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BACKGROUND Cardiac output (CO) is a quintessential property of the cardiovascular system, one whose estimation is

vital to patient care in critical illness. The most common techniques for assessing CO, thermodilution (TD) and the

estimated Fick (eFick) approximation, force tradeoffs that motivate a need for new methods.

OBJECTIVES The purpose of this study was to novel CO estimators to fill key gaps in critical care medicine.

METHODS Machine learning was used to estimate CO from physiology measurements made during routine clinical care

in the intensive care unit (ICU) or cardiac catheterization lab. Models were trained and validated using a curated set of

13,172 ground-truth measurements of TD-CO from 4,825 patients. Model performance was evaluated using regression

metrics, trajectory analysis, classification accuracy, and DCO tracking.

RESULTS Three established eFick models all performed poorly in the ICU because their static estimates of oxygen

consumption could not track the dynamics of critical illness. In the postcardiac surgery intensive care unit, the best eFick

model erred in its CO predictions by 30% (mean absolute percentage error [MAPE]) with a coefficient of determination

(R2) of �1.5. The best model derived here, labeled CORE (Catheter Optimized caRdiac output Estimation), predicted CO

with an MAPE of 14% (P < 0.001 vs eFick) and an R2 of 0.58. These estimates could be calculated from measurements

obtained with either a pulmonary artery catheter or a central venous catheter. The CORE model was also robust to the

presence of moderate or severe tricuspid regurgitation, achieving an MAPE of 16% and R2 of 0.65 relative to a ground-

truth determined by the direct Fick technique with measured oxygen consumption.

CONCLUSIONS CO models that account for dynamic physiology in ICU patients were more accurate than widely used

eFick models and more versatile than TD. The performance of these models combined with their adaptation to vascular

access, broad applicability, ease of use, and ease of deployment should enable them to benefit patients across

diverse ICU settings. (JACC Adv. 2025;4:101663) © 2025 The Authors. Published by Elsevier on behalf of the

American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

CCL = cardiac catheterization

lab

CCLext = external cardiac

catheterization lab

CICU = cardiac intensive care

unit

CO = cardiac output

CORE = Catheter Optimized

caRdiac output Estimation

CSICU = cardiac surgery

intensive care unit

CVC = central venous catheter

eFick = estimated Fick

ICU = intensive care unit

MAPE = mean absolute

percentage error

PAC = pulmonary artery

catheter

R2 = coefficient of

determination

ScvO2 = central venous oxygen

saturation

SmvO2 = mixed venous oxygen

saturation

TD = thermodilution

TR = tricuspid regurgitation

_VO2 = oxygen consumption
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O f all cardiovascular properties,
perhaps none embodies circulatory
performance better than cardiac

output (CO).1 Its measurement is thus funda-
mental to patient care, but there is no univer-
sal tool for the task. Every tool, whether
premised on the Fick principle, indicator-
dilution measurement, arterial pulse wave
analysis, or other principles, must weigh a
set of tradeoffs.2,3 It must balance accuracy
and precision against factors such as required
vascular access, required expertise, applica-
bility across patient subgroups (eg, shunt
physiology or tricuspid regurgitation [TR]),
and availability of equipment to name a
few. Navigating such tradeoffs is the odyssey
of every innovation that aims to assess CO.
Furthermore, the ideal tool will vary by clin-
ical context. The intensive care unit (ICU) is
arguably the most demanding context of all,
where CO can be highly dynamic, the degree
of vascular access varies, patient physiology
covers the gamut, measurements are made
by staff with a range of technical expertise,
and the results impact decisions with the
highest of stakes.

The de facto standard for assessing CO in
the cardiac intensive care unit (CICU) is the
single-bolus thermodilution (TD) technique
using a pulmonary artery catheter (PAC). For this
reason, most new technologies benchmark their per-
formance against TD, but the technique has some
well-known limitations. Its availability may be
limited, as PAC use is less common outside of CICUs.
Its accuracy is often questioned in patients with sig-
nificant TR, cardiac shunt physiology, or very low
CO.4 And its execution can be technically demanding,
with subtleties such as confounding sources of heat
transfer and a need for technical replicates, nuances
that are less familiar outside the cardiac catheteriza-
tion lab (CCL). The clinical gold standard for assessing
CO is the “direct Fick” technique, wherein CO is
computed from the Fick principle using resting mea-
surements of a patient’s oxygen consumption ( _VO2 )
and other variables.5,6 The tradeoffs of direct Fick are
also well-known. It is accurate and applies to a wide
swath of patient physiologies, but it is also more time
consuming and requires a PAC together with
specialized equipment for measuring _VO2 , making it
less accessible and less familiar in the ICU compared
to TD. A technique that combines the universal
applicability of direct Fick with high accuracy,
compatibility with a range of vascular access, broad
availability, and ease of use remains a platonic ideal.
One of the most widely used alternatives to TD,
“estimated Fick” cardiac output (eFick), aims to
capture the wide applicability of direct Fick but
without the technical drawbacks. This approach en-
tails the same calculation as the gold standard tech-
nique with 1 key exception — _VO2 is estimated rather
than measured. When _VO2 is estimated well, eFick is
accurate, easy to use, applies to a broad spectrum of
patients, and is widely accessible in patients with a
PAC. But when _VO2 is estimated poorly, eFick’s
advantage becomes its Achilles heel. Accurate _VO2

estimation is especially challenging in the ICU, the
context of perhaps its most widespread use.7-10 None
of the commonly used _VO2 prediction equations were
derived in ICU patients but rather in CCL patients.11-13

And these CCL patients were largely comprised of
children and young adults with congenital heart dis-
ease (Table 1). Furthermore, these prediction equa-
tions were derived 30 to 60 years ago with basic
modeling techniques. Finally, these equations
employ few if any _VO2 predictors that reflect a pa-
tient’s dynamic physiology, making them ill-suited
for the ICU. Despite these widely recognized limita-
tions the use of eFick endures, primarily due to its
simplicity and its broad applicability across condi-
tions such as TR. The modern availability of high-
resolution clinical data sets together with powerful
modeling tools should enable novel CO estimators
that retain the advantages of eFick while improving
performance.

Here we sought to derive improved estimators of
CO with key advantages over both eFick and TD,
especially in the ICU (Central Illustration). We aimed
to achieve accuracy, ease of use, and applicability
across a wide spectrum of patients. We also sought to
derive estimators with the versatility to be used in
many kinds of ICU patients, in particular those in
whom vascular access falls short of a PAC. To derive
and validate these CO estimators, we used readily
available clinical predictors drawn from large data
sets curated from 2 distinct institutions. Improving
CO estimation in the ICU would enable numerous
opportunities to enhance patient care, from earlier
detection of impending circulatory failure to gauging
the efficacy of therapy.

METHODS

PATIENTS. The patients studied here were cared for
in 4 settings, 2 distinct CCLs and 2 distinct CICUs. The
2 CCL data sets were derived from consecutive right
heart catheterizations performed at Massachusetts
General Hospital (MGH), between 2013 and 2022 (CCL
data set), or at an external institution, Brigham and



TABLE 1 Patient Cohorts Used to Derive _VO2 or CO Models

Data Set Dehmer LaFarge Bergstra CCL CSICU

Site CCL CCL CCL CCL CSICU

Patients 108 879 250 1,026 2,311

Measurements 108 879 250 1,171 7,026

Dates Before 1982 1961-1966 Before 1995 2013-2020 2016-2022

CO technique TD Fick calculation Dye dilution TD TD
_VO2 technique Fick calculation Douglas bag Fick calculation Fick calculation Fick calculation

Age, y 49 (�) 13 (�) 35 (23) 65 (14) 64 (12)

Age: min-max 21-73 3-40 1-83 20-96 16-91

Female: n (%) 39 (36) 363 (41) 108 (43) 372 (36) 669 (28)

BSA, m2 - - 1.62 (0.39) 1.93 (0.26) 1.96 (0.26)
_VO2 , mL/min - - 231 (60) 217 (65) 207 (67)
_VO2 I, mL/min/m2 126 (26) 139 (26) - 112 (28) 105 (30)

Comparison of data sets used to derive the CO prediction models in this study or the V_O2 prediction models from 3 published studies, those of Dehmer et al,12 LaFarge and
Miettinen,13 or Bergstra et al.11 Note that 116 patients were present in both the CCL and CSICU data sets. The label “Fick calculation” refers to solving for CO or V_O2

using the Fick
equation with measured values of all independent variables. The average of each continuous variable in this table was taken over all available measurements. Values are counts,
mean (SD), or counts (%) where indicated.

BSA ¼ body surface area; CCL ¼ cardiac catheterization lab; CO ¼ cardiac output; CSICU ¼ cardiac surgery intensive care unit; TD ¼ thermodilution; V_O2
¼ resting oxygen

consumption; V_O2
I¼V_O2

indexed to BSA.
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Women’s Hospital, between 2009 and 2022 (external
cardiac catheterization lab [CCLext] data set). The 2
ICU data sets were derived from patients cared for at
MGH between 2010 and 2022, either in a postcardiac
surgery intensive care unit (CSICU data set), or a
distinct CICU (CICU data set), located on a separate
floor, where a modern spectrum of nonsurgical car-
diac critical illness is treated. A third nonoverlapping
ICU data set was derived from patients in whom _VO2

had been measured directly with a metabolic cart.
This data set was comprised of 102 nonventilated
patients from both the CSICU and the CICU (direct
Fick data set). This study was approved by the MGH
Institutional Review Board (Protocol 2020P003053).

CARDIAC OUTPUT AND _VO2 ASSESSMENT. Three
techniques for CO assessment were used for different
tasks: model derivation, benchmarking, or sensitivity
analysis. First, to derive new CO models, the ground-
truth measurements of CO were made by TD with a
PAC and a room-temperature injectate. These TD
measurements were curated to enhance their reli-
ability for model training. In particular, patients with
known moderate or severe TR were excluded, as
assessed by an echocardiogram performed within
2 weeks of the TD measurement; valvular regurgita-
tion was assessed by integrating both quantitative
and qualitative parameters in accordance with society
guidelines.14 Measurements were also excluded if the
cardiac index was <1 or >5, with body surface area
estimated by the DuBois formula. Second, to bench-
mark these new CO models, CO was estimated by 3
commonly used eFick formulas, those derived in
LaFarge and Mittenten, Bergstra et al, and Dehmer
et al.11-13 Third, to assess the sensitivity of new CO
models to the presence of TR, CO was determined by
the direct Fick method in a subset of ICU patients
(direct Fick data set described above). In these pa-
tients, CO was calculated using the Fick Equation
with _VO2 measured by metabolic cart (Medgraphics)
and averaged over a 3-minute interval, in duplicate.
For several analyses _VO2 was also assessed by a sec-
ond technique, namely calculation from the Fick
equation using measured values of all independent
variables including CO by TD. The calculation and
clustering of CO or _VO2 trajectories is described in the
Supplemental Methods.

CARDIAC OUTPUT PREDICTORS. Three classes of
predictors were used for fitting CO models: clinical
factors, vital signs, and laboratory measurements.
Clinical factors included age, sex, height, body sur-
face area, and active ventilator use (true or false).
Vital signs included body temperature, heart rate,
arterial blood pressure (systolic, diastolic, and mean),
and arterial as well as mixed venous O2 saturations.
Laboratory measurements included hemoglobin;
creatinine and lactate were also evaluated but not
found to be informative as predictors (data not
shown). Two configurations of these 13 predictors
were evaluated, corresponding to those derivable
from invasive vs noninvasive vascular access
(Supplemental Table 4). Details of data set assembly
are described in the Supplemental Methods.

SUPERVISED LEARNING OF CARDIAC OUTPUT

MODELS. We trained 2 primary CO models, one with
predictors whose measurement required invasive
vascular access (pulmonary artery or central vein)
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CENTRAL ILLUSTRATION The Estimation of Cardiac Output Using Existing Techniques,
Thermodilution and the Estimated Fick Approximation, Entails Tradeoffs Related to Accuracy
and Utility

Palanques-Tost E, et al. JACC Adv. 2025;4(5):101663.

Here we derived 2 new cardiac output estimators using a large database of intensive care unit and cardiac catheterization lab measurements

together with machine learning Tools. These estimators offer advantages over both reference techniques. ICU ¼ intensive care unit.
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TABLE 2 ICU Patient Characteristics

CSICU
(n ¼ 2,969)

CICU
(n ¼ 451)

Outcomes

In-hospital mortality (%) 8.0 6.9

Median length of stay (d) 2.0 4.2

Comorbidities and ICU therapies

Mechanical ventilation (%) 87 66

Vasopressor use (%) 93 96

IABP use (%) 6.1 16

History of diabetes mellitus (%) 22 24

History of CABG (%) 22 18

History of CKD (%) 10 9.1

History of COPD (%) 6.9 6.2

History of CVA/TIA (%) 10 9.5

History of HF (%) 22 33

History of MI (%) 11 16

History of PCI (%) 7.5 17

History of PVD (%) 4.9 6.7

History of hypertension (%) 33 24

Anthropometrics

Female (%) 28 22

Age (y) 65 � 13 64 � 13

BMI (kg/m2) 28 � 5.8 28 � 6.3

BSA (m2) 2.0 � 0.25 2.0 � 0.26

Height (m) 1.7 � 0.10 1.7 � 0.10

Weight (kg) 85 � 20 83 � 21

Values are % or mean � SD unless otherwise indicated. Clinical characteristics of
the ICU patients used to derive (CSICU) and validate (CSICU, CICU) the CO
estimation models. Values are percent, median, or mean (SD) where indicated.

BMI ¼ body mass index; BSA ¼ body surface area; CABG ¼ coronary artery
bypass graft surgery; CICU ¼ cardiac intensive care unit; CKD ¼ chronic kidney
disease; CO ¼ cardiac output; COPD ¼ chronic obstructive pulmonary disease;
CSICU ¼ cardiac surgery intensive care unit; CVA ¼ cerebrovascular accident;
HF ¼ heart failure; IABP ¼ intra-aortic balloon pump; ICU ¼ intensive care unit;
MI ¼ myocardial infarction; PCI ¼ percutaneous coronary intervention;
PVD ¼ peripheral vascular disease; TIA ¼ transient ischemic attack.
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and the other with predictors obtainable non-
invasively. We labeled the first, Catheter Optimized
caRdiac output Estimation (CORE) model, and the
latter, Noninvasive model. Both models were trained
on a combined data set of patients from the MGH CCL
and MGH CSICU (Supplemental Figures 1 and 6).

To train models we adopted a standard machine
learning framework using reliable TD-CO measure-
ments as ground-truth targets. We split patient data
into training and test sets. The training set contained
80% of the data and was used for fitting and hyper-
parameter tuning where applicable. Algorithms with
hyperparameters were tuned using Bayesian optimi-
zation with 3-fold cross-validation on the training set.
Hyperparameter-optimized models were subse-
quently trained on the full 80% training-split of the
data. The test set with the remaining 20% of the data
was held out of the training process and used exclu-
sively for model evaluation. To prevent data leak
from influencing model performance, all measure-
ments from a given patient were assigned to only one
of the training or test sets. We compared several
model fitting algorithms, including linear regression,
support vector machine, neural network, random
forest, and gradient boosting (XGBoost).

To evaluate models we first considered their per-
formance on the holdout test set. Next, we assessed
each model’s ability to generalize beyond the distri-
bution of the derivation data (MGH CCL and MGH
CSICU) by evaluating its performance on 2 external
validation sets, CCLext and CICU. We refer to them as
external in so much as they were both drawn from
distinct data distributions, in one case from patients
at a distinct institution, the Brigham and Women’s
Hospital CCL (CCLext), and in the other from patients
from a distinct ICU at MGH (CICU) where a distinct
spectrum of nonsurgical cardiac critical illness is
managed. No data from these external validation sets
were used in any way for training models. Finally, we
evaluated the CORE model’s sensitivity to the pres-
ence of TR by comparing its CO prediction against
direct Fick-CO using the ICU direct Fick data set
described above. This data set was not used for
training the CORE model.

STATISTICS. Continuous measurements are pre-
sented as the mean � SD unless otherwise stated. To
compare the performance of one CO model relative to
another, mean absolute percentage errors (MAPE)
between predictions and ground-truth CO were
computed at test set points for both models. The
paired Wilcoxon signed-rank test was then used to
evaluate whether the new model’s prediction errors
were significantly different than the reference
model’s errors at corresponding points (P < 0.05,
2-sided). Statistical significance of area under the
receiver operator curve (AUROC) differences was
assessed via bootstrapping with 10,000 resamples of
the test set. All data and statistical analyses were
performed in Python.

RESULTS

To derive novel CO prediction models, we used a total
of 8,197 ground-truth TD measurements from 3,221
unique patients, a data set that is an order of
magnitude larger than those used to derive each of 3
commonly used eFick models (Tables 1 and 2).11-13 The
patients whose data were used for model derivation
were cared for in 2 clinical contexts at our institution,
the CSICU and the CCL, dating back no more than
12 years. The patients had a mean age of 65 with a
range of 16 to 96, typical of adult cardiovascular care.
To externally validate our CO prediction models we

https://doi.org/10.1016/j.jacadv.2025.101663
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FIGURE 1 Oxygen Consumption Dynamics in the Cardiac Surgery Intensive Care Unit

(A) Time course of oxygen consumption after admission to the cardiac surgery intensive care unit, averaged over 474 patient admissions, where _VO2 I was

either determined from the Fick principle using cardiac output measured by thermodilution (“Fick _VO2 I”) or estimated using one of 3 prediction models:

LaFarge, Dehmer, or Bergstra. (B) Postoperative trajectories of _VO2 I, determined from measured thermodilution cardiac output in the same patients as a,

but clustered into 3 groups using the K-Means algorithm. (C) Fraction of patients with prolonged hospitalization (>14 days) or death, stratified by _VO2 I

cluster as calculated in B. (D) _VO2 I trajectories for each cluster of patients described in B, but estimated using the LaFarge equation for predicted oxygen

consumption. Error bars reflect 95% CIs. CSICU ¼ cardiac surgery intensive care unit; _VO2 I ¼ indicates resting oxygen consumption indexed to body

surface area.
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used 2 data sets containing 2,776 TD measurements.
These validation data sets spanned 2 distinct modern-
day contexts, a nonsurgical CICU and a CCL from an
external institution (Table 2, Supplemental Table 1).

We noted several characteristics of the patients in
our data sets that could influence resting _VO2 and
potentially force existing eFick models to extrapolate
far beyond their derivation context. Compared to CCL
patients from the eFick derivation cohorts, the CCL
patients in this study were typically much older, the
vast majority did not suffer from congenital heart
disease, and their spectrum of cardiovascular disease

https://doi.org/10.1016/j.jacadv.2025.101663


TABLE 3 Performance of Cardiac Output Prediction Models

Model Training data

CSICU (N ¼ 1,823) CICU (N ¼ 2,055) CCL (N ¼ 376) CCLext (N ¼ 721)

MAPE MAE R2 MAPE MAE R2 MAPE MAE R2 MAPE MAE R2

LaFarge - 30 1.5 �1.5 26 1.3 �0.86 19 0.97 0.19 19 0.95 0.34

Dehmer - 36 1.7 �2.1 31 1.5 �1.2 26 1.2 �0.04 19 0.90 0.42

Bergstra - 47 2.2 �3.9 42 2.0 �2.7 36 1.7 �0.84 25 1.1 0.18

CORE CSICU and CCL 14‡ 0.72 0.58 16‡ 0.76 0.58 17† 0.84 0.51 16‡ 0.80 0.49

Model performance as judged by MAPE, MAE (in L/min), or R2 was calculated for each of 3 eFick models (rows 1-3) and the CORE model fitted here. Each model was evaluated
on 4 data sets (table header). TD-CO was used as ground truth. All models were evaluated on CSICU and CCL test data that had been set aside and not used for CORE model
training. All models were evaluated on the entirety of the external validation data sets, CICU and CCLext, none of which had been used for model training. Table entries in bold
indicate the best fitting model on a data set (column). Significant differences (Wilcoxon test) in the MAPEs of the CORE model compared to eFick-LaFarge on each data set
(columns) are reported: *P < 0.05, †P < 0.01, ‡P < 0.001. TD-CO indicates cardiac output measured by thermodilution.

CCL ¼ cardiac catheterization lab; CCLext ¼ external cardiac catheterization lab; CICU ¼ cardiac intensive care unit; CO ¼ cardiac output; CSICU ¼ cardiac surgery intensive
care unit; MAE ¼ mean absolute error; MAPE ¼ mean absolute percentage error; N ¼ the number of data records in the evaluation data set (test set or external validation set);
R2 ¼ coefficient of determination; TD ¼ thermodilution.
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reflects modern day as opposed to the 1960s to 1980s.
The ICU patients in this study presented an even
starker contrast. Compared to our institution’s CCL
(and by extension the eFick derivation cohorts), they
exhibited lower mean arterial pressure and hemo-
globin levels, as well as higher heart rates, ventilator
usage rates, and male sex ratio (Supplemental
Table 1). These factors and more have the potential
to influence resting _VO2 but are absent from existing
eFick models of _VO2 .

EFICK ESTIMATES OF _VO2 DYNAMICS AND CO. Given
the pivotal role of _VO2 in the Fick calculation of CO we
first evaluated the accuracy of eFick estimates of _VO2

in ICU patients. For each of 474 patients in the CSICU
we computed ground-truth values of _VO2 from the
Fick equation using measured TD-CO. Serial _VO2

values were assembled into a trajectory covering the
first 24 hours of ICU admission and indexed to body
surface area ( _VO2 I). The mean postoperative trajectory
of ground-truth _VO2 I demonstrated marked deviation
from the mean trajectory of _VO2 I calculated using
eFick, both in absolute value and in trajectory shape,
no matter which eFick model was used (Figure 1A).
The inability of eFick _VO2 models to capture these
observed dynamics would be expected to undermine
their estimates of CO. Interestingly, we also discov-
ered meaningful substructure within the ensemble of
individual postoperative _VO2 I trajectories by using
unsupervised K-means clustering (Figure 1B). We
resolved patient trajectories into 3 subtypes of post-
operative recovery that carried important prognostic
implications. In particular, the fraction of patients
experiencing prolonged hospitalization across these
subtypes spanned a nearly 2-fold range, P ¼ 0.039
(Figure 1C), though the mechanism of these outcome
differences will require future study. Moreover, all
substructure was lost when the _VO2 I s from each tra-
jectory subtype were recalculated using eFick-
LaFarge, the most dynamic of the _VO2 prediction
models (Figure 1D).

We next quantified the accuracy of eFick models
for CO prediction itself, evaluating the models across
both our derivation and external validation data sets
(Table 3, rows 1-3). Using a ground truth CO assessed
by TD and performance metrics of MAPE, mean
absolute error (MAE), or coefficient of determination
(R2), we found that the accuracy of any given eFick
method was always substantially worse among ICU
patients than CCL patients. Among eFick models, we
found that the LaFarge model had the best perfor-
mance in both the ICU and the CCL. In absolute terms,
however, its accuracy in the ICU was concerning, with
MAPE values of 30% in the CSICU and 26% in the
CICU. Moreover, more than 40% of all CO estimates in
the ICU using eFick-LaFarge had an absolute per-
centage error >20% (Supplemental Figure 2). Perhaps
most problematic, the negative R2 of the LaFarge
model on both ICU data sets indicated a worse fit than
simply assigning each patient’s CO to be the mean CO
across the data set. We also tried refitting the LaFarge
model from scratch on our CSICU data, but the results
were underwhelming—for example, MAPE only
improved from 30% to 25% on the CSICU test set and
the R2 remained negative (Supplemental Table 2).

NEW CO PREDICTION MODELS. We sought to derive
new CO prediction models with greater accuracy than
eFick and good performance across both the ICU and
the CCL. We took a more direct approach, predicting
CO itself rather than _VO2 , which proved just as effec-
tive as the 2-step paradigm of eFick (Supplemental
Table 3). Our training data consisted of curated TD
measurements of CO as ground-truth paired with 13
CO predictors (Methods, Supplemental Table 4) that
are routinely measured, including a subset that
require a PAC to collect. Notably, none of the predictor
measurements should be undermined by conditions
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TABLE 4 Performance of Cardiac Output Models Compatible With Distinct Vascular Access

Vascular access

Model CSICU CICU CCL CCLext

Metric MAPE MAE R2 MAPE MAE R2 MAPE MAE R2 MAPE MAE R2

CVC n ¼ 119 n ¼ 50 n ¼ 376 n ¼ 414

LaFarge 40 1.9 �1.6 36 1.7 �1.8 29 1.5 �5.1 24 1.3 �0.25

CORE 19‡ 0.87 0.56 21* 0.92 0.53 19‡ 0.94 0.39 17‡ 0.96 0.30

Noninvasive n ¼ 1,823 n ¼ 2,055 n ¼ 376 n ¼ 721

Noninvasive model 18‡ 0.88 0.40 20‡ 0.97 0.34 20 1.0 0.24 21 1.1 0.15

Performance of CO models using data available from a CVC or noninvasive vascular access. To assess the performance of the CORE model with CVC data (row 2), the model was
evaluated with ScvO2 substituted for SmvO2 in the model input; no training with ScvO2 was performed. For comparison, the eFick-LaFarge model was also evaluated with ScvO2

substituted for SmvO2 (row 1). The noninvasive model was trained on the same data as the CORE model and compared to eFick-LaFarge evaluated with SmvO2 data (Table 3).
Significant differences (Wilcoxon test) in the MAPE of the CVC and noninvasive models compared to eFick-LaFarge on each test data set (columns) are indicated: *P < 0.05,
†P < 0.01, ‡P < 0.001.

CCL ¼ cardiac catheterization lab; CCLext ¼ external cardiac catheterization lab; CO ¼ cardiac output; CORE ¼ Catheter Optimized caRdiac output Estimation; CSICU ¼ cardiac
surgery intensive care unit; CVC ¼ central venous catheter; MAE ¼mean absolute error; MAPE ¼ mean absolute percentage error; N ¼ the number of data records on which the
models were evaluated; ScvO2 ¼ central venous oxygen saturation; SmvO2 ¼ mixed venous oxygen saturation; R2 ¼ coefficient of determination.
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that could compromise TD accuracy, such as TR or low
CO. We trained a model on a combined set of CCL and
CSICU patients using a range of techniques
(Supplemental Table 5) and found that gradient
boosting (XGBoost) performed the best. This model,
which we labeled CORE (Methods), outperformed all 3
eFick methods, achieving a lower MAPE and MAE, as
well as a higher R2 often by a substantial margin
(Table 2, Supplemental Tables 9, and 11, Supplemental
Figure 5). The gains were most evident in the CSICU
where the CORE model achieved a MAPE of 14%
compared to 30% for eFick-LaFarge (P < 0.001, CSICU
test set), a relative improvement in accuracy of 53%.
In the CICU the CORE model performed similarly well,
achieving a MAPE of 16% compared to 26% for eFick-
LaFarge (P < 0.001). We also trained 2 context-
specific CO prediction models on site-specific pop-
ulations, namely on CSICU patient alone or CCL
patients alone. The CORE model performed as well or
better than the CSICU-specific model in the ICUs
and the CCL-specific model in the CCLs
(Supplemental Table 6).

To improve the versatility of CO estimation we
considered models that could be used in patients
without a PAC. We first sought a model that could be
used with predictors obtainable from a central venous
catheter (CVC), as might be found in a non-cardiac
ICU. We reasoned that central venous oxygen satu-
ration (ScvO2) would be a key predictor15 because
feature importance analysis of the CORE model had
revealed that mixed venous oxygen saturation
(SmvO2) was its most valuable predictor
(Supplemental Table 7). However, our data set lacked
sufficient ScvO2 measurements to train such a model
from scratch. Instead, we simply substituted ScvO2

for SmvO2 as an input to the CORE model. Model ac-
curacy in the CSICU dropped slightly with this
substitution, for example MAPE increased from 14%
to 19% (Table 4). However, the CORE model with
ScvO2 still significantly outperformed eFick-Lafarge
in both the CSICU and the CICU. We also considered
the scenario with no invasive vascular access and fit a
“noninvasive” CO model. Although its overall per-
formance slipped compared to the CORE model, the
Noninvasive model outperformed eFick-LaFarge in
the ICU context (eg MAPE 18% vs 30% in the CSICU,
P < 0.001) even though eFick made use of SmvO2

from a PAC.
To test CORE’s accuracy in a key patient subgroup

that may confound the TD technique, we explored its
sensitivity to the presence of TR. Our data set con-
tained 108 measurements from 102 ICU patients in
whom resting _VO2 was directly measured together
with echocardiographic assessment of TR. We strati-
fied these patients by the severity of their TR, calcu-
lated their ground-truth CO using the direct Fick
technique, and then compared these values to CO
predictions from the CORE model. Encouragingly, the
performance of the CORE model in the ICU was un-
affected by the presence of moderate or severe TR
(N ¼ 43), with a MAPE of 16% and an R2 of 0.65
(Supplemental Table 8).

We went on to reanalyze postoperative trajectories
in the CSICU but this time through the lens of CO dy-
namics. We computed the mean cardiac index over
the first 24 hours after cardiac surgery as calculated by
eFick methods, the CORE model, or the Noninvasive
model and compared it to cardiac index measured by
TD (Figure 2). Strikingly, cardiac index by eFick was
not only error prone, but also its dynamics after car-
diac surgery diverged from the TD-measured values.
These errors may reflect the influence of low post-
operative body temperature, anesthetic usage, and
mechanical ventilation on _VO2 , effects not captured by
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FIGURE 2 Cardiac Index Dynamics in the Cardiac Surgery ICU

Mean trajectories of cardiac index for the first 24 hours after cardiac surgery. Each

trajectory reflects cardiac index averaged over 562 patient admissions in the cardiac

surgery intensive care unit test set, as measured by thermodilution (black) or estimated

by one of five models—3 eFick models (LaFarge, Dehmer, Bergstra) and 2 models derived

here, the Catheter Optimized caRdiac output Estimation model and the noninvasive

model. Error bars reflect variation in a model’s mean predictions across patients (2 SEs).

CORE ¼ Catheter Optimized caRdiac output Estimation; CSICU ¼ cardiac surgery intensive

care unit.

J A C C : A D V A N C E S , V O L . 4 , N O . 5 , 2 0 2 5 Palanques-Tost et al
M A Y 2 0 2 5 : 1 0 1 6 6 3 Cardiac Output Estimation

9

the eFick models which could lead them to over-
estimate _VO2 and in turn, cardiac index. In contrast,
the cardiac index values predicted by the CORE model
or even the Noninvasive model tracked the TD mea-
surements with much higher fidelity.

Finally, we evaluated whether the CORE and
Noninvasive models derived here have the poten-
tial to improve clinical decision-making in the ICU.
Compared to eFick, the new CO models proved
to be better at diagnosing low cardiac index
(Figure 3 and Supplemental Figure 3). For example,
in the CSICU population a classifier based on the
CORE model achieved an AUROC of 0.88, better
than eFick-LaFarge which achieved a value of 0.73
(P < 0.001). The CORE model was also better at
tracking the direction of change in CO. We
computed the fraction of instances where a CO
change by TD (of a meaningful magnitude) also
changed in the same direction by the CO estimate.
This concordance rate between TD and the CORE
model was 85% in the CSICU and 76% the CICU
(Figure 3), but between TD and eFick-LaFarge the
concordance rate was only 72% in the CSICU and
68% in the CICU (Supplemental Figure 4).

DISCUSSION

From calculating aortic valve area to managing shock,
the assessment of a patient’s CO is a cornerstone of
cardiovascular care. In this study we developed
several novel estimators of CO by applying modern
machine learning tools to a data set of 4,825 patients
and 13,172 ground-truth measurements of CO,
together with commonly measured clinical pre-
dictors. Trust in these estimators stems in part from
the large and diverse patient population on which
they were trained and validated, including stable and
unstable patients, surgical and nonsurgical patients,
and patients from local and external institutions.
Compared to widely used eFick models these esti-
mators are markedly more accurate in the ICU, more
effective at classifying low CO, and more faithfully
track changes in TD-CO. Compared to TD they are
easier to use, apply to a broader array of patient
physiologies, and can be used with or without a PAC.

ESTIMATING CARDIAC OUTPUT. The drawback of
existing eFick methods for estimating CO can be
traced to their poor estimation of resting _VO2 . Though
this problem is well recognized in the literature,16-22

we found that its magnitude was truly unmasked in
the ICU. A key reason eFick methods fail is that their
_VO2 models are based on very few predictors.
Moreover, because these predictors are essentially
static (except for heart rate, in eFick-LaFarge) they
struggle to track the physiology associated with
changes in _VO2 . As a result, the eFick models are
implicitly and rigidly adapted to the CCL patients
they were trained on, capturing their mean _VO2 but
unable to track _VO2 dynamics. By contrast, modern
ICU patients are a far different population from the
eFick-derived CCL patients (Table 1) and _VO2 can in
fact be quite dynamic (Figure 1).7-10,18 Consequently,
eFick predictions of CO can fail in dramatic
fashion (Figure 2).

To improve CO estimation, we used an expanded
set of predictors together with flexible models to
better fit complex relationships. In addition to the
CORE and noninvasive models, we also developed CO
models for distinct clinical contexts, namely an ICU-
specific model or a CCL-specific model, thereby
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FIGURE 3 Classifying and Tracking Cardiac Output in the Intensive Care Unit

(A) Receiver operator curves for the classification of cardiac index as low, <2.5 L/m2, in the CSICU. Each curve reflects a classifier based on a distinct cardiac output

prediction model. (B) Receiver operating curves for the same models as in A, except applied to cardiac index classification in the CICU. (C) Concordance plot for

comparing changes in cardiac output as measured by thermodilution with changes estimated by the CORE model, evaluated on the CSICU test data. Cardiac output

changes were calculated from consecutive measurements within 5 hours, and cardiac output changes < 15% in magnitude were excluded. Points in the upper right and

lower left quadrants reflect concordant changes. (D) Concordance plot as in C but evaluated on the CICU data set. AUC ¼ area under the receiver operator curve;

CICU ¼ cardiac intensive care unit; CO ¼ cardiac output; CORE ¼ Catheter Optimized caRdiac output Estimation; CSICU ¼ cardiac surgery intensive care unit;

TD ¼ thermodilution.
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capturing contextual factors implicitly by virtue of
the patients the model was trained on. An ideal CO
model would be based on sufficient predictors to
genuinely fingerprint the physiology and thereby
avoid the need for a collection of context-specific
models. The CORE model described here, trained on
a rich set of predictors and patients from both the CCL
and ICU, is a step in that direction, as it was able to
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match the performance of both context-specific
models (Supplemental Table 6).

All methods for estimating CO have limitations and
assumptions that must be considered when inter-
preting the results. In our CO prediction models, a
perhaps surprising finding was that a CO model
trained to estimate reliable TD values does not
necessarily inherit the limitations of TD more
broadly. For example, though TD measurements can
theoretically be confounded by TR or low CO,23,24 the
predictors we used to train our CO models do not
share these shortcomings. Indeed, part of our moti-
vation was to fit a CO model that would be immune to
the weaknesses of TD and thereby mirror the broad
applicability of direct Fick. We were able to validate
this by showing that in 102 of our ICU patients in
whom direct Fick CO was available (ground truth
established using measured _VO2 ), the CORE model
performed similarly in patients with and without
moderate or severe TR. Thus, the prediction approach
at the heart of the CORE model merges several of the
benefits of direct Fick with those of TD.

How accurate does a CO estimator need to be?
Goals for absolute accuracy have long been recog-
nized as a matter of judgment. We therefore explored
2 clinical use cases for CO estimators that shed light
on their utility for decision-making. First, we built a
classifier to diagnose low CO (cardiac index < 2.5) and
found that the CORE model consistently out-
performed eFick (Figure 3, Supplemental Figure 3,
Supplemental Table 10). Second, we evaluated the
ability of CORE to track changes in CO, assessing how
often a change in CO predicted by the model matched
the direction of change measured by TD. Again, the
CORE model outperformed eFick, achieving a
concordance rate with TD of 85% and 76% in the
CSICU and CICU respectively.

WEIGHING TRADEOFFS. The most accurate of the CO
models developed here, the CORE model, was trained
with an SmvO2 predictor measured by a PAC, raising
the question of when it best complements or sub-
stitutes for a TD measurement. First, the CORE model
can be used in patients without a PAC. Substituting
SmvO2 with ScvO2 in the calculation entails only a
modest drop in accuracy. This flexibility enables the
model to be uniquely accessible across a wide swath
of ICUs where central venous catheters predominate.
Second, in a sizeable subset of patients with a PAC,
the accuracy of TD may be a concern due to the
presence of TR or very low CO. Though the magnitude
and direction of TD error in these settings is debat-
able,4-6,23-29 the theoretical risk of error is often
sufficient for physicians to adopt a conservative
approach and avoid TD altogether. Fortunately, the
accuracy of the CORE model is resistant to these TD
confounders on theoretical grounds, and empirically,
we found it to be resistant to the most common of
them, TR (Supplemental Table 8). Third, even in pa-
tients with PAC access, lack of technical familiarly
with the TD measurement itself can be a concern,
including with such factors as rapid saline injections,
heat transfer confounders, and technical replicates.
These concerns may be especially pronounced in ICUs
where PAC use is less typical even though CVC use is
common. The CORE model is easier to use in that
regard as it requires nothing more than blood sam-
pling from the PAC or CVC. Finally, for any individual
patient the reliability of TD is at times difficult to
judge. A clue that such a measurement may be
problematic is when its value is at odds with the
clinical picture, an all too familiar scenario. In such
cases a complimentary assessment by a CO estimator
such as the CORE model could prove valuable.

The estimated Fick technique remains a popular
way to assess and track CO, despite warnings from
published reports.6,13,28,30-33 Relative to TD, eFick’s
appeal likely stems from 3 properties—its ease of use,
its broad applicability across patients including those
in whom TD measurements may be deemed suspect,
and the plausibility of the eFick calculation based on
its similarity to the gold standard method, direct Fick.
Relative to eFick, the CO models developed here
present favorable tradeoffs. The accuracy of the CORE
model is far superior to eFick in the ICU and it both
classifies and tracks CO better at the cost of a
modestly more involved calculation and the need for
additional predictors. Fortunately, the extra compu-
tation can easily be handled by any modern desktop
or handheld computer (eg, smartphone) and the
additional predictors are laboratory measurements
and vital signs routinely collected during clinical
care. Moreover, modern electronic medical record
systems could readily automate such calculations.

A long sought goal of CO assessment is a tool that
requires less invasive vascular access than TD.34-36

Even if the tradeoff of such a tool were a modest
loss of accuracy, the benefit of enabling CO estima-
tion across many more clinical contexts may justify it.
Highlighting such a need is the common clinical
practice of attempting to gauge CO from an isolated
measurement of ScvO2 in patients with CVC access.
To this end we showed that CO estimation can be
performed with widely available clinical predictors
obtained from a CVC or even noninvasively. Though
the performance of these CO prediction models slips
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compared to the CORE model with PAC predictors,
they still have important advantages over eFick
(Table 4, Figure 2). Indeed, CO estimation with
noninvasive predictors was even more accurate in
CICUs than CO estimation by eFick with SmvO2

measured through a PAC. Future studies will be
needed to determine whether the performance of the
CORE model with ScvO2 input and the noninvasive
models hold up in non-cardiac ICUs or even hospital
floors.

The CO models developed here also compare
favorably against several technologies developed as
alternatives to TD. These TD competitors include
technologies such as pulse-contour analysis, esoph-
ageal Doppler, transthoracic electrical bioimpedance,
or carbon dioxide rebreathing, technologies whose
tradeoffs are often judged by 2 classes of criteria.3 The
first include performance criteria such as precision,
accuracy, and the capacity to influence clinical
decision-making. A meta-analysis of the 4 techniques
mentioned above quantified the ranges of their bias
(0-0.77 L/min) and precision (1.07-1.22 L/min) relative
to TD in patients recovering from cardiac surgery. By
comparison, the CORE model’s bias (0.06 L/min) and
precision (0.95 L/min) in the CSICU were quite
competitive (Supplemental Table 9). The second class
of criteria encompasses several factors, including
cost, safety, availability, ease of use, applicability
across patient populations, and validation across
clinical contexts. Relative to these criteria the CORE
model is competitive as well. In terms of cost, safety,
and availability it is arguably the nearest neighbor to
TD, the standard of care. Furthermore, it is easier to
use than TD and applies to a broader patient popu-
lation. Finally, we have validated its performance in a
far larger patient data set than many alternative
technologies, one that encompasses a more hetero-
geneous spectrum of cardiovascular illness and
especially critical care.

STUDY LIMITATIONS. The CO models developed here
excel compared to eFick, but with R2 metrics around
0.6, there remains variation in TD-CO that they do not
yet capture. A component of this variation may be
due to intrinsic noise in the TD measurement used as
a training label, but we believe there is likely also
physiology not accounted for by the set of 13 pre-
dictors we used. We chose predictors that are readily
available, favoring ease of use and reduced model
complexity, but there are many other predictors that
could be incorporated (such as the myriad metrics of
mechanical ventilation). There are also promising
data sources yet to be exploited. The success of
arterial waveform analysis in CO estimation, and the
newly discovered wealth of information embedded in
the electrocardiogram, point to at least 2 additional
predictors that may further improve CO models.

The generalizability of these novel CO models may
be compromised by the limitations of real-world data
sets and retrospective analyses. For example, impu-
tation was required here, particularly for measure-
ments such as body temperature in CCL patients.
Additionally, time alignment of measurements was
achieved by defining simultaneity in terms of time
windows. These time windows compromised the
granularity of the dynamics captured by the models.
Despite not fully extracting all available data and
striking compromises entailed by real-world data, our
models nevertheless demonstrated key performance
advantages over standard practice. Importantly,
model generalization was supported by the large
diverse data sets, drawn from 2 institutions and 2
clinical settings and by their very similar performance
on test sets and external validation data sets. Finally,
the data sets used to fit the models are biased towards
patients with cardiac illness. Model generalization
will need to be further tested on diverse patients such
as those treated in medical ICUs with septic shock or
advanced liver disease.

CONCLUSIONS

All CO assessment methods face tradeoffs, especially
in the ICU where dynamic patient physiology spans a
wide spectrum, vascular access varies, expertise
varies, and resources vary. The estimated Fick models
were not designed for the ICU context, and though
their limitations have long been recognized, no
alternative estimation method has yet replaced them.
As shown here, the wealth of data routinely collected
on ICU patients combined with modern modeling
tools enable superior CO estimators. These estimators
have advantages over TD as well—they are easier to
use, apply to a broader spectrum of patients, and are
compatible with a wider range of vascular access,
including absence of a PAC. Their deployment would
require no additional devices, no new measurements
outside of standard clinical practice, and no special-
ized training. Their adoption will ultimately hinge on
further studies to confirm their accuracy and to prove
their utility. Confidence in their accuracy will entail
showing that their performance generalizes to other
institutions, to common patient subsets, and in
particular to medical ICUs. Confidence in their utility
will be gained by showing that common electronic
medical record systems can support their computa-
tion, that physicians perceive them as easy to use,
and that they fill existing gaps such as patients
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without a PAC. CO estimators that are more accurate
than eFick, more versatile than TD, and tailored to the
ICU, could become valuable tools in the management
of critical illness.
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