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The high-order chromatin structure, together with DNA methylation and

other epigenetic marks, plays a vital role in gene regulation and displays

abnormal status in cancer cells. Theoretical analyses are expected to pro-

vide a more unified understanding of the multi-omics data on the large

variety of samples, and hopefully a common picture of carcinogenesis. In

particular, we are interested in the question of whether an underlying ori-

gin DNA sequence exists for these epigenetic alterations. The human gen-

ome consists of two types of megabase-sized domain based on the

distribution of CpG islands (CGIs) that show distinct structural, epigenetic,

and transcriptional properties: CGI-rich and CGI-poor domains. Through

an integrated analysis of chromatin structure, DNA methylation, and

RNA sequencing data, we found that, in carcinogenesis, the two different

types of domain display different structural changes and have an increased

number of DNA methylation differences and transcriptional-level differ-

ences, compared with in noncancer cells. We also compared the structural

features among carcinogenesis, senescence, and mitosis, showing the possi-

ble connection between chromatin structure and cell state, which could

affect vital cancer-related properties. In summary, chromatin structure,

DNA methylation, and gene expression, as well as their changes observed

in several types of cancers, show a dependence on multiscale DNA

sequence heterogeneity.

1. Introduction

Three-dimensional chromatin structure plays a vital role

in gene regulation. The development of chromosome

conformation capture [1] (3C) technology and its

derived methods, such as Hi-C [2] and ChIA-PET [3],

significantly improves our understanding of genome

organization. For instance, the anchors of chromatin
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loops that frequently link enhancers and promoters are

occupied by CCCTC-binding factor (CTCF) and cohe-

sin complex in most cases [4]. Such insulator structures

can help maintain normal gene expression [5,6]. For

cancer, many studies have revealed that mutations of

CTCF binding sites and disruptions of insulated struc-

tures could result in dysregulation of gene expression

[6–8], an intrinsic property in cancer. Besides, structural

variants, such as deletions, inversions, and transloca-

tions, are recurrent in multiple cancer types [9]. Previ-

ous studies identified a positive correlation between

translocation frequency and spatial proximity [10]. A

recent paper [11] has shown an integrative strategy to

comprehensively detect these variants and captured

numerous instances related to structural changes such

as the fusion or loss of topologically associated domains

(TADs), the median size of which is several hundred

kilobases. Nevertheless, unlike early embryonic develop-

ment [12] and cell differentiation [13], the overall struc-

tural changes in carcinogenesis remain to be elucidated.

Along with aberrant 3D chromatin architecture,

drastic genome-wide epigenetic changes also take place

in carcinogenesis [14,15], jointly influencing gene

expression. Many studies have shed light on the stable

epigenetic alterations associated with cancer cells, and

DNA methylation was firstly and most widely studied

[16,17]. There are mainly two types of general DNA

methylation changes in cancer cells: global hypomethy-

lation of late-replicating lamin-associated domains

(LADs) [18] and hypermethylation of specific CpG

islands (CGIs) [19,20]. Over ten thousands of publica-

tions reported DNA methylation changes as cancer

biomarkers [21], and recently some evidences show

that DNA methylation has little impact on gene

expression but corresponds to chromosomal structural

changes [22,23]. However, the correlation between

changes of DNA methylation and cancer development

and the relationship between methylation and chromo-

somal structure remain largely unexplored.

In principle, both chromosomal structure and epige-

netic modifications can influence gene expression. Based

on Hi-C contact map, the chromatin is divided into

compartments A and B [2]. Genes are enriched in com-

partment A, and their expression levels are higher than

those in compartment B. However, there are many ques-

tions remain unanswered, for example, what factors

determine the compartment formation, what are the

driving forces of compartment switch, and what are the

roles of compartmentalization in cancer? Our previous

study [24] showed that the compartment formation is

strongly related to the genome composition. Based on

the uneven distribution of CGIs, the whole genome was

divided into two types of megabase-sized domains, CGI-

rich domains (named as CGI forest domains), and CGI-

poor domains (named as CGI prairie domains). These

two types of domains, differing in sequence features,

show distinct epigenetic and transcriptional patterns and

overlap strongly with the compartments A and B,

respectively. Furthermore, the cell-specific spatial contact

and separation between these two types of domains are

strongly coupled with various biological processes, such

as early embryonic development [25], cell differentiation,

and senescence [26]. The main goal of this study is to

interrogate the sequence dependence of various carcino-

genesis marks and to investigate the intrinsic mecha-

nisms of cancer development. It was found here that

forest and prairie domains behave significantly differ-

ently in carcinogenesis, including their distribution in

compartments, CGI interactions, TAD formation, gene

expression, and DNA methylation, which is closely asso-

ciated with development stage of cancer. Besides, the

methylation state of regions with low CpG density could

reflect the chromatin structure. We also found that the

regulation of gene expression depends on the sequence

feature in a scale-dependent manner.

2. Materials and methods

2.1. Source of methylome data

The whole-genome bisulfite sequencing (WGBS) data of

methylomes were obtained from The Cancer Genome

Atlas (TCGA) [27] project and Gene Expression Omni-

bus, including 48 cancer samples and 17 matched adja-

cent samples, as well as paired cancer and normal data

of 4 liver, 3 lung [28], and 2 colon cancer samples

[29,30]. The reference genome is hg19. Normal liver and

lung methylomes and those of their corresponding can-

cer cell and cancer cell lines were downloaded from

Roadmap [31] and Encode Project [32] for combinato-

rial analysis of histone modifications and Hi-C contact.

The description and references of the data sets are sum-

marized in Table S1. To ensure the credibility of the

analysis results, in our calculation we only use CpG

sites with coverage greater than three. DNA methyla-

tion level of each CpG site was given in percentage by.

β ¼ M

MþU
� 100%

where M and U are the signal strength of methylated

and unmethylated CpG, respectively.

In this work, we focus on all protein coding genes

which are downloaded from GENECODE release 19

(https://www.gencodegenes.org).
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2.2. Definition of F, P, and F-P methylation

difference (MDI)

The definition of CGI forest and CGI prairie follows

our previous work [24]. Briefly, we defined and calcu-

lated critical neighboring CGI distances, longer than

which CGIs are more likely to be next to each other

than random. A CGI-rich domain (CGI forest, F) was

defined as a continuous DNA region longer than the

critical length, and all neighboring CGI distances

inside this domain are shorter than the critical length.

After excluding the chromosomal unmappable and

dark regions, CGI-poor domains (CGI prairies, P)

were defined as the complementary regions of forest

(Table S2).

Following our previous work [24], the methylation

difference in open sea between neighboring forests and

prairies is defined as follows:

MDIi ¼
qi � qþqiþ1

2

� �
qiþqi�1þqiþ1

3

� �
where qi, qi�1, and qiþ1 are the methylation level for

the ith domain and its two flanking domains.

2.3. Gene function analysis

GO enrichment analysis of all the given gene clusters

in this work was conducted using the R package Clus-

terProfiler [33]. Individual gene functions were

obtained from GeneCards (https://www.genecards.

org). Immune-related genes were obtained from

AmiGO2 (http://amigo.geneontology.org/amigo).

2.4. Definition of tissue specificity for gene

The normalized RNA-seq data of GTEx project [34]

were downloaded from Ref. [35]. The tissue specificity

of gene i in tissue t was defined as.

sti ¼
ɛti � μalli

μalli

where ɛti and μalli are the mean expression level of gene

i in tissue t and all tissues examined, respectively. A

gene with a tissue specificity value greater than 2 was

defined as a tissue-specific gene.

2.5. Chromatin 3D structure analysis

All human Hi-C data [36–38] in this work were nor-

malized by ICE method at a 40-kb resolution using

the iced python package [39]. Mouse cell cycle Hi-C

data [40] were normalized at 100-kb resolution, and

the reference genome is mm9. Chromosome structural

alterations for cancer cell line samples, which were

identified by hic_breakfinder in researches [11,41], were

removed from Hi-C data. Genomic locations which

have no contacts with more than 99% of other loca-

tions were also deleted in all samples.

2.5.1. Compartment identification

The identification of compartments A and B in 200-kb

resolution mainly followed the Lieberman–Aiden’s

approach [2]. Briefly, a correlation matrix was calculated

based on normalized chromosome contact matrix. Sub-

sequent eigenvector analysis partitioned the chromosome

into two spatial compartments. We further made a slight

modifications according to our previous work [24], in

which to eliminate the influence of the centromere, the

Hi-C matrix was disassembled into two parts, corre-

sponding to p and q arms, and the eigenvalue decompo-

sition was done within these two arms separately.

2.5.2. Compartment index calculation

To quantify the compartmentalization degree [42], a

compartment index CIi for 200-kb bin i (the same size

as compartment definition) was calculated as the loga-

rithm ratio of the average contact between this bin

and all compartment A over that between this bin and

all compartment B:

CIi ¼ ln

∑ j;j≠iCijδ j

NA

∑ j;j≠iCij 1� δ j

� �� �
NB

0
BBBB@

1
CCCCA,

δ j ¼
1 if bin j is in compartment A

0 if bin j is in compartment B

(

where Cij is the normalized Hi-C contact probability

between bins i and j. NA and NB are the bin numbers

of compartment A and B, respectively. And the self-

contact was excluded in this calculation. For each 200-

kb bin, a positive CI indicates it contacts more fre-

quently with compartment A than compartment B.

2.5.3. Interaction strength

The 40-kb bin (in accordance with the resolution of Hi-C

contact matrix) was identified as a CGI bin if it harbors

at least one CGI; otherwise, it was labeled as a non-CGI

bin. With the above definition, each bin could spatially

contact with four categories of DNA domains: CGI in
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CGI-rich domains (F-CGI), non-CGI in CGI-rich

domains (F-non-CGI), CGI in CGI-poor domains CGI

(P-CGI), and non-CGI in CGI-poor domains (P-non-

CGI). The interaction strength between bin k and one of

the four types of DNA segmentsRi was defined as.

Ik;Ri
¼ Ck;Ri

∑4
i¼1Ck;Ri

where Ri is a vector consisting of the bins belonging to

part i, Ck, Ri is the summation of all contact probabilities

between bin k and Ri. In this calculation, we deleted the

self-contact elements.

2.5.4. Contact probability and segregation factor as

functions of genomic distance

The segregation factor was calculated as the ratio

between contact probabilities of DNA domains of the

same (F with F, or P with P) and different genome

types (F with P), reflecting the extent of forest or prairie

segregation. To identify contact loss in cancer cell line,

we first calculated the average contact probability at the

particular range of genomic distance for each bin for

both cancer and its corresponding normal tissue. If this

contact probability was higher than average level of all

bins in normal cells but lower than average in cancer

cells, then this bin was considered as contact loss.

2.5.5. Definition of insulation score (IS)

For two neighboring regions A1 and A2, the insulation

score was defined as in Ref. [43],

IS ¼ log 1þ a1
b
þ a2

b

� �
where a1, a2, and b represent the mean contact proba-

bility inside A1 and A2 that between them, respectively.

A1 and A2 can represent not only the forest and prairie

domains but also any two windows with the same size.

2.6. Process of RNA-seq data

Wedownloaded counts formatted files fromTCGAproject

for all available RNA sequencing data of cancer and

matched normal samples, and converted them to TPM

(transcripts permillion) format. The expression fold change

in a given gene in carcinogenesis was defined as follows:

fold change = log2
TPMcancerþ1
TPMnormalþ1

� �
where TPMcancer and TPMnormal of a gene represent aver-

age TPM in all normal and cancer samples, respectively.

Differential gene expression analysis was performed

by R/Bioconductor package ‘DESeq2’ [44]. Significantly

up expressed genes were defined as P-value < 0.05 and

fold change > 1, and significantly downexpressed genes

were defined as P-value < 0.05 and fold change < −1
calculated by DESeq2.

3. Results

3.1. DNA methylation changes coupled to cancer

development

Based on the analysis of theWGBS data of 17 patients (in-

cluding 9 types of cancer) and their adjacent normal tis-

sues, it was found that, consistent with previous studies,

the changes in DNA methylation from normal cells to

cancer have two general characteristics: hypomethylation

in the open sea (regions beyond 4000 base pairs upstream

and downstream of CGI) [45] and hypermethylation in a

subset of CGIs. Moreover, the extent of methylation

changes appears to correlate with the stage of cancer

development. CGI hypermethylation can usually occur at

early stages of cancer development (stage I and stage II)

when hypomethylation of open seas is relatively weak or

even not significant. As the cancer stage progresses, the

open seas become more frequently and deeply

hypomethylated. Similar trends of methylation changes

are observed among a variety types of cancers, indicating

the similarity in the development of different cancers or

even potential common causes (Fig. 1A and Fig. S1).

3.1.1. Domain-dependent hypomethylation of open sea

reflects the development of cancer

In most normal tissues, CpGs are mainly methylated

in the open sea and the average open sea CpG methy-

lation level in prairies (P) is slightly lower than that in

forests (F). In carcinogenesis, open sea CpGs in prai-

ries are more significantly hypomethylated than for-

ests, leading to the increased methylation difference

between forests and prairies (P-value = 5.4 × 10−6 by

Welch’s unequal variance t-test; Fig. 1B). The

hypomethylation of the prairies gives rise to most of

the PMDs observed earlier [46] (Fig. S2A). To quan-

tify the difference between the open sea methylation

levels of F and P domains, we calculated the averaged

F–P methylation differences (MDI; Fig. 1B, see Meth-

ods) for each sample and found that in normal tissues,

the averaged MDIs for forests are always positive and

that for prairies, negative, suggesting that the open sea

methylation level of forests is in general higher than

that of adjacent prairies. In cancer cells, averaged

MDIs for forests become larger than their adjacent

normal cells for almost every cancer sample (Fig.
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S2B). Remarkably, the averaged MDIs of forests gen-

erally increase with the aggravation of cancer, imply-

ing that the open sea methylation difference between

forest and prairie domains does reflect the stage of

cancer development (Fig. 1C and Fig. S2C).

Furthermore, we found that the probability of

hypomethylation increases with the decrease in CpG

density in open seas of both forest and prairie domains

(Fig. S2D). In addition, the methylation level of

prairie open seas is lower than that in forests even

when they have the same CpG density. Such a result

suggests that the prairie domains undergo more severe

hypomethylation during carcinogenesis than the forest

domains, suggesting that not only the local low CpG

density but also the surrounding sequence environment

influences the methylation level of an open sea region.

3.2. General features of cancer chromatin structure

3.2.1. Intrinsic sequence preference for compartment

formation

The chromatin structural differences between somatic

and cancer samples were investigated in the following.

We used A549 cancerous lung cell line, Panc1 pancre-

atic cancer cell line, and HepG2 liver cancer cell line

as representative cancer samples and compared them

with somatic lung, pancreas, and liver samples. Firstly,

the chromosome structural variants [11,41] (SVs,

including translocations, duplications, and deletions)

were removed from cancer cell line samples, and out-

liers in contact matrix were also removed from all

samples (see Methods). Chromatin compartments in

cancer and somatic samples differ in extent of segrega-

tion. We used compartment vector components to

divide the chromosome into compartments A and B

(Table S3).

Compartment formation is seen to largely follow

DNA sequence characteristics, separating forests from

prairies (Fig. 2A and Fig. S3A). For both normal and

cancer samples, compartment index (see Methods) of

FB (forest domains in compartment B) is larger than

PB, and at the same time, the compartment index of

FA is larger than PA (Fig. S3B). These results indicate

that the structure environment for PA (FB) is not as

open (compact) as common FA (PB), contributing

from their own sequence environment. Changing from

Fig. 1. Methylation changes in carcinogenesis. (A) Scatter plots for changes in methylation level in CGIs and open seas. Each dot represents

the methylation level changes in a CGI (x-axis) on chromosome 1 and its adjacent open sea (y-axis) changing from adjacent normal samples to

corresponding cancer samples. The probability density distribution of CGI and open sea methylation-level changes is shown on the top and right

sides of the figure, respectively. The cancer stages are given next to the sample names. (B) The methylation levels for regions in open sea

(chromosome 1 in sample blca_t6) and the calculation of MDI (F-P methylation difference). Specifically, q represents the average open sea

methylation level for a F or P domain. (C) The averaged MDIs of all forest domains in normal samples and cancer samples at different stages.

Data are represented as boxplots where the box extends from the lower to upper quartile values of the data, with a line at the median. The

whiskers extend from the box to show the range of the data. The upper and lower whisker extends no further than 1.5 × IQR from the upper

and lower edges of the box, respectively (IQR is the interquartile range). The dot represents data outlier.
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Fig. 2. General chromatin architecture in cancer cell lines. (A) The proportion of forest and prairie sequences in compartments A and B for

A549, Panc1, and HepG2. (B) The contact probability between forests and forests (FF), prairies and prairies (PP), forests and prairies (FP) at

varied genomic distances for lung and A549, pancreas and Panc1, liver and HepG2 (chromosome 1 is used as an example). (C) Hierarchical

clustering for the decay slopes of the PP contact probability at various genomic distances. From upper to lower are slopes from short-range

to long-range genomic distances. Euclidean distance is used as the distance metric, and nearest point algorithm is applied for hierarchical

clustering. (D) The segregation factor at varied genomic distances for lung and A549, pancreas and Panc1, liver and HepG2 (chromosome 1

is used as an example).
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normal tissue to cancer cell line, a subset of forests

switch from compartments A to B and their CpG den-

sities are lower than those of forests conserved in com-

partment A (Fig. S3C). These observations indicate

that in cancer cells, compartment B, which constitutes

mainly prairie domains, tends to expand to forests of

low CpG densities. Tissue-specific genes also show

preferential distribution in the compartment switch.

Prairies are enriched with tissue-specific genes of vari-

ous tissues as shown in our earlier study [24]. In nor-

mal cells, genes specific to other tissues

(complementary tissue-specific genes) are repressed and

more likely located in compartment B. In cancer cells,

a large proportion of prairie genes switching from

compartments B to A are complementary tissue-

specific genes (Fig. S3D), suggesting the loss of cell

identity in cancer cells. We next used the averaged

compartment vector component V to quantify the

DNA sequence preference of compartments (Table

S4). A high V of a DNA domain implies that it has a

high tendency to reside in compartment A. These data

show that CGI domains and forests generally possess

higher V than non-CGI domains and prairies, respec-

tively, for both normal and cancer samples. CGI

domains in forest (F-CGI) are often stable in compart-

mentalization, whereas CGI domains in prairies (P-

CGI) tend to shift to compartment B, again demon-

strating a DNA sequence preference in the change in

compartment segregation. The implication and biologi-

cal function of such changes in chromatin compart-

mentalization will be analyzed as follows.

3.2.2. Overall chromatin architecture in cancer

Next, we tried to investigate the chromatin structural

changes at a broad range of genomic length scales. We

first analyzed the contact probability changes at varied

genomic distances (see Methods) and observed that

overall the contact probability decays faster as a func-

tion of genomic distance for cancer cells than normal

cells, which indicates a loss of long-range spatial con-

tacts in carcinogenesis (Fig. S3E). Further investiga-

tion revealed that the F-P contact is weaker than F-F

and P-P contacts at nearly all sequential distances,

indicating the overall separation between these CGI-

rich and CGI-poor domains (Fig. 2B). The contact

probability calculated for the normal lung cell decays

following almost a single power-law in the genomic

distance range of hundreds of kilo- to several mega-

bases (slope = −0.76 and −0.69 for F-F and P-P con-

tacts, respectively), indicating a relatively uniform

contact probability scaling property for normal tissues.

In contrast, the cancer samples exhibit a scale

separation in contact probability decay curve, with a

slower decay for both F-F (slope = −0.56) and P-P

(slope = −0.57) contacts than corresponding somatic

samples at distances shorter than 400 kb (F-F contact)

and 800 kb (P-P contact), and a steeper decay

(slope = −1.38 and −1.26 for F-F and P-P contacts,

respectively) at large distances (Fig. S3E). To investi-

gate the universality of the spatial contact differences

between normal and cancer cells, we calculated the

decay slopes of P-P contact probability at various

genomic distances for 18 primary normal samples (14

types of tissues), 23 cancer cell line samples (10 types),

4 normal blood samples, and 18 leukemia samples.

Hierarchical clustering results show the distinct spatial

contact pattern among normal tissues, cancer cell lines,

and leukemias, as well as the high similarity within

each type of samples, implying that the 3D chromo-

some structure is an important variable to investigate

in carcinogenesis (Fig. 2C).

To further compare the relative contact strength of

forests and prairies at varied distances, we defined and

calculated the segregation factor (see Methods). A high

segregation factor for a DNA segment (e.g., of 40-kb)

indicates that it prefers to contact with domains of the

same type over those of a different type at that given

genomic distance. For both normal and cancer sam-

ples, the segregation factor is almost always greater

than 1 at all genomic distances, suggesting an overall

F-P domain separation (Fig. 2D). At short distances

(less than 500 kb), the segregation factor is higher for

forests than for prairies. As the genomic distance

increases, its value decreases for forests and increases

for prairies. Such a trend is more obviously seen in the

cancer cell lines than in the normal samples. These

observations indicate that forest domains have strong

contacts at short distances, especially between DNA

segments within the same forest. Spatial contacts

between forest domains are weak at a genomic dis-

tance of ~1Mb. In contrast, contacts between nearby

prairie DNAs are weak but when the genomic distance

increases to millions of kilobases, prairie domains tend

to interact frequently, indicating the loss of local con-

tacts in the expense of long-range (intra- and inter-

domain) prairie contacts. The repetitive elements [47]

are differently distributed in the forest and prairie

domains, and short interspersed nuclear elements

(SINEs) are enriched in forest domains whereas long

interspersed nuclear elements (LINEs) are more

enriched in prairie domains (Fig. S3F, S3G). Accord-

ing to the length of the SINEs (or LINEs) for each 40-

kb domain, 80.3% of high SINE density domains are

forest domains and 71.7% of low SINE density

domains are prairie domains, 68.8% of low LINE
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density domains are forest domains, and 60.3% of

high LINE density domains are prairie domains.

Domains with high and low densities of SINEs (or

LINEs) also show similar spatial separation in carcino-

genesis, although to a less extent compared to that

between forest and prairie domains (Fig. S3H, S3I).

Intriguingly, a number of forest genes lose contact

with other forest domains at genomic distances ranging

from 600 K to 2 M in cancer cells, contributing to the

weakened segregation factor for forest domains at

~1 M. The chromatin interactions detected by Fit-Hi-C

[48] clearly show the contact loss in these regions (Fig.

S4A). These genes are heavily shared among A549,

Panc1, and HepG2 (all P-values < 10−150 by Fisher’s

exact test between A549 and Panc1, between A549 and

HepG2, between Panc1 and HepG2), and many are

related to the immune process (Fig. S4B, S4C, S4D).

For instance, 29.6% of the genes related to antigen pro-

cessing and presentation and 26.1% of immune system

genes are involved in the F-F contact loss in A549 can-

cer cell line. In Panc1 cell line, the proportions are

27.9% and 27.6%, and in HepG2 cell line, the propor-

tions are 22.5% and 24.8% (Table S5). For example, a

forest gene RELA, which is a proto-oncogene and sub-

unit of NF-κB, is found to lose contact with forest

domains in three types of samples. Dysregulation of

NF-κB is a hallmark of cancer and can promote genetic

and epigenetic alterations, change cellular metabolism,

directly and indirectly control inflammation, cancer cell

proliferation and survival, epithelial-to-mesenchymal

transition, invasion, angiogenesis, and metastasis [49].

Commonly affected genes also include kinesins, the mis-

regulation of which are involved in cancer pathogenesis,

such as uncontrolled cell growth and metastasis [50,51].

At the same time, a group of growth factors are also

involved in this chromosome structure change. How

these changes contribute to cancer initiation and devel-

opment remains to be further investigated.

We also used the insulation score (IS, see Methods) to

explore the structure changes in carcinogenesis. From

the perspective of the domain level, the IS between adja-

cent forests and prairies was significantly larger in

tumor than in normal cells (P-value = 4.12 × 10−83,

6.28 × 10−10 and < 10−300 by t-test for lung, pancreas,

and liver, respectively; Fig. 3A), again hinting the for-

mation of a structure with forest and prairie domains

significantly separated (Fig. 3B). We next investigated

the spatial insulation around forest, prairie domain

boundaries at varied window sizes (Fig. 3C). For both

normal and cancer cell lines, the insulation score is gen-

erally higher for forest than prairie domains, indicating

more local interactions within forest, accordant with

our finding that forests to be mainly composed of type

A whereas prairies, type B [24]. Furthermore, for lung

and pancreas, the IS in both forest and prairie in tumor

is smaller than that in normal cells at small window sizes

(e.g., 200 kb), indicating a more homogeneous distribu-

tion of contact around the main diagonal of Hi-C

matrix. As the window size increases, forests and prai-

ries display distinctly different insulation behaviors. For

forests, the cancer IS values become larger than the cor-

responding values in normal tissues when the window

size > ~ 500 kb, indicating that the interactions in forest

domains becomes increasingly dominated by local con-

tacts. In contrast, the IS values in prairie domains are

smaller in cancer samples compared with normal cells at

larger range of window sizes than that in forest. The

spatial contact in HepG2 is more locally dominant than

A549 and Panc1; therefore, the IS values increase at all

window sizes we examined. The extent of increasing

insulation is always higher for forest domains than

prairie domains, which could be observed in all three

types of cancers.

3.2.3. CGI aggregation strengthens in carcinogenesis

We next focused on the local chromatin structure and

investigated the 3D contact changes of CGIs and their

underlying biological implications. We first calcu-

lated the interaction strengths (see Methods) for both

Fig. 3. Domain insulation and CGI aggregation in carcinogenesis. (A) The insulation scores between adjacent forest domain and prairie

domain in lung and A549, in pancreas and Panc1, in liver and HepG2. (B) The contact probability matrix of liver (lower triangular matrix) and

HepG2 (upper triangular matrix) (chromosome 1). Forest and prairie domains are marked with square frames. The contact probabilities in a’

and b’ are lower than a and b regions, showing an increased insulation between forest and prairie in HepG2. (C) The insulation scores for

40-kb beads around F-P boundary at different window sizes in normal cells (left), cancer cells lines (middle), and the differences between

them (right). The data are aligned so that the forest domains are positioned to the left of the boundary (value 0). (D) The interaction scores

between F-CGI (top row) or P-CGI (bottom row) and the four types of domains (F-CGI, F-non-CGI, P-CGI, and P-non-CGI) in normal lung and

A549. All P-values < 10−90 by t-test). (E) The overlap of aggregated CGIs among A549, Panc1, and HepG2. (F) The probability density of

interactions with P-non-CGI for conservative P-CGIs and P-CGIs becoming less segregated in A549. P-values = 1.3 × 10−12 by Welch’s

unequal variance t-test. (G) The expression level for conservative P-CGI genes, less segregated P-CGI genes and all prairie genes in A549.

Expression level for each gene is calculated by averaging TPM (transcripts per million) over all LUAD cancer samples. Data are represented

as boxplots, and P-values are calculated by Welch’s unequal variance t-test.
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normal cells and cancer cell lines. Taking lung as an

example, from normal to cancer, contacts between the

same genome types (F-CGI and F-CGI, F-CGI and F-

non-CGI, P-CGI and P-CGI, P-CGI and P-non-CGI)

increase, accompanied by the reduced contacts

between different genome types (F-CGI and P-CGI,

F-CGI and P-non-CGI, P-CGI and F-CGI, P-CGI

and F-non-CGI) (Fig. 3D). These results clearly show

the enhanced spatial segregation between forests and

prairies in cancer cell lines. Non-CGI DNA regions

also display a similar tendency (Fig. S5A).

Similar results are also obtained for pancreas cancer

(Fig. S5B, S5C) and liver cancer (Fig. S5D, S5E).

Intriguingly, F-CGIs and P-CGIs forming strong contact

with their same types (between F-CGIs and between P-

CGIs) in cancer are highly conserved among lung, pan-

creas, and liver (Fig. 3E). For the convenience of discus-

sion, we hereinafter name these common CGIs

conservative CGIs. Notably, in cancer, compared with

less segregated P-CGIs, the conservative P-CGIs show

significantly lower contact probability with P-non-CGI

regions (P-values = 1.3 × 10−12, 1.2 × 10−8 and 5.1 ×
10−44 by Welch’s unequal variance t-test in A549, Panc1,

and HepG2, respectively; Fig. 3F and Fig. S5F), the less

active chromatin domains. This observation indicates

that the aggregation of P-CGI during carcinogenesis

may result in a more open and active environment

(although within compartment B) which attributes to the

change of gene expression level (Fig. 3G and Fig. S5G).

Gene activation related to CGI aggregation is found

to closely connect to cancer development. We found

that upregulated forest genes harboring conservative

CGIs in three kinds of cancer cells are all associated

with cell cycle and glycosylation. The latter affects cell

communications and interactions, known to play vital

roles in cancer development and progression [52].

These genes are also enriched in functions such as

embryonic organ morphogenesis, in line with the rela-

tionship between carcinogenesis and early embryo

development [53], and are worthy of further investiga-

tions. In the conservative prairie regions, functions of

upregulated genes in three kinds of cancer cells are all

related to development and Wnt signaling pathway,

the latter being linked to cancer and playing important

roles in regulating development [54]. Such genes found

in the analyses of liver samples also act on epithelial-

to-mesenchymal transition, contributing to the cell

growth and invasiveness in carcinogenesis [55]. These

analyses thus suggest that the spatial aggregation of

CGIs and functional changes is likely correlated in

tumorigenesis (Table S6). The differences between can-

cer cell lines and normal cells in terms of DNA con-

tacts, segregation factors, and insulation scores

provide a consistent picture for chromatin structural

change in carcinogenesis. Interestingly, the changes in

contacts between forest domains and those between

prairie domains occur at genomic distances corre-

sponding to their TAD sizes [24,42], respectively, indi-

cating the improved formation of TADs and reduced

inter-TAD contacts in both forests and prairies.

3.2.4. Chromatin structure in cell cycle and different

cell states

To examine the possible relation between cancer cells and

cell division, we analyzed the chromatin structure at dif-

ferent stages in cell cycle for mouse, including G1, early S,

late S to G2, and pre-M. Interestingly, we observed an

enhanced spatial separation between forest and prairie

when the cell changes fromG1- to early S-stage, similar to

what is observed in carcinogenesis (Fig. 4A,B). Cells at

early S-stage possess lower F-F contact compared to F-P

at genomic distances around 1 M, but the affected genes

are different from those affected in cancer cells by a similar

structural chromatin change. The genes in the former pro-

cess are significantly related to cell division, such as nucle-

osome assembly and DNA packaging (Fig. S4E). Cells

from G1 to early S exhibit higher P-P contact than F-P at

genomic distances around several million bases which is

also similar to cancer cells. At large genomic distances, the

chromosome structures of S-stage cells are distinctly dif-

ferent from cancer cell lines. Forest domains in S-stage

cells are seen to highly spatially segregate, consistent to a

clustering of the early-replicating domain [56,57]. On the

other hand, the long-range P domain aggregation is much

weaker in S-stage cells than in cancer cells. These observa-

tions further suggest that the chromatin structure change

correlates with the realization and regulation of biological

functions in processes varying from carcinogenesis to

mitosis, which presumably occur at very different time

scales. The similarity between structure changes (at the

Mbp scale) of the two processes also suggests a possible

role of cell division in cancer development.

Cell senescence is also known to be highly influenced

by cell cycles. Senescence and carcinogenesis are mutu-

ally exclusive in most cases, although they can be

induced by the same factors [58,59]. Interesting similari-

ties do exist between cancer cell and senescence cell

chromatin structures, such as enhanced long-range

interactions, spatial segregation for repressive regions,

analogous trend of hypomethylation of open sea (Fig. 4

C,D). The similar trend of increased domain segregation

in both tumorigenesis and senescence suggests a com-

mon driving force shared by them, possibly related to

cell divisions. On the other hand, differences can also be

observed between them. Compared to growing cells,
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senescent cells lose and cancer cell lines gain local con-

tacts for both forests and prairies. A higher portion of

long-range chromatin contacts (especially that between

forests and prairies) retained in the senescent than in the

cancer cells. This latter difference may relate to cell iden-

tity retention, which is also a crucial difference between

the highly and lowly differentiated cancer cells.

Furthermore, important similarities were also identi-

fied between early embryo development and carcino-

genesis with respect to epigenetic regulation, gene

expression, protein profiling, and other important bio-

logical behaviors [53]. From the chromatin structure

point of view, short-range contact gains in the sacrifice

of long-range ones are seen in both cancer cells and

H1 (human embryonic stem cell line), in comparison

with highly differentiated cells (Fig. 4E,F). The former

two are both characterized by high segregation factors

at short genomic distances for forests and at long dis-

tances for prairies, although forests segregate more at

short distances and prairies tend to cluster at longer

distances in cancer cell lines than in H1.

3.3. Relationship between DNA methylation and

chromosomal structure

3.3.1. CpG density dependence for DNA accessibility

and methylation

It is well known that the unmethylated CGI is in gen-

eral free of nucleosomes and more accessible to the

transcription factors compared with methylated CGI

and other genomic regions. In an earlier study, we

showed that DNA methylation of the open sea reflects

to the chromatin 3D structure. All these results suggest

the importance of CpG density on CpG methylation

and the openness of chromatin. Therefore, we divided

DNA into four groups (Groups I, II, III, and IV)

according to their CpG density per thousand base

pairs [(2.0%, 20.1%), (1.0%, 2.0%), (0.5%, 1.0%),

and (0, 0.5%), respectively]. (Beads located in CGIs

mostly belongs to Group I as the minimum of their

CpG density are 2.4%.) We then analyzed DNase I

hypersensitivity and corresponding methylation data

for liver and lung cancer cell lines (HepG2 and A549,

respectively), as well as for somatic normal tissues with

data available.

In normal cells, DNase I hypersensitivity of Group

IV is slightly lower than other groups. In general, for

normal samples DNase I hypersensitivity decreases

slowly with the increase in CpG methylation level

regardless of CpG density. However, in cancer cells,

regions with high CpG densities and low methylation

levels are much more accessible than other regions,

and the DNase I hypersensitivity decreases to nearly 0

when the CpG density is lower than 0.02 or the methy-

lation level is higher than 0.5 (Fig. 5A and Fig. S6).

Notably, with the decrease in CpG density, DNase I

hypersensitivity and methylation gradually switch from

being negatively to positively correlated in tumor cells,

indicating that for genomic regions of very low CpG

Fig. 4. The Contact probability and segregation factor at varied genomic distances on chromosome 1. (A) (B) Cells at G1 and early S-stage

in mouse cell cycle. (C) (D) Growing cells and senescence cells. (E) (F) H1 and A549.

709Molecular Oncology 16 (2022) 699–716 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Y. Xue et al. Chromatin structure and DNA methylation in cancer



densities, higher methylation levels could reflect their

higher chromatin openness. We also found that DNase

I hypersensitivity of forests is constantly higher than

that of prairies for any given CpG density and methy-

lation level, and in both normal and cancer cells, con-

sistent with the forest being in a more open and active

environment [24]. Remarkably, the DNase I hypersen-

sitivity for prairies decreases more quickly than that

for forests with the decreasing of CpG density in can-

cer cells. Therefore, a positive correlation between

DNase I hypersensitivity and methylation level persists

in a larger DNA density range in prairies than that in

forests (Fig. 5B and Fig. S6).

Furthermore, we controlled the GC content for each

CpG density group to exclude the effect of GC bias

[60] and similar correlations are observed (Fig. S7A,

S7B). We also analyzed NoMe-seq data for normal

human mammary epithelial cells (HMEC) and breast

cancer cell line (MCF7) [61] and found a positive cor-

relation between methylation and DNA accessibility

(whether occupied by nucleosomes) for regions with

low CpG density, especially in cancer cell line (Fig.

S7C). These validations indicate the correlations

between DNA methylation and accessibility do exist.

3.3.2. Methylation of open sea correlated to chromatin

structure

To further examine the relationship between chromo-

somal structure and open sea methylation, we divided

the genome into four groups: regions switch from

compartment A to compartment B in tumorigenesis

(AB), regions switch from compartment B to compart-

ment A (BA), and those remain as A (AA) or B (BB)

Fig. 5. Association between methylation and chromosome structure and gene regulation. (A) Average DNase signal at various methylation

levels. CpG density and CpG methylation level are calculated at a 1-kb resolution. Bins are divided into Groups I, II, III, or IV according to

their CpG density [2.0%, 20.1%], [1.0%, 2.0%], [0.5%, 1.0%], or [0, 0.5%], respectively. The last two groups (shown in green and blue

lines) are magnified in the inset panels. Beads located on forest or prairie domains are shown separately in (B). (C) The probability density of

open sea methylation changes for domains in forests (top) and prairies (bottom). (D) Boxplots for the average expression (TPM) differences

between F-CGI and F-non-CGI genes (left), between P-CGI and P-non-CGI genes (right) for each normal and cancer sample. P-values are

calculated by Welch’s unequal variance t-test. (E) Boxplots for the average expression (TPM) differences between F-CGI and P-CGI genes

(left), between F-non-CGI and P-noCGI genes (right) for each normal and cancer sample. P-values are calculated by Welch’s unequal

variance t-test. (F) The expression fold changes in carcinogenesis (see Methods) for genes with various exon CpG density.
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in both normal and tumor cells. The methylation level

of AA regions remains largely unchanged while BB

regions undergo the strongest demethylation, indicat-

ing that the genomic silent regions are more likely to

be demethylated. Furthermore, AB regions are

demethylated to a larger extent than BA, indicating

that open sea demethylation tends to occur in the

repressed domains of cancer cells rather than those of

normal cells (Fig. 5C). It was reported that the DNA

methylation could regulate the 3D chromatin struc-

ture, such as the methylation of CTCF binding sites

[62,63]. Here, we found that the methylation state of

low CpG density loci correlates with the chromatin

structure, which suggests a possible role for the chro-

matin structure in regulating the DNA methylation.

The biological function of the methylation level and

their interplays with chromatin structure remain to be

further investigated.

There are several possible reasons behind hypomethy-

lation and its preference to occur on prairies over for-

ests. It was reported that CpG loci with multiple CpG

sites in the surroundings are more efficiency methylated

by DNMT1 [64], indicating that the local sequence fea-

ture partly contributes to the change in methylation.

However, the sequence property in the large scale (forest

or prairie) is also likely to affect DNA methylation. In

fact, prairies tend to undergo more drastic hypomethyla-

tion than forest regions even when they have the same

local CpG density (Fig. S2D). We also examined the

sequence environment effects on solo-WCGW (‘solo’

refers to the CpGs with no neighboring CpGs and ‘W’

indicates A or T nucleotide), which is reported to be the

most hypomethylation-prone sites in carcinogenesis [23]

(Fig. S8). Notably, solo-WCGWs located in prairies also

have a lower methylation level in normal cells and

undergo more drastic demethylation in carcinogenesis

compared with those in forests, further illustrating the

importance of the sequence environment.

A possible explanation for the above observations is

that cancer cells undergo more frequent cell cycles

than normal cells, resulting in insufficient methylation

and thus a global hypomethylation. It was reported

[65,66] that for mitotic maintenance of DNA methyla-

tion, there is a global delay after replication,

namely replication-uncoupled maintenance. Due to the

enlarged differences in domain structural properties

and resulted different accessibility of forests and prai-

ries, this hypomethylation is more likely to occur in

the latter, enlarging the methylation difference between

them. Such a mechanism is also consistent with previ-

ous findings of hypomethylation in aging cells, as well

as the observation on the extent of hypomethylation

being proportional to the replication timing of the

regions and the cell division rate of a tissue [23,67]. In

turn, their larger methylation difference is expected to

affect the contact between forests and prairies.

3.4. Gene expression in carcinogenesis

Next, we examined whether the change in gene expres-

sion in carcinogenesis also shows a DNA sequence

dependence. We first obtained 675 pairs of transcrip-

tome (cancerous versus adjacent normal tissues) from

TCGA and compared their averaged transcription

levels in CGI and non-CGI regions and in forests and

prairies (Fig. S9A). In normal cells, CGI genes (genes

with CGIs on their promoter or body, see Methods)

are on average more highly expressed than non-CGI

genes, and no matter they are located in forest or

prairie domains. At the same time, the mean expres-

sion levels of forest genes are constantly higher than

prairie genes for both CGI and non-CGI genes. We

then calculated the average expression-level difference

between CGI genes and non-CGI genes for each sam-

ple and found these differences become enlarged in

cancer cells (Fig. 5D) and the expression difference

between F-CGI and P-CGI also increases in cancer

cells (Fig. 5E). These results show that CGI/forest

genes are more likely to be upregulated in carcinogene-

sis compared with non-CGI/prairie genes.

To obtain more details, we also investigated the cor-

relation between expression changes in carcinogenesis

and the CpG density of gene exon and found that

genes with low CpG density tend to downexpressed in

cancer cells, especially for prairie genes (Fig. 5F). In

general, genes with higher CpG density are more likely

to be upregulated in carcinogenesis (since there are

very few prairie genes of exon CpG density larger than

0.03, their expression fluctuates in high-density groups

(Fig. S9B)), showing positive correlation between

expression fold change in carcinogenesis and CpG den-

sity around transcription start sites (TSSs) (Fig. S9C).

At the same time, such an expression increase is practi-

cally always higher for forest genes than prairie genes

of the same CpG density. When we divide all normal

samples into two random groups, such changes in car-

cinogenesis are then not observed (Fig. S9D). The cor-

relation between CpG density and expression fold

change remains even when the genes are divided into

subgroups according to their GC content (Fig. S9E),

showing that the sequence property of not only the

different components of the genes but also their sur-

rounding sequences (especially, whether they reside in

forest or prairie domains) can have a significant influ-

ence on their transcription activity, as well as alterna-

tion in expression in cancer development.

711Molecular Oncology 16 (2022) 699–716 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Y. Xue et al. Chromatin structure and DNA methylation in cancer



We also investigated the function of genes which are

differentially expressed (performed by DESeq2) in

multitypes of cancer cells. We analyzed 14 types of

cancer (BLCA, BRCA, COAD, HNSC, KICH, KIRC,

KIRP, LIHC, LUAD, LUSC, PRAD, STAD, THCA,

and UCEC), each of which has more than 10 pairs of

tumor and matched normal samples. Commonly dif-

ferentially expressed genes are defined as their expres-

sion significantly increase or decrease in more than 7

types of cancer. F-genes commonly upregulated are

enriched in nuclear division, DNA replication, and

positive regulation of cell cycle, which are consistent

with the properties of tumor (Fig. S9F). Downex-

pressed F-genes are closely related to muscle system

processes, which may be related to alterations in the

cell structure and further lead to altered deformability

and cell adhesion [68]. In addition, the expression level

of tissue-specific genes is dysregulated in cancer cells.

We used CIBERSORTx [69] to estimate the cell type

abundances for bulk transcriptomes of LUAD and

LUSC (Fig. S9G) and obtained cell type-specific

expression profiles. We found that after ruling out

immune and stromal subpopulations from both nor-

mal and cancer samples, the expression of tissue-

specific genes tends to decrease in carcinogenesis while

genes highly expressed in other but not the lung (com-

plementary tissue-specific genes) tend to increase in

expression (Fig. S9H, S9I), calling for an investigation

on a possible association of this gene expression-level

change with the metastasis of cancer.

4. Discussion

In the present study, we performed an integrated anal-

ysis of DNA methylation, 3D chromatin structure,

DNase hypersensitivity, and gene expression (Fig. 6).

We found several common trends that are associated

with carcinogenesis in various cancer types: (a) a con-

sistent global chromatin structure change in which the

short genomic distance contacts increase in the expense

of long distance contacts, especially at Mb scale. (b)

Enhanced separation of genome segments of different

CpG densities at the scales of both CGI (kb) and CGI

forests/prairies (Mb). Domains of similar CpG density

and methylation level tend to gain contacts. (c) The

loss of the contacts of low CpG prairie domains with

the CpG rich domains coincides with their hypomethy-

lation and gives rise to a larger difference between the

open seas in the forest and prairie domains, which is

aggravated as cancer stage increases. (d) The

expression-level difference between the more active

CGI/forests and less active non-CGI/prairies is

enlarged in cancer cells, compared to normal samples.

These observations suggest that in cancer development,

chromatin goes through concerted structure, epigenet-

ics, and expression activity changes that are strongly

influenced by sequential properties.

In general, it is believed that cancer is driven by

genetic change and a set of driver mutations are identi-

fied. However, 5% of cancer cases had no drivers that

can be identified in a recent work [70]. One possible

Fig. 6. Concerted changes in DNA methylation, chromatin structure, and gene expression in carcinogenesis. Forest and prairie domains are

represented by pink and blue lines, respectively. The pink circle represents a more open and active state, whereas the blue circle

represents a relative repressive state. The differences between the forests and prairies are enlarged in carcinogenesis. Small black circles

show the methylation states of open seas, to be specific, filled and hollow ones mean methylated and hypomethylated open seas.
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explanation is that mutations are not the only factor

initiating and promoting the cancer development, com-

mon epigenetic changes maybe correlated with carcino-

genesis. Since there is a case that almost no

methylation changes are observed in CGI and open

sea at very early stages of cancer (luad5, Fig. 1A), it is

tempting to speculate that methylation changes might

not be the earliest changes in all carcinogenesis either.

We should also notice that the different extents of

methylation changes in different cancer stages might

be influenced by the experiment bias and that the early

stage samples may consist of less cancer cells but more

normal cells compared with the late stage samples.

The methylation changes at early tumor stage remain

to be investigated.

Notably, our analysis of Hi-C data shows that chro-

matin 3D structure is an important variable that clo-

sely correlate with cell state, which could be used to

distinguish the tumor from normal cells we examined

by clustering analysis (Fig. 2C). The significant struc-

ture changes identified also show potential relationship

with key cancer properties, such as cell division, adhe-

sion, and immune response. Therefore, the relationship

between the establishment and destruction of well-

organized chromatin structure and carcinogenesis is

worthy of further exploration.

It appears that genomic sequence itself is one deter-

mining factor in the formation of high-order structure.

As responses to the cellular environment, structural

modifiers, such as TFs, miRNA, DNA methyltrans-

ferase and histone modifiers, all contribute to the for-

mation of specific chromosome structures to achieve

cell identity and cell function. In cancer cell lines, for

the overall chromosomal structure, the enhanced

domain segregation between forests and prairies is

likely driven by the aggregation of prairies, consistent

with the finding that attractions between heterochro-

matic regions are crucial for the formation of compart-

ments [71], and facilitated by the large number of cell

cycles the cells experienced. From the perspective of

CGI, during carcinogenesis, CGIs within the same

genome type (forest or prairie) tend to aggregate. Such

conservative structural changes are found to correlate

with functions corresponding to carcinogenesis and

cancer development. However, the mechanisms of

these changes are not clear and the gene regulatory

networks in cancer need to be further investigated. We

speculate that since many transcription factors bind

CGI-rich regions, the higher spatial contacts within

CGIs may provide an open and active environment

for related genes’ transcription in cancer (e.g., through

a liquid–liquid phase separation mechanism [72]).

5. Conclusions

In summary, we found consistent enlarged structural, epi-

genetic, and expression differences between forests and

prairies in various types of cancer cells. Although the cau-

sal relationship between them needs to be clarified, the

general sequence dependence of various genomic and epi-

genetic changes provides us with a new perspective and

the possibility of a more general mechanism of carcino-

genesis. The difference among primary cancer, leukemia,

and cancer cell line needs to be further investigated in the

future. We hope such knowledge will eventually help us

develop novel cancer diagnostic and therapeutic methods.
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