties and is hypothesized to have 
off-target antiviral impacts against SARS-CoV-2. For this 
reason, it has been introduced as a suitable candidate for 
treating COVID-19 [48, 49].

In a clinical trial conducted by Boghuma K. Titanji et al. 
[50], 2 to 4 mg of Baricitinib with 200 to 400 mg of Hydrox-
ychloroquine were administered to 13 out of 15 patients 
daily. The inflammatory factors' levels were monitored in 
all patients. The results demonstrated that in 13 out of 15 
patients, the levels of inflammatory factors such as CRP, 
IL-6, and erythrocyte sedimentation rate (ESR) diminished. 
Moreover, the fever in these patients disappeared during the 
treatment period, and their body temperature decreased [50]. 
The Baricitinib action mechanism in COVID-19 may be 
such that it interferes with the entry of the virus into the host 
cell. This drug disrupts the process of virus endocytosis into 
the cell by acting on two numb-associated kinase enzymes, 
thus preventing SARS-CoV-2 from penetrating the host cell 
[50, 51]. However, the utilization of this agent in COVID-
19 patients has been associated with concerns. Interferon 
is one of the essential proteins and a practical component 
of the innate immune system that prevents the virus from 
replicating in the cell and spreading in the body. By activat-
ing the JAK-STAT signaling pathway (in which JAK-1 and 
JAK-2 enzymes play a significant role), the expression of 
interferon genes increases, resulting in viral clearance [52]. 
Baricitinib, as a Janus kinase (JAK) inhibitor, can disrupt 
the JAK-STAT pathway and prevent an adequate antiviral 
response; thus, it potentially can increase the severity of 
COVID-19 in patients [50, 53]. Therefore, the consumption 
of this agent must be done very cautiously.

Interferon I‑β1a

Interferon-β is type-1 interferon that is utilized for multiple 
sclerosis (MS) treatment. It is indicated that it can positively 
influence the elimination of the virus from nasopharyngeal 
sampling swabs in phase II clinical trials [54, 55]. It can 
be utilized subcutaneously (S.C.) and intravenously (I.V.). 
Recent studies have determined that the use of IFN-β1a 
and IFN-β1b has the same promising effects on COVID-19 
patients because, in both states, it launches specific and iden-
tical pathways against SARS-CoV-2 [56]. However, S.C and 
I.V. administration of interferon results in entirely different 
outcomes in patients. The utilization of IFN intravenously 
increases its serum concentration. Studies have revealed that 
this drug's subcutaneous injection reduces its bioavailabil-
ity and serum concentration and thus decreases its effec-
tiveness. The IFN serum concentration in people receiving 
the subcutaneous administration has been approximately 
1/3 of the patients who have had the intravenous injections 
[57]. Elimination of interferon-β1a occurs by its bind-
ing to the interferon-α/β receptor (IFNAR). Subcutaneous 
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administration of this drug reduces the rate of its uptake 
by the lymphatic system. This reduction causes this drug's 
plasma concentration to remain high for an extended period. 
In comparison, intravenous infusion causes rapid removal 
of IFN from the blood and body fluid [58]. Nevertheless, 
the main reason for utilizing type-1 interferons intravenous 
injection instead of subcutaneous in some patients is its 
higher bioavailability. The best and golden time of inter-
feron beta 1a injection to the patients with COVID-19 is 
immediately after the diagnosis and at the beginning of the 
infection. Studies have shown that subcutaneous injection is 
effective in mild condition patients, while intravenous injec-
tion is recommended in patients in critical condition [54]. 
Interferon-beta 1a increases the concentration of CD73 in 
the pulmonary capillaries. CD73 is an enzyme that plays a 
vital role in modulating lung vessel diameter, especially in 
hypoxic conditions, and affects pulmonary vascular integ-
rity. This enzyme also cleaves pro-inflammatory ATP and 
pre-thrombotic ADP. It converts ATP and ADP into the anti-
inflammatory adenosine monophosphate (AMP), clearing 
them (which causes inflammation) from the blood and thus 
preventing ARDS [59]. This drug can reduce the secretion 
of IL-6 and IL-8. It also strengthens the immune system 
while reducing the tissue damage (by decreasing neutrophil 
migration) [60, 61].

Recent studies have demonstrated that corticosteroids 
block the function of IFN and reduce the severity of CD73 
expression [62]. These investigations suggest that interferon 
beta and corticosteroids should not be used concomitantly as 
their functional pathways may have unintended drug interac-
tions [63].

Statins

Statins are among the most well-known and accessible 
[64] therapeutic agents applied to the lower blood lipids 
that inhibit cholesterol synthesis. These medications have 
pleiotropic effects on inflammation and its pathways, which, 
along with the lipid-lowering impact, improve the patient's 
cardiovascular condition. These drugs also have immu-
nomodulatory consequences, exerting these lipid-lowering 
effects through influencing some mechanisms. The mecha-
nisms include the antigen presentation and production of 
chemokines and cytokines, as well as the impact on the 
migration and maturation of the immune cells [65]. The 
primary action mechanism of this drug is inhibiting the 
synthesis of isoprenoids. Isoprenoids are essential constitu-
ents of GTPase enzymes. Statins cause a reduction in the 
concentration of Rho and Rac enzymes by inhibiting iso-
prenoids' production, which leads to the downregulation of 
pro-inflammatory factors' genes like NF-kB [66]. As stated, 
Beta-coronaviruses, like influenza viruses, stimulate the pro-
duction of large amounts of pro-inflammatory factors, which 

cause cytokine storms, weakening the immune system and 
ARDS [65]. Statins, in addition to reducing the production 
of pro-inflammatory factors via the above-mentioned mecha-
nism, prevent severe pneumonia and hypoxia by stabilizing 
the expression of the MYD88 gene. MYD88 gene codes a 
protein that activates the NF-kB gene [67]. Research has 
demonstrated that the presence of atorvastatin—a drug from 
the statins family—at a concentration of 0.1 μM in plasma 
for 48 h intensely reduces the activation of NF-kB and sup-
presses inflammation. In order to reach the concentration 
of 0.1 μM in atorvastatin of the blood, about 40 mg of oral 
consumption of atorvastatin once a day is required [68]. 
After penetrating the cell via ACE2 receptor, SARS-CoV-2 
reduces the expression of this receptor on the cell mem-
brane, which can increase the concentration of angiotensin-
II in the extracellular fluid and cause tissue damage. Atorv-
astatin enhances the intensity of ACE2 expression in the cell 
membrane and prevents the accumulation of angiotensin-II 
and tissue damages [69]. From a pharmacokinetic point of 
view, statins have hepatic metabolism and are affected by 
the CYP3A4 enzyme complex. The half-life of these drugs 
is about 1.4 h, and they are finally excreted through the kid-
neys or intestines [70]. These medications are safe, inex-
pensive and affordable, making them suitable treatments for 
COVID-19 patients. Their immunomodulatory influences on 
COVID-19 themselves require proper and sufficient in vitro 
and in vivo investigations.

The six drugs discussed so far each has a specific receptor 
on different cells membrane, enabling them to bind to these 
receptors to exert their effects. This issue is schematically 
illustrated in Fig. 2.

Dexamethasone

Recently, many studies have reported the efficacy of Dexa-
methasone in treating patients with severe COVID-19, 
resulting in reduced mortality and morbidity among these 
patients [71]. As mentioned, SARS-CoV-2 causes respira-
tory infection, and this disease can involve other organs [72]. 
A substantial number of activated T cells and cytokine-
mediated antibody extraction are required in order to clear 
the virus from tissues [73].

The US-FDA approved Dexamethasone in 1958 as a 
synthetic drug from the corticosteroid family. As a broad-
spectrum immunosuppressant, it reduces inflammation and 
decreases immune system activity [74]. Dexamethasone, 
which is 30 times more immunosuppressant and active than 
cortisone, reduces the overproduction of cytokines. On the 
other hand, Dexamethasone may increase the risk of second-
ary infection by suppressing the T and B mature cells, which 
are vital to fighting the pathogens. It also interferes with 
NK cells and macrophages' functions, which are respon-
sible for clearing the body from pathogens [74, 75]. The 
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greatest randomized control trial (RCT) in the world, called 
the RECOVERY trial, was performed on 2104 patients in 
the United Kingdom. The elicited results demonstrated a 
reduction in mortality in critical cases and patients [76]. 
Crucial producers of pro-inflammatory cytokines that cause 
cytokine storms are mast cells, which together with mac-
rophages cause overproduction of pro-inflammatory factors 
such as IL-1β, IL-6, and TNF-α and may also result in blood 
agglutination and organ failure [77]. By suppressing this 
mechanism, Dexamethasone can prevent critical conditions 
in COVID-19 patients and reduce the mortality rate. Despite 
all this, it is advised to use Dexamethasone in the short term 
and severe patients. However, further research is required to 
understand the exact action mechanism of Dexamethasone 
[71].

Famotidine

As mentioned, labrocytes (mast cells) are absolutely crucial 
in developing hyper-inflammation in patients with COVID-
19 [78]. These cells trigger other molecular pathways by 
secreting histamines. Histamines are effective in causing 
inflammation, increasing the volume and blood flow in the 
arteries, and enhancing capillaries' permeability. Histamines 

are divided into two subgroups: H1 and H2. Famotidine is 
prescribed as a Histamine-2 receptor antagonist to reduce 
gastric acid secretion that causes pain and burning [79]. 
Histamines are related to inflammation in patients with 
SARS-CoV-2 infection and exert their effect by influenc-
ing the activated T cells [80]. Histamines as biological mol-
ecules can also impact leukocytes and result in the secre-
tion of cytokines and inflammation, thus causing damages 
to the lungs [81]. Famotidine can prevent the occurrence 
of cytokine storms and death in patients by blocking these 
signaling pathways. A cohort study on 1,620 patients has 
documented that 84 of the patients who received famotidine 
demonstrated that this agent could efficiently block hista-
mine-mediated inflammation and reduce mortality rate and 
intubation demand in the patients [82].

Naproxen

Non-steroidal anti-inflammatory drugs (NSAIDs) are ther-
apeutic agents that reduce inflammation by acting on the 
molecular pathways [83]. The liver mainly metabolizes these 
drugs. Naproxen is a non-selective COX inhibitor and is one 
of the compounds related to propionic acid. Propionic acid 
is essential in inflammation incidence because it triggers the 

Fig. 2   Various mAbs or antagonists are utilized for COVID-19 treat-
ment. These agents have different receptors on the host cell surface. 
The binding of these therapeutic agents to their cellular receptors 
is usually accompanied by the activation of intracellular pathways, 

which ultimately reduces the expression of pro-inflammatory genes 
such as NF-Kβ. Macrophages and T cells are vastly impacted by 
immunomodulatory drugs administration
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molecular pathways that reduce prostaglandin production 
from arachidonic acid, thus resulting in inflammation reduc-
tion via this mechanism [84, 85]. As a non-selective inhibi-
tor, Naproxen effectively affects both COX-1 and COX-2 
complex enzymes and shows its effect by reducing particular 
biological molecules synthesis [86]. As mentioned, this drug 
is metabolized in the liver by the CYP1A2 and CYP2C9 
enzyme complexes. Some studies have reported that Nap-
roxen is safe for patients with COVID-19. Its administration 
is accompanied by no particular or severe adverse effects 
[87]. This drug's precise mechanism on COVID-19, how-
ever, is not particularly known and requires further studies 
and clinical trials. Nonetheless, it is speculated that Nap-
roxen is effective in decreasing ARDS and reducing patient 
mortality.

Figure 3 exhibits the occurrence of COVID-19 and its 
different phases in SARS-CoV-2 infected individuals. The 
mechanism of cytokine storm incidence and promising ther-
apeutic agents that can influence this condition are demon-
strated in Fig. 3.

Colchicine

Colchicine is an alkaloid chemical compound with the 
molecular formula C22H25NO6, naturally synthesized by 
Colchicum genus plants. It is clinically utilized because of 
its anti-inflammatory impacts on various diseases such as 

gout, familial Mediterranean fever, Behcet's disease, and 
other inflammatory diseases and fibrotic disorders [88]. Col-
chicine has diverse mechanisms of action that ultimately 
reduce the inflammation and prevent acute conditions. Col-
chicine manifests its anti-inflammatory effects by acting 
on the immune system [89]. One function of Colchicine in 
the innate immune system is the suppression of neutrophil 
chemotaxis. In fact, Colchicine suppresses neutrophil chem-
otaxis by inhibiting the release of crystal-derived chemotac-
tic factors from cell lysosomes [90].

On the other hand, in animal studies, Colchicine has been 
shown to stimulate the maturation of dendritic cells into 
various kinds of T cells by activating signaling pathways 
and increasing antigen presentation [91]. The stimulation of 
dendritic cells by Colchicine has also been reported in differ-
ent studies [92, 93]. Colchicine also has anti-fibrotic influ-
ences, affecting intestinal tissue by triggering the expres-
sion of Bcl-2 genes and silencing caspase-3 genes [94]. In 
addition, it also suppresses lung inflammation and fibrosis 
by inhibiting the differentiation and growth of myofibro-
blasts via the Rho/Serum response factor (SRF)-dependent 
signaling pathway [95]. It can also block NLRP3 inflamma-
some and caspase-I activity by impacting the ROS system 
[96]. Recently, a study examined the effect of Colchicine on 
non-hospitalized COVID-19 patients [97]. The elicited out-
comes of this study indicated that Colchicine could reduce 
hospitalization or mortality rates among non-hospitalized 

Fig. 3   After the initiation of COVID-19, which is caused by infec-
tion of lung epithelial cells by SARS-CoV-2, some antiviral responses 
such as IFN-ɑ/β/γ were started. These primary antiviral responses 
result in the apoptosis of infected cells and the production of pro-
inflammatory cytokines, which cause virus elimination. Excessive 

synthesis of cytokines and chemokines may lead to critical conditions 
like ARDS and lung injuries. The application of immunomodulatory 
drugs can adjust immune system responses and impede critical condi-
tions in COVID-19 patients
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patients [97]. However, at the beginning of the SARS-CoV-2 
pandemic, Medine Cumhur Cur et al. [98] noted that admin-
istering Colchicine may not have positive influences, and it 
could be even harmful [98]. Therefore, more clinical trials in 
this area are needed to understand the colchicine mechanism 
of action. The possible action mechanism and various func-
tions of Colchicine are illustrated in Fig. 4.

Melatonin

Melatonin or N-acetyl-5-methoxytriptamin is a monomeric 
tryptophan-derived neurotransmitter-like compound that has 
hormonal activities [99]. The chemical formula of Mela-
tonin, which is mainly secreted from the enigmatic pineal 
gland in the brain, is C13H16N2O2 [100]. It has an influential 
role in regulating the wake-sleep cycle, circadian rhythm, 
and body's biological clock [101, 102]. Melatonin is syn-
thesized from tryptophan through a cascade of enzymatic 
reactions in four steps, which contains hydroxylation, 

decarboxylation, N-acetylation, and methylation reactions, 
respectively [100, 103]. Melatonin secretion and its nexus 
with age were surveyed in a study by Haruo Iguchi et al. 
[104], which observed a reverse correlation between mela-
tonin secretion and age. Thus, the brain-immune system axis 
and its interactions have been indicated to be required for 
appropriate body responses to pathogens' invasions [105]. 
Melatonin can play a significant role in the interactions of 
the brain-immune system. For example, this protein can 
increase IFN-γ synthesis but not IL-4 by affecting periph-
eral mononuclear blood cells [106]. It has been proved 
that interferon-gamma has a prominent role in combating 
viral agents [107]. It has also been unveiled that viral infec-
tions can be associated with an elevation in reactive oxy-
gen species (ROS) and/or reactive nitrogen species (RNS) 
[108]. Oxidative stress in respiratory viral infections can 
cause extensive damage to lung tissue [109]. Melatonin has 
cogent antioxidant properties, and each melatonin molecule 
can bind to 10 oxidant agents; other antioxidant compounds 

Fig. 4   SARS-CoV-2 is recognized by innate immunity receptors such 
as TLR3 when it enters the body. The recognition of 2019-nCoV by 
TLR3 results in the activation of other immune components. Colchi-
cine can influence various inflammatory cascades and inhibit inflam-

mation via a different process. It also affects leucocytes' recruitment, 
reduces ROS synthesis, and positively affects endothelial cells, allevi-
ating tissue damage to the lungs
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(e.g., vitamins C and E) usually can bind to only one oxidant 
molecule [110]. Furthermore, melatonin prescription in MS 
patients has been reported to be beneficial as Melatonin can 
act as an antagonist and reduce the activity of cell-mediated 
immunity [105, 111]. These cases, along with the regulation 
of sleep time and relief of insomnia symptoms in COVID-
19 patients, have led to the hypothesis that melatonin con-
sumption can be effective in SARS-CoV-2 patients. How-
ever, more clinical trials are needed to exactly evaluate the 
mechanism of action and efficacy of Melatonin in COVID-
19 patients [112]. Diverse fates which may occur for Mela-
tonin when interacting with host cells are exhibited in Fig. 5.

The most important information on the discussed immu-
nomodulatory drugs used for COVID-19 treatment, along 

with the possible mechanism of action, their adverse effects, 
etc. is presented in Table 1.

Conclusion

COVID-19 as a respiratory disease has been continuously 
evolving, highlighting the need for constant research and 
proper measures. Recently, having been caused by muta-
tions in SARS-CoV-2, new variants are being discovered 
[159]. Although vaccines can be successful in immunizing 
individuals against COVID-19, they seem to be not suitable 
for hospitalized patients with severe and critical conditions. 
Immune dysfunction and especially over activation of the 

Fig. 5   As stated, Melatonin as an Acetamide hormone can be con-
sumed orally in COVID-19 patients. Melatonin molecules are capable 
of influencing various pathways after entering the cell. It can decrease 
ROS/RNS synthesis and impact host cell apoptosis. It is also able to 

modulate the expression of pro-inflammatory genes such as NF-Kβ 
and thus affect cytokines synthesis. It also exerts its anti-inflamma-
tory effects through other mechanisms
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immune system and lymphopenia are two significant prob-
lems in COVID-19 patients [160]. In this regard, the appli-
cation of immunomodulatory drugs has been considered 
to reduce the mortality rate in COVID-19 patients. In the 
present review article, the mechanism of action for several 
pivotal immunomodulatory and immunosuppressant agents 
pertaining to different drug groups was examined and dis-
cussed. More studies and extensive trials are warranted to 
ensure the extent of effectiveness or ineffectiveness of these 
medications. The outcomes of this study, however, can assist 
physicians and scientists in designing future studies and hav-
ing better treatment guidelines.
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