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Abstract: Schizophrenia is a widespread mental disorder that leads to significant functional impair-
ments and premature death. The state of the art indicates gaps in the understanding and diagnosis of
this disease, but also the need for personalized and precise approaches to patients through customized
medical treatment and reliable monitoring of treatment response. In order to fulfill existing gaps, the
establishment of a universal set of disorder biomarkers is a necessary step. Metabolomic investiga-
tions of serum samples of Serbian patients with schizophrenia (51) and healthy controls (39), based on
NMR analyses associated with chemometrics, led to the identification of 26 metabolites/biomarkers
for this disorder. Principal component analysis (PCA) and orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) models with prediction accuracies of 0.9718 and higher were accomplished
during chemometric analysis. The established biomarker set includes aspartate/aspartic acid, lysine,
2-hydroxybutyric acid, and acylglycerols, which are identified for the first time in schizophrenia
serum samples by NMR experiments. The other 22 identified metabolites in the Serbian samples are
in accordance with the previously established NMR-based serum biomarker sets of Brazilian and/or
Chinese patient samples. Thirteen metabolites (lactate/lactic acid, threonine, leucine, isoleucine,
valine, glutamine, asparagine, alanine, gamma-aminobutyric acid, choline, glucose, glycine and
tyrosine) that are common for three different ethnic and geographic origins (Serbia, Brazil and China)
could be a good start point for the setup of a universal NMR serum biomarker set for schizophrenia.

Keywords: schizophrenia; metabolomics; biomarkers; NMR; chemometrics; serum metabolites

1. Introduction

Schizophrenia is a widespread mental illness ranked in the top 25 causes of disability
worldwide [1], which leads to significant functional impairments and premature death. The
World Health Organization (WHO) estimated that schizophrenia affects 20 million people
worldwide [2,3]. Global total costs for this illness are difficult to calculate because of their
complex and various influences on society and the economy. Only in the USA, yearly costs
are estimated at over 100 billion dollars. The economic burden of schizophrenia varies from
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0.02% to 1.65% of the gross domestic product in low, medium, and high-income countries,
with an indirect cost contribution of 50–85% [4–6].

The state of the art in this research area indicates that this mental illness is the result
of complex interactions between genetic and environmental factors, and the underlying
pathophysiology is not completely understood. The current diagnostic criteria for psychi-
atric diagnosis are based on clinical phenomenology, and they are limited to psychiatrist
judgment after a standard clinical interview and reports from patients or caretakers. Diag-
nosis is significantly hampered in cases with advanced mental disorders due to difficult
communication with the patient and/or lack of credible information from the environment.
Besides gaps in the understanding and diagnosis of the illness, there is also a need for
personalized and precise approaches to patients through customized medical treatment
and reliable monitoring of treatment response [7]. In order to fulfill the existing gaps, the
establishment of a universal set of disorder biomarkers is a necessary step.

NMR spectroscopy and MS spectrometry are the two most-used platforms in metabolomics.
Compared with MS analyses, NMR is less sensitive and has limited resolution. However,
NMR analyses offer high reproducibility and quantitative accuracy using intact biospeci-
mens without the need for separation [8]. Previous metabolomic and lipidomic analyses of
fluid (blood and urine) samples of patients with schizophrenia [9–26] led to the detection of
metabolites as potential biomarkers. NMR-based metabolomics of patient serum samples
offered 59 potential biomarkers for schizophrenia [9–15]. However, due to the lack of
comparative investigations of patient samples with different geographical and ethnical
origins, supported by an adequate systematic methodology, a universal set of biomarkers
(fingerprints of illness) has not been established.

In accordance with the objective of the “Mental Health Action Plan 2013–2030” created
by the WHO for strengthened information systems, evidence, and research [27], and in
order to support efforts for the establishment of the universal fingerprint for schizophrenia,
we performed a metabolomic investigation of a cohort of Serbian schizophrenia patients
serum samples based on NMR analyses associated with chemometrics.

2. Results

This study included 51 patients with schizophrenia and 39 healthy individuals in the
control group, and the two groups of the investigated individuals were carefully paired
regarding sex and age. Schizophrenia patients underwent the same treatment with the
antipsychotics regarding dose and time, illness stage, and symptoms before hospitalization.
NMR analyses of blood samples were performed in triplicate.

2.1. Chemometrics

The 1H-NMR data sets were processed applying Bruker Topspin software, and
the spectra phases and baselines were corrected using automatic options. The 0th
order phase correction was carried out manually, contributing to noise variance removal
(Supplementary Material, Figure S1). Finally, the data set was processed by GNAT software
and analyzed by chemometrics.

2.1.1. Exploratory Analysis

The most common method for exploratory data analysis is principal component
analysis (PCA). When the number of variables is 32 K, as in this case, the simple univariate
methods are not easily applicable. Nevertheless, univariate statistics such as skewness
and kurtosis could be informative to some extent and helpful in determining the method
of scaling or variables regions with significant discrepancy from a normal distribution
or even potential outliers. Kurtosis for a normally distributed data set should be near
3. Pronounced positive values for both statistics were observed in the region of spectra
between 3.2 to 3.9 ppm as well as at 1.21 ppm. Therefore, samples that contributed to this
area of spectra are considered possible outliers. Spectral regions below 0 ppm and above
8 ppm, without the presence of any significant resonance signals, were also removed from
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further consideration. After careful analysis of the statistics, 6 samples (i.e., triplicates of
two ‘Schizophrenia’ patients) were identified as potential outliers (Supplementary Material,
Figure S2). Additional two outliers were identified in PCA analysis. The reason for omitting
8 spectra from the data was inadequate water resonance suppression or high dilution of the
samples, which provided a very low signal-to-noise ratio. These outliers were, therefore,
removed from the data set for the rest of the study.

2.1.2. PCA Models

In order to obtain the most reliable PCA models, different centering and scaling
methods were used: Pareto centering and scaling, autoscaling, and class centroid centering
and scaling. The resulting number of PC components of a PCA model was determined
using RMSECV from 7-fold cross-validation (described in the experimental section). The
PCA model using Pareto scaling with mean centering data accounted for a total variance
of 90.95%, and the first two components provided a very good separation between the
two main classes (Figure 1). Other results are illustrated in the Supplementary Material
(Figures S3 and S4).
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Figure 1. (a) PCA score plots of the first two components. The schizophrenia cohort is shown in red,
and the control group in green. (b) PC2 back-scaled projection of loading coefficients. The empty
part of the loading plot belongs to the water resonances region.

The most positive contribution to the PC2 loading graph (Figure 1b), corresponding
to the class ‘Schizophrenia’, could be identified around 1.33 ppm (doublet: 1.32 ppm;
1.34 ppm) and around 4.11 ppm (quartet: 4.09 ppm; 4.10 ppm; 4.12 ppm; 4.13 ppm),
which could be assigned to the signals of lactate, and in the area between 3.71 to 3.61 ppm
typical for sugar molecules. Additionally, in PC2 loading, the corresponding variables at
0.84 ppm, 3.21 ppm, 3.55 ppm, and 5.28 ppm show the characteristic dispersion-phase
pattern of chemical shift variation where the shape is similar to the first-derivative curve of
a peak. Both positive and negative parts of the peak intensity are approximately equivalent.
Resonances at these positions are mostly related to broad signals, which could be attributed
to peak position variation and lead to discrimination [28]. The most pronounced signals
in mean-centered NMR spectra were positioned at 0.88, 1.28, 1.58, 2.04, 2.24, 2.75, and
5.31 ppm. Those were in good agreement with the loading coefficients of variables that
contributed to the higher score projection to the PC 1 component. It could be seen that all
scores with higher positive projection to the PC 1 component (rounded with blue ellipses in
Figure 1a) have significantly higher intensity contribution in mean-centered PC 1 loadings;
nevertheless, they cannot be considered outliers.
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2.1.3. OPLS-DA Models

Pattern recognition data analysis was carried out in two steps. In the first stage, all the
variables were mean-centered (or class centroid centered); thereafter, they were autoscaled
by dividing each variable by its standard deviation (or pooled standard deviation) and
then analyzed using a supervised pattern recognition method—orthogonal projection on
latent structure (O-PLS), which was developed by Trygg et al. [29]. The O-PLS model
represents a modification of the PLS model, which separates the systematic variation on X
into three parts, the first one that is linearly related to Y, the second part that is orthogonal
to Y (structured noise), and the last one contains the residual variance [30,31].

Prediction capabilities were tested for the chosen number of components with inde-
pendent test data set comprising 32 samples of ‘Schizophrenia’ and 39 samples belonging
to the ‘Control’ class, a total of 71 samples. As a result, the final number of components
was selected according to the minimum value of the root-mean-square error of prediction
(RMSEP) obtained for a different number of model components. Predictions for both
classes using autoscaling as a preprocessing method for centering and scaling are pre-
sented in Figure 2. The classification threshold for each class model is calculated using the
Bayesian method [32,33]. For the ‘Schizophrenia’ and ‘Control’ classes, the thresholds were
determined as 0.4086 and 0.5914, respectively.
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Figure 2. (a) Y CV Predicted for the class ‘Schizophrenia’ and threshold value of 0.4086; (b) Y CV
Predicted for the class ‘Control’ and threshold value of 0.5914 using autoscaling. The schizophrenia
cohort is shown in red, and the control group in green.

The corresponding confusion matrix for the classification of the external test dataset
according to the PLS-DA model with autoscaling preprocessing is shown in Table 1. It
could be seen that, with 2 misclassified samples from ‘Schizophrenia’ (with an accuracy
of 0.9718) for the independent test dataset, the model has satisfied prediction capability
(Supplementary Material, Figure S5).

Table 1. Confusion matrix for classification of test data according to PLS-DA model and autoscal-
ing preprocessing.

Actual Class

Schizophrenia Control

Predicted as Schizophrenia 30 0
Predicted as Control 2 39

Predicted as Unassigned 0 0

The score plot of the first predictive LV 1 component (comprising 26.83% of the
variance) to the first orthogonal LV 2 component (comprising 28.39% of the variance) is
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shown in Figure 3. The total variance covered by the OPLS-DA model was 72.57% for the X
block of the dataset. The back-scale projection of the predictive component is given with
color coding according to the loading correlation proposed by Wiklund et al. [30], also
named an S line plot [34].
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Figure 3. (a) Score plots of the first two LV components of the OPLS DA model using mean-centering
and unit variance scaling (for a 4-component model, RMSEC = 0.0934 and RMSECV = 0.1304). The
schizophrenia cohort is shown in red, and the control group in green. (b) Back-scale projection
of loading vector LV 1 to coloring coded according to the absolute value of the particular loading
weighted by correlation of the spectral data set and score matrix from the OPLS-DA model. Part of
the loading plot belonging to the residual water signals was omitted from the plot.

2.1.4. PLS-DA for Unequal Class Size

When the number of samples in the analyzed groups is unequal or unbalanced, then
using a standard approach in data pretreatment for PLS-DA analysis will not usually
result in the most appropriate class separation boundary [35]. In such a case, the overall
mean centering shifts the center of gravity towards the larger class group, resulting in the
shifting of class separation boundary towards the larger class group, producing in this
way more misclassified samples from this class. To overcome this problem, the method
of weight centering the X data matrix for PLS by subtracting the average of the means of
the two-class groups from the columns was proposed. Accordingly, the center of gravity
became the same for X. In addition, pulled standard deviation for both classes could also
be incorporated in the modified centering and scaling, so-called class centroid centering
and scaling. For centering and scaling, we have used both autoscaling (mean centering
and unit variance scaling) and class centroid centering and scaling. In such a way, we
were able to compare the influence of both methods on PLS-DA model performance and
class member predictability. The results are shown in Figures 4 and S5. As illustrated in
Figure 4, better prediction capabilities were observed for the model constructed from class
centroid centering and scaling data. The separation between classes, in this case, was very
good, without any misclassified samples. Apparently, the higher variance explained by the
predictive component (comprising 47.45% of the total variance, Figure 5a) accomplishes
better separation between classes and decreases the threshold (Figure 4) when compared
with the OPLS-DA model with autoscaling preprocessing (Figure S5). In order to confirm
that obtained OPLS-DA models are not over-fitted, a permutation test was performed
(within PLSToolbox) using 200 iterations for each model. Obtained results indicate that
original models are more unlikely to be over-fitted, and their test results for each of the
classes are presented in Supplementary Materials, Figure S6.
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4-component model, RMSEC = 0.0845 and RMSECV = 0.1071). The schizophrenia cohort is shown in
red, and the control group in green. (b) Selectivity ratio plot.

2.1.5. Discriminatory Metabolites and Variable Importance in Projection Signatures

There are many ways to select discriminating variables with diagnostic values, such as
variables with large regression coefficients [36], normalized covariance (PLS weights), [28,31]
between spectral variables and the response, variable importance in projection (VIP) [34,37],
and selectivity ratio plots [38]. The covariances between the response Y and the spectral
variables (usually labeled by w1 and called weights in standard PLS) have also been
proposed for variable selection. Cloarec et al. [28,31], in their work, slightly broadened
and adopted this idea. Particularly, in the case of OPLS-DA models based on autoscaled
data with two classes, the value of loading for a variable corresponds to the correlation
coefficient between the variable and the class descriptor. They introduced so-called back-
scale projection loading, which is plotted using for each point a color corresponding to the
weight value in the model that represents the correlation of the X variable with Y. In this way,
color-coding could be used for weighting coefficients to distinguish the relative importance
of variables. However, a more robust and sensitive indication in this sense was approved,
at least in this work, by the selectivity ratio plot proposed by Rajalahti et al. [38]. As can be
seen from Figures 3 and 5, both methods indicate almost identical ranges of chemical shifts
inside NMR spectra as potential biomarker assignation areas for the distinction between
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two classes of samples: ‘Schizophrenia’ and ‘Control’. The most intensive difference could
be recognized in the range of 3.61–3.71 ppm belonging to sugar molecules, and according
to the loading plot, it is more relevant to the class ‘Schizophrenia’ than for the ‘Control’
class. The spectral parts in the ranges of 1.63–1.89 ppm, 2.29–2.49 ppm, and 3.28–3.35 ppm
could be clearly identified from the selectivity ratio plot and connected to the class ‘Control’
as more significant for class separation. Chemical shifts ranging from 3.14 to 3.21 showed
slightly lower importance than previously mentioned but should also be considered as
potentially important biomarkers. It should be noticed that both methods, as well as VIP
(data not presented), reveal almost identical variables; nevertheless, the selectivity ratio
provided a more sensitive method for variable selection from the OPLS-DA model in
this work.

2.2. NMR Analyses

In accordance with the results of chemometric analyses, the identification of metabo-
lites as potential biomarkers in blood samples of patients with schizophrenia from a Serbian
cohort was performed based on analyses of spectral 2D NMR data obtained in TOCSY,
2DJ, and HSQC experiments. TOCSY spectral data (Figure 6) led to the identification of
20 metabolites, while 25 metabolites were identified based on 2DJ experiments. HSQC
analyses confirmed the presence of 14 metabolites in schizophrenia patients’ serum samples.
In total, we established a set of 26 metabolites as serum biomarkers for schizophrenia. The
set of identified metabolites/biomarkers with spectral data is presented in Table 2.
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Table 2. Metabolites/biomarkers identified in schizophrenia patients’ serum samples, with spec-
tral data.

No Metabolites/Biomarkers TOCSY Correlations
(δH, ppm)

2DJ
((δH (ppm), Multiplicity, J (Hz))

HSQC
(δH/δc (ppm))

1 Lactate/lactic acid 4.10; 1.31 CH3: 1.31, d, 6.98;
CH: 4.10 q, 7.0 1.32/22.79, 4.098/71.25

2 Threonine 1.31; 3.56; 4.24

CH3: 1.32, d, overlapped with
lactate; CH: 3.56 d, 5.0; CH2:
4.23 dd, 4.9, 6.6, overlapped

with acylglycerol

1.34/22.54, 3.55/63.42, 4.24

3 Leucine 0.95; 1.71; 3.71 CH3: 0.94, d, 6.24;
CH3: 0.95, d, 6.24

0.94/23.41, 0.95/24.72,
1.71/42.70, 3.71

4 Valine 0.98; 1.03; 2.27; 3.62 CH3: 0.97, d, 7.00; CH3: 1.03, d,
7.00; CH: 3.59 d, 4.39

0.97/19.26, 1.02/20.6, 2.27,
3.59/63.27

5 Glutamine 2.12; 2.44; 3.74 CH2: 2.12 m; CH2: 2.44 m 2.12/29.27, 2.43/33.61,
3.74/57.11

6 Glutamate/glutamic
acid 2.05; 2.35; 3.75 CH2: 2.04, m and 2.11 m 2.0/29.68, 2.34/36.28, 3.74/57.11

7 Citrate/citric acid 2.51; 2.68 CH2: 2.51 d, 16.0; CH2: 2.68 d,
16.0 -

8 Aspartate/aspartic acid 2.68; 2.80; 3.88 CH2: 2.66, dd, 8.8, 17.5 and 2.80,
dd 3.8, 17.4 3.80/54.56

9 Asparagine 2.83; 2.92; 3.96 CH2: 2.82 ABX, m, 4.2, 17.0 and
2.93 ABX, m, 7.8, 16.6 -

10 Alanine 1.46; 3.77 CH3: 1.46, d, 7.26 3.76/53.21
11 3- Hydroxybutyric acid 1.19; 2.34; 4.12 CH3: 1.19 d, 6.4; CH2: 2.40, dd,

7.2, 14.4 and 2.29 dd, 6.4, 14.4 -

12 Gamma-aminobutyric
acid 1.9; 3.03 CH2: 3.04, t, 7.6 -

13 Choline 3.50; 4.05 CH2: 4.05 m 4.05/58.35
14 Acylglycerols 4.07; 4.27; 5.20 CH2: 4.10 m, 4.23 m overlapped 4.26 and 4.05/64.40; 5.19/71.58

15 Glucose (α + β) 3.40; 3.52; 3.7; 3.75;
5.10; 5.22

CH-4: 3.40 m; CH-2: 3.52 dd, 3.7,
9.7; CH-3: 3.70 m (overlapped);

CH2-6: 3.75 dd, 5.1, 12.0 and
3.83 m; CH-5: 3.82 m; CH-1: 5.22

d, 3.9

-

16 Arginine 4.07; 4.27; 5.20 3.23 t, 6.6; 1.70, m and 1.64, m -
17 Lysine 1.70; 1.89; 3.03; 3.74 1.91 m -
18 2-Hydroxybutyric acid - CH3: 0.88, t, 7.50; CH2: 1.70, m

and 1.64, m or arginine -

19 Isoleucine - CH3: 0.92, t, 7.4; CH3: 0.99, d,
7.0; 3.65 d, 4.04 -

20 Serin -
CH2: 3.97, dd, 3.8, 12.2 and 3.92,

dd 5.7, 12.2; CH: 3.82
overlapped

3.95/62.94, 3.81/59.2

21 Mannose -
CH: 3.55 t, 9.4; CH: 3.79 m; CH:

3.84 dd, 2.2, 4.0; CH: 3.95 m; CH:
5.17, d 1.4

-

22 Glycine - CH2: 3.54 s -
23 Glycerol - CH2: 3.64 and 3.55 m; CH: 3.70

m (overlapped) 3.63 and 3.55/65.31

24 Tyrosine 6.88; 7.18 CH: 3.96, dd, 5.0, 8.1 or
phenylalanine; Ar: 6.88 and 7.18

3.95/58.78, Ar: 6.88/118.6,
7.18/133.4

25 Phenylalanine 7.30; 7.36; 7.42 Ar: 7.30 m, 7.37 m, 7.41 m Ar: 7.31/132.01, 7.40/131.80
26 PABA 6.93; 7.80 - -

3. Discussion

Metabolomic analyses of serum samples of Serbian patients with schizophrenia and
healthy volunteers as a control group led to the identification of 26 metabolites as a
biomarker set for this psychiatric illness. Aspartate/aspartic acid, lysine, 2-hydroxybutyric
acid, and acylglycerols were identified for the first time in the patients’ serum samples as
schizophrenia biomarkers based on NMR-metabonomics. Changes in these biomarkers
could be a consequence of bioenergetic abnormalities in schizophrenia patients. The lack
of energy is now recognized [10,11], metabolic pathways are changed, the tricarboxylic
acid cycle is inhibited, and glycolysis is enhanced. For supplying energy, fatty acid beta-
oxidation is stimulated. Therefore, acylglycerols (biomarker established in this paper) are
mobilized, and they can be used by the tissues as an energy source. During the prolonged
absence of sufficient amounts of glucose and lack of oxaloacetate (due to gluconeogenesis),
ketone bodies become an energy source. Biomarker 3-hydroxybutyric acid may point to
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the formation of ketone bodies in schizophrenia. Acetoacetate formed is then reduced
to 3-hydroxybutyric acid. On the other hand, 2-hydroxybutyric acid (also an identified
biomarker in this study) derives from alpha-ketobutyrate. It is produced by amino acid
catabolism (threonine and methionine) and glutathione anabolism (cysteine formation
pathway). It has been shown that 2-hydroxybutyric acid generally appears in situations
related to deficient energy metabolism and impaired glucose regulation that appears to
arise due to increased lipid oxidation and oxidative stress [39].

It is interesting that fifteen of the twenty standard amino acids that are commonly
found in proteins have been identified as biomarkers in schizophrenia patients’ serum
samples. Previously detected amino acid biomarkers such as alanine and glutamate may
suggest the possible disturbed use of glucogenic amino acids via degradation and deamina-
tion processes [12]. The carbon skeletons of the glucogenic amino acids, which are degraded
to pyruvate or citric acid cycle intermediates, can subsequently be used in gluconeogenesis.
Polar lysine and aspartate/aspartic acid are established for the first time by NMR experi-
ments. The excess glutamate (resulting from enhanced deamination of amino acids) could
be turned into the TCA cycle, and it could disrupt the balance of alanine, aspartate and
glutamate metabolism [40]. The alterations of mentioned metabolism pathways would
aggravate the neurological damage.

The other 22 biomarkers were previously identified in serum samples of patients from
Brazil and China [9–15]. Tasic et al. [9,12] established a set of 30 biomarkers based on 1D
and 2D NMR analyses (CPMG, HSQC, and HMBC) of a Brazilian cohort of schizophrenia
patients’ serum samples. Liu et al. [10] analyzed serum samples by CPMG, NOESY, and
2DJ NMR experiments, while Wang et al. [11] identified biomarkers by CPMG experiments.
Jointly, they offer 44 NMR-based serum biomarkers for schizophrenia patients from a
cohort from China (Table 3).

Table 3. Metabolites/biomarkers identified in serum samples of Serbian, Brazilian and Chinese
patients with schizophrenia, based on NMR analyses.

No Metabolites/Biomarkers Serbian Serum
Samples

Brazilian Serum
Samples

Chines Serum
Samples References

1 Lactate/lactic acid + + + [9,10,12]
2 Threonine + + + [9,10]
3 Leucine + + + [10,12]
4 Valine + + + [9–12]
5 Glutamine + + + [9,10,12]
6 Glutamate/glutamic acid + + − [9]
7 Citrate/citric acid + − + [10]
8 Aspartate/aspartic acid + − − -
9 Asparagine + + + [9–11]
10 Alanine + + + [9–12]
11 3-Hydroxybutyric acid + − + [10]
12 Gamma-aminobutyric acid + + + [9,11,12]
13 Choline + + + [10,12]
14 Acylglycerols + − − -
15 Glucose + + + [9,10,12]
16 Arginine + − + [10]
17 Lysine + − − -
18 2-Hydroxybutyric acid + − − -
19 Isoleucine + + + [9,10,12]
20 Serin + + − [9]
21 Mannose + + − [9]
22 Glycine + + + [9,10,12]
23 Glycerol + − + [10,11]
24 Tyrosine + + + [10,12]
25 Phenylalanine + + − [9,12]
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Table 3. Cont.

No Metabolites/Biomarkers Serbian Serum
Samples

Brazilian Serum
Samples

Chines Serum
Samples References

26 PABA + + − [9]
27 Acetylcholine − + − [12]
28 Mannitol − + − [9,12]
29 Amygdalin − + − [9]
30 Lipoamide − + − [12]
31 Myo-inositol − + + [10,12]
32 Proline − − + [10]
33 Acetyl-glycoprotein − − + [10]
34 Pyruvate − − + [10,11]
35 Dimethylamine − − + [10,11]
36 Creatine − + + [10,12]
37 Taurine − − + [10,11]
38 3-Methylhistidine − − + [10]
39 Hypotaurine − − + [11]
40 Malonate − − + [11]
41 Guanidinoacetic acid − − + [11]
42 Propylene glycol − − + [11]
43 Threitol − − + [11]
44 Acetoacetate − − + [11]
45 Methymalonic acid − − + [11]
46 Malic acid − − + [11]
47 N-Acetylglycine − − + [11]
48 Dimethylglycine − − + [11]
49 Betaine − − + [11]
50 Arabitol − − + [11]
51 Xylitol − − + [11]
52 Phosphocholine − + − [11,12]
53 2-Methylglutaric acid − − + [11]
54 Fructose − − + [11]
55 D-Gluconic acid − − + [11]
56 Galactitol − − + [11]
57 Homovanillic acid − − + [11]
58 Methylamine − − + [11]
59 6-Hydroxydopamine − + − [12]
60 Isovaleryl carnitine − + − [12]
61 Pantothenate − + − [9,12]
62 Guanine − + − [9]
63 3-methyl-2-oxobutunoic acid − + − [9]

Established NMR-based serum biomarker sets of Serbian, Brazilian, and Chinese
schizophrenia patients overlap in 13 metabolites. Comparing just Serbian and Brazilian
results, the biomarker sets show an overlap of 18 metabolites, while Serbian and Chinese
sets overlap with 17 biomarkers, and Brazilian and Chinese biomarker sets have 15 mutual
metabolites. On the other hand, each of these NMR biomarker sets contains metabolites
that have not been identified in the serum samples of patients of different geographic and
ethnic origins. Of course, the differences in the offered NMR biomarker sets could be
mainly caused due to lack of consistency in the strategy and methodology in the analysis
of samples with different origins. Nevertheless, thirteen metabolites (lactate/lactic acid,
threonine, leucine, isoleucine, valine, glutamine, asparagine, alanine, gamma-aminobutyric
acid, choline, glucose, glycine, and tyrosine), identified by various NMR experiments and
different instruments in all three biomarker sets and in the serum samples from different
origins, could be a good starting point for further efforts in order to establish a universal
NMR serum biomarker set for schizophrenia.
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4. Materials and Methods
4.1. Sampling and Sample Preparation

Sampling was performed in compliance with the ethics committee approval of the
Special Hospital for Psychiatric Diseases “Kovin”, University of Belgrade—Faculty of
Chemistry and Blood Transfusion Institute of Serbia. Blood samples of selected medically
treated patients with schizophrenia were provided from the Special Hospital for Psychiatric
Diseases “Kovin,” and corresponding samples of healthy controls were provided from
the Blood Transfusion Institute. In compliance with ethics committee approval, patients
or their caretakers and healthy volunteers signed written consent for the donation of
their blood samples for this research. Through this research, 51 blood samples of male
(25) and female (26) patients, 32 to 68 years old, were analyzed. A total of 15 patients
were using antipsychotics of the first generation (flufenazin, hloropromazin, haloperidol,
levomepromazin), 20 patients were using antipsychotics of the second generation (clozapin,
risperidon, aripiprazol, kvetiapin, olanzapin), 7 patients were using antipsychotics of the
first generation and second generation and 9 patients were using anxiolytics (clonazepam,
lorazepam, diazepam, pregabalin). The control group consisted of 39 healthy volunteers,
males (27) and females (12), 23 to 60 years old. Sample preparation counted on three
independent blood samples. After sample collection, blood was kept on ice for one hour
and centrifuged. Obtained serums were stored at −80 ◦C. Prior to NMR analyses, serum
samples were diluted with D2O (vol., 1:1).

4.2. Chemometrics
4.2.1. Software

All data processing in this work was applied using toolboxes and software implemen-
tations, including in-house developed scripts/codes conducted under MATLAB version 9.7
(MathWorks Natick, Massachusetts, USA) [41]. Preprocessing and chemometrics analysis
of 1H-NMR spectral data were performed by PLS Toolbox version 8.9.1 [32]. Reading in
1H-NMR spectra into MATLAB workspace was accomplished by General NMR Analysis
Toolbox (GNAT) version 1.2 [42], and in some instances, by predeveloped macros from
matNMR version 3.9.144 [43]. Alignment of specific spectral regions inside the 1H-NMR
spectra was implemented through Interval Correlation Optimized shifting (icoshift) version
3.0 beta [44].

4.2.2. Reading in Data

To read in data into MATLAB workspace for further chemometric analysis, the mat-
NMR script matNMRReadBrukerSpectra was exploited as a part of an in-house routine
developed in order to automate this process. In this way, the 1H-NMR spectral dataset
was set, preserving the original spectral processing parameters predefined by the Bruker
Topspin software. We have predefined two main classes assigned as ‘Schizophrenia’ and
‘Control’ relating to schizophrenia patients and the healthy control group of samples. Using
the ascribed methodology, two separate datasets were assembled containing 265 samples
(149 of class ‘Schizophrenia’ and 116 of class ‘Control’) gathered in triplicates of the samples,
one containing already processed spectra under Bruker Topspin software and another one
with reprocessed NMR spectra under GNAT. All other data related to the class and label
assignments for the respective samples remained the same in both data sets. Further data
pretreatment and modeling were performed in the same way for both data sets. In this
way, the potential contribution from random errors should be possible to discriminate.
In addition, an independent test data set comprising 32 samples of ‘Schizophrenia’ and
39 samples belonging to the ‘Control’ class, for a total of 71 samples, was also assembled for
the purposes of external validation of OPLS-DA models. As in the case of the previous two
data sets, the same data pretreatment, including preprocessing, was performed consistently.
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4.2.3. Peak Alignment

In contrast to 1H-NMR-based metabolomics studies using a reduced data approach [45–47],
the icoshift peak alignment algorithm allows using the intrinsic spectral resolution of the
500-MHz 1H-NMR spectra to extract the information related to the differences in the
metabolism between schizophrenia patients and healthy control group. In order to perform
chemometrics on NMR spectral data, all peaks in NMR spectra originating from the same
chemical surrounding inside the metabolite were aligned. In the first step, shifting the
whole spectrum according to the reference signals in the regions 5.12 to 5.19 ppm and
5.20 to 5.35 ppm was performed using 4 iterations, and the target spectrum was chosen
from the current data set. For blood samples, an α-D-glucopyranose anomeric doublet,
centered at 5.23 ppm, just on the right side of a broad lipid olefinic resonance at 5.27 ppm
was chosen [44]. Although this strategy gives satisfying results for the most part of the
spectrum, in some regions, mostly where the broad signals overlap among low-intensity
metabolite signals, additional alignment was still required. Therefore, in the second step,
these spectral areas were separately aligned using SNV (standard normal variate scaling)
and first-order derivative interchangeably as the input option for data pretreatment in the
icoshift function. Due to the irregular appearance of peaks that could not be aligned in this
way (for example, the regions 1.16–1.22 ppm and 3.62–3.69 ppm), some of the individual
samples show a potential source of specific variation that would require special attention
during the modeling of data.

4.2.4. Data Pretreatment (Preprocessing)

The region between 4.35 and 5.0 ppm was excluded from the data sets before further
data pretreatment. Spectra were baselined with a 1st order polynomial baseline function
and fitted to predefined regions free of peaks, which were then subtracted from the original
spectra. Probabilistic quotient normalization (PQN) [48] was used for normalization. Based
on the analysis of skewness and kurtosis, spectral regions below 0.17 ppm and above 8 ppm
are excluded. In this way, the variation originating from these areas was significantly
reduced. Overall, each data matrix of an initial 32 K was reduced to 15,182 data points in
the second dimension.

4.2.5. Cross-Validation (CV)

Next, 7-fold contiguous block CV was adopted for all models, while the size of each
block was evaluated in relation to an n-fold CV: N/(3 · s), where s is the number of
triplicates, and N is the total number of samples in the data set. For the initial number of
samples and 7-fold CV, the size of each block was 13 (patients) · 3 (triplicates) = 39 samples.
After removing the outliers, the size of the block was recalculated, keeping the triplicates
from the same patients in the same block. In order to preserve the triplicate ordering
structure of samples, we have slightly modified the default method of sample assignation
to the particular blocks arranged for calibration and validation during the CV. The pre-
request for such a step was introducing a separate class variable with assigned triplicate
grouping. Randomly shuffling of the samples allowed them to reorder inside the data set
with respect to the grouping class variable before each CV step. In this way, we preserved
triplicate structure during the shuffling of samples and subsequently assigned them to both
calibration and validation blocks of samples.

4.2.6. Transformation and Scaling

The data were examined for natural clusters and outliers by principal component
analysis (PCA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was
used to classify samples according to clinical and prognostic factors. All spectral variables
were mean-centered before PCA analysis. In addition, OPLS-DA was introduced for weight
centering. When the group sizes were unequal, the boundary between groups in PLS
models were shifted toward the larger group and misclassified many samples. To correct
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this, the average of the means of the two groups was subtracted from the data matrix, that
is, (XA + XB)/2, from the columns [35].

Analyzing the obtained loading plots of mean-centered variables of the data matrix
provided straightforward identification of varying metabolite presence in the samples
due to their covariance structure and their similarity [28]. However, interpretation can
be distorted because some metabolites with apparent covariation in the loadings are not
really responsible for the discrimination between different groups or classes. Therefore,
regarding multivariate analysis of NMR spectra data matrix, different scaling methods
were proposed. Pareto and autoscaling (mean-centering and univariance scaling) methods
are most commonly used for weighting all spectral variables according to the square root
of standard deviation and standard deviation, respectively. As a result, the data matrix was
scaled by multiplying with the inverse of the square root of standard deviation (Pareto),
standard deviation (autoscale), and with pooled standard deviation (class centroid centering
and scaling) [32] for all variables. However, the resulting loading plots were slightly
distorted; therefore, the back-scale projection method proposed by Cloarec et al. [28,31]
was used for their explanation in this work.

4.3. NMR

NMR experiments were performed on a Bruker Avance III 500 NMR spectrometer
equipped with a 5 mm BBI probe head at 25 ◦C. 1H-NMR spectra (1D, 500.26 MHz) were
obtained using the presaturation pulse program, Watergate (p3919), with 128 scans, 32K
data points and a bandwidth of 12 kHz. The methyl of lactate at 1.33 ppm (3H, 3J = 7.0 Hz)
was used as a referent signal. In addition, we used CPMG (Carr-Purcell-Meiboom-Gill)
and T2 edited NMR spectra. Additionally, 2D experiments, such as HSQC and TOCSY,
were used to confirm the assignments of molecules. The TOCSY experiments used a
mlevphpr.2 spin-lock scheme for 1H-1H transfers. For this experiment, 512 increments with
32 scans were collected. The HSQC experiment was recorded with 256 increments and
120 scans. Together with the 2D experiment assignments and interpretation, the literature
and available databases, such as HMDB (Human Metabolome Database), were used to
assist in the assignment of molecules.

5. Conclusions

Based on serum metabolomics by NMR of a cohort of schizophrenia patients from
Serbia, a set of 26 biomarkers for schizophrenia was established. An important discovery
is that a great majority of the identified metabolites are equal to the previous reports in
Brazil and China on schizophrenia, which opens up a possibility for using these biomarkers
as disease markers for diagnostics purposes. Furthermore, four metabolites, aspartate
(aspartic acid), lysine, 2-hydroxybutyric acid, and acylglycerols, were identified for the
first time in serum samples from this Serbian cohort of patients with schizophrenia based
on NMR analyses associated with chemometrics. It is still necessary to discover the
universality of the serum biomarkers for schizophrenia independently of geographical and
ethnic factors, and for that, a unified analysis of data is necessary.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12080707/s1, Figure S1: (a) 1H-NMR spectra processed
under Bruker Topspin software. (b) Same spectra with phase of 0th order, corrected under GNAT
program; Figure S2: (a) Results for skewness and kurtosis in area of spectra with significant discrep-
ancies from regular value for normal distribution (0 for skewness and 3 for kurtosis); (b) NMR spectra
in the region, where spectra colored in red indicate potential outliers. (c) Results for skewness and
kurtosis in area of spectra after removal of samples identified as potential outliers. The horizontal
dotted lines on both Figures are passing/going through the given values for skewness and kurtosis
(0 and 3, r) ef any univariate normal distribution. (d) NMR spectra in the corresponding region after
removal of spectra colored in red (b); Figure S3: (a) Mean-centered NMR spectra referring to the
samples marked with ellipses in Figure 1a, in red color; (b) Several NMR spectra of samples that
originate from the central part of the scores plot presented in Figure 1a are given in blue; Figure S4:

https://www.mdpi.com/article/10.3390/metabo12080707/s1
https://www.mdpi.com/article/10.3390/metabo12080707/s1
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(a) Scores plot of PCA model presented in PC 1 vs. PC2 components. Scaling and centering were
accomplished with autoscaling; (b) Corresponding loading plot of PC 1 component.; Figure S5: (a) Y
Predicted for the class ‘Schizophrenia’ and (b) Y Predicted for the class ‘Control’ from external test
data set, using autoscaling; Figure S6: Fractional Y-variance captured for self-prediction (calibration)
and cross-validation versus the correlation of the permuted Y-block to the original Y-block for 4 LV
component models of (a) OPLS-DA model using autoscaling and (b) OPLS-DA model using class
centroid centering and scaling.
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