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Abstract

TheCOVID-19pandemichasseenanunprecedentedresponsefromthesequencingcommunity. Leveragingthesequencedata from

more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the

processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for

the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate

inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and

assuming evolutionary equilibrium. We find that two particular mutation rates, G !U and C !U, are similarly elevated and

considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly

the resultofAPOBECandROSactivity. Thesemutationsalso tendtooccurmany timesat thesamegenomepositionsalongtheglobal

SARS-CoV-2phylogeny (i.e., theyareveryhomoplasic).Weobserveaneffectofgenomic contextonmutation rates, but theeffectof

the context is overall limited. Although previous studies have suggested selection acting to decrease U content at synonymous sites,

we bring forward evidence suggesting the opposite.
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Introduction

The abundant and rapid availability of viral genomic data has

had a profound effect on the response to the COVID-19 pan-

demic, from tracking and tracing of transmission (Deng et al.

2020; Zhang and Holmes 2020; Dellicour et al. 2021), to

vaccine and drug development (Amanat and Krammer

2020). Genomic SARS-CoV-2 data also allows us to investi-

gate the evolutionary dynamics of the virus such as its muta-

tional and selective pressures (Rice et al. 2020). Understanding

the contribution of mutation and selection in shaping SARS-
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CoV-2 genome evolution is important, for example, for drug

and vaccine development (Dearlove et al. 2020), for predict-

ing variants of clinical and epidemiological importance

(Cagliani et al. 2020; Korber et al. 2020; Li et al. 2020; van

Dorp et al. 2020a, 2020b), for understanding the biological

mechanisms underlying viral genome evolution (such as re-

combination [Yi 2020] and mutagenic immune system

responses [Di Giorgio et al. 2020; Graudenzi et al. 2021;

Mourier et al. 2021; Sadykov et al. 2020]), to improve the

accuracy of phylogenetic approaches for epidemiological

applications (Duchene et al. 2020; Phelan et al. 2020;

Ramazzotti et al. 2021), and for inferring its origin (Wang

et al. 2021).

When deciphering genome evolution, one has to disentan-

gle the effect of mutation and selection affecting the emer-

gence and spread of genetic variants. It has been observed by

several studies that SARS-CoV-2 presents a very skewed mu-

tational spectrum, with most observed genetic variation

resulting from C !U mutations (Rice et al. 2020;

Simmonds 2020; De Maio et al. 2020a; Turakhia et al.

2020a). It is important to account for these mutational skews

when inferring selection, since recurrent mutations can gen-

erate a phylogenetic signal that can be confused with positive

selection when using phylogenetic methods (e.g., Pond and

Muse 2005; Yang 2007). Such strong mutational skews, if

unaccounted for, can also cause errors in phylogenetic tree

inference (De Maio et al. 2020a; Turakhia et al. 2020a).

Here, we identify common pitfalls when analyzing SARS-

CoV-2 genomic data, and we present an alternative, robust

approach for identifying the contribution of mutation and

selection in SARS-CoV-2 evolution. We confirm that the C

!U mutation rate is very high in SARS-CoV-2, in particular

within the context UCG !UUG, putatively as the result of

APOBEC (“Apolipoprotein B mRNA Editing Catalytic

Polypeptide-like”) proteins activity. However, the majority of

C!U mutations occur outside of the UCG context. Second,

and in contrast to most other studies, we find that the G!U

mutation rate is nearly as high (about 97%) as C !U. The

reason why this has not been noted in most other studies is

because they did not control for the biases in the genetic

code. In fact, the genetic code tends to be more robust to

transitions (e.g., C!U) than transversions (e.g., G!U), see

Freeland and Hurst (1998) and Goldman (1993). This has a

large effect on inferred mutation rates also because most of

the SARS-CoV-2 genome is composed of coding sequence.

This causes G!U mutations to be underrepresented among

the observed genetic variation, despite its high mutation rate.

We control for this issue by focusing on synonymous muta-

tions, which are subject to more moderate levels of selective

pressure than nonsynonymous mutations (Cuevas et al.

2012). Finally, we investigate selection acting on synonymous

variants. We find evidence contrary to previous claims of se-

lection against U content (Rice et al. 2020).

New Approaches

Estimating accurate mutation rates is essential for understand-

ing the evolutionary and immunological pressures acting on

the virus, as well as to infer accurate phylogenies and for

detecting selection. One of the main aims of our work is

the estimation of mutation rates in SARS-CoV-2, in particular

while trying to control for the effects of selection, which can

affect the spread of certain types of mutation, and therefore

decrease or increase our chances of detecting them.

State-of-the-art inference of evolutionary rates often

entails inferring a substitution rate matrix describing sequence

evolution along a phylogenetic tree using maximum likelihood

(Yang 1994; Whelan et al. 2001). However, the large number

of SARS-CoV-2 sequences available makes this kind of ap-

proach challenging from a computational perspective

(Morel et al. 2020; Hodcroft et al. 2021), in particular if we

are interested in more complex models that describe codon

evolution and context dependency (Siepel and Haussler 2004;

Kosiol et al. 2007; De Maio, Holmes, et al. 2013a).

Previous studies investigating mutation rates in SARS-CoV-

2 (see, e.g., Rice et al. 2020; Simmonds 2020) have used an

approach more typical for within-population and cancer data,

that is, based on counting the number of genome positions at

which alternative alleles are observed (i.e., the numbers of

different types of SNPs, see, e.g., Harris and Pritchard 2017;

Alexandrov et al. 2013 ). This approach works well when the

number of mutations that occurred is small relative to the

number of genome positions considered. However, when

the same mutation events occur multiple times at the same

position on different branches of the phylogenetic tree (as is

the case for SARS-CoV-2, De Maio et al. 2020a; Turakhia

et al. 2020a; van Dorp et al. 2020a), this approach can un-

derestimate the most elevated mutation rates, since multiple

mutation events can end up conflated and counted as a single

variant allele.

The approach we propose here consists instead of, first,

inferring a maximum-likelihood phylogenetic tree for the con-

sidered SARS-CoV-2 genomes. Then, we infer a mutational

history on this tree for each position of the genome using

parsimony. This gives us, for each given mutation type (e.g.,

synonymous mutations from nucleotide A to C) an estimated

number of mutation events. We then normalize this number

of mutation events, dividing it by the number of mutation

“possibilities” (see eq. 1). These possibilities represent the

number of sites in the reference genome in which a mutation

of a certain type is possible. Synonymous, nonsynonymous,

nonsense, and noncoding possibilities are counted separately.

At each position, multiple mutation events of the same type

are possible along the phylogeny, so the inferred number of

mutation events of a certain type can be larger than the num-

ber of mutation possibilities for the same type. These normal-

ized counts represent our estimates of relative mutation rates,
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and in particular normalized synonymous mutation counts

represent our estimates of neutral mutation rates.

In order to obtain multiple independent estimates, and to

correct for the contribution of possible issues in our sequen-

ces, we separate mutation counts in three bins according to

the number of descendants of each mutation: 1) those with

only one descendant tip (“singletons”); 2) those with� 2 and

� 4 descendants (“2–4 descendants”); and 3) those with>4

descendants (“>4 descendants”). The main rationale for this

is that errors in genome sequences are expected to mostly

cause apparent mutation events with only 1 or very few

descendants. Although we do notice sequence artefacts at

higher frequency among genome sequences, we can more

easily detect these, and we mask them from our alignment

following De Maio et al. (2020a, 2020b). These artefacts, in

fact, tend to be associated with only one or a few sequencing

laboratories, whereas generating a characteristic signal of ho-

moplasy in the phylogenetic tree (De Maio et al. 2020a;

Turakhia et al. 2020a).

For completeness, we also show results from the alterna-

tive approach used in previous studies estimating mutation

rates, based on counting the number of alignment columns at

which alternative alleles are observed. We note again, how-

ever, that due to possibly multiple mutation events of the

same type occurring at the same site in different lineages,

this approach is expected to underestimate the number of

mutation events, in particular for recurring mutations.

Similarly to before, we define three classes of variant alleles:

1) those present in any number of sequences; 2) those present

in at least two sequences; 3) those present in at least five

sequences.

Another issue that needs to be considered when estimat-

ing mutation rates is that different mutations can have differ-

ent effects on the ability of the virus to replicate and transmit.

In this manuscript, we mainly focus on synonymous muta-

tions, as they are sufficiently abundant in our data set to allow

reliable estimates of mutation rates, and as they are expected

to usually have a more limited effect on the viral fitness

(Cuevas et al. 2012), therefore providing reduced biases in

the inference of neutral mutation rates.

Later in the manuscript, we describe a method to investi-

gate possible mild but consistent fitness effects of synony-

mous mutations in SARS-CoV-2. This method is based on

the comparison of ratios of estimated numbers of mutations

with different numbers of descendants. The principle behind

this method is that negative selection tends to decrease the

frequency of new mutations, whereas positive selection tends

to increase it. So, for example, if we want to compare the

fitness of synonymous C !U mutations versus A !C ones,

we can compare the ratio of high-frequency versus low-

frequency synonymous C !U mutations, to the same ratio

for synonymous A!C mutations. If the former is significantly

higher, we take this as evidence that synonymous C !U

mutations have typically higher fitness than A!C ones.

More details on our approaches are given in the Material

and Methods and Results sections.

Materials and Methods

Data Collection and Phylogenetic Inference

Full details and reproducible code for the construction of the

global tree of SARS-CoV-2 samples are available in the

November 13, 2020 release of Lanfear (2020). To summarize,

this code creates a global phylogeny of all available samples

from the GISAID data repository as follows.

First, all sequences marked as “complete” and “high cov-

erage” submitted up to November 13, 2020 were down-

loaded from GISAID. Sequences with known issues from

previous analyses were then removed from this database

(details are in the excluded_sequences.tsv file at DOI

10.5281/zenodo.3958883).

Second, a global alignment was created by aligning every

sequence individually to the NC_045512.2 accession from

NCBI, using MAFFT v 7.471 (Katoh and Standley 2013),

faSplit (http://hgdownload.soe.ucsc.edu/admin/exe/, last

accessed May 9, 2021), faSomeRecords (https://github.com/

ENCODE-DCC/kentUtils, last accessed May 9, 2021), and

GNU parallel (Tange et al. 2011). This approach aligns each

sequence individually to the reference, then joins them into a

global alignment by ignoring insertions relative to the

reference.

Third, sites that are likely to be dominated by sequencing

error (Turakhia et al. 2020a) are masked from the alignment

using faSplit, seqmagick (https://seqmagick.readthedocs.io/

en/latest/, last accessed May 9, 2021), and GNU parallel,

sequences shorter than 28KB or with more than 1,000 ambi-

guities are removed from the alignment using esl-alimanip

(hmmer.org), and subsequently sites that are > 50% gaps

are removed (after converting N’s to gaps) using esl-alimask.

Fourth, the global phylogeny was estimated using IQ-TREE

2 (Minh et al. 2020) and FastTree 2 (Price et al. 2010) (v2.1.10

compiled with double precision) in two stages. First, new

sequences added to GISAID between November 11, 2020

and November 13, 2020 were added to the phylogeny in-

ferred on November 11, 2020 using Maximum Parsimony

placement in IQ-TREE 2. This produces a starting tree of all

sequences available on November 13, 2020. Second, the

starting tree was optimized using FastTree 2 with 2 rounds

of subtree pruning and regrafting using moves of length

1,000 under a minimum evolution optimization regime, and

the tree was then further optimized using multiple rounds of

maximum-likelihood nearest-neighbor interchange (NNI)

moves until no further improvement to the tree could be

achieved using NNI. The resulting tree was rooted with the

reference sequence (NC_045512.2/MN908947.3/Wuhan/

Hu-1) using nw_reroot (Junier and Zdobnov 2010).
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From the resulting tree, we removed sequences on very

long branches using TreeShrink (Mai and Mirarab 2018), using

the default false positive tolerance rate q¼ 0.05 to identify

such branches. These sequences are likely to be either of

poor quality and/or poorly aligned, so rather unreliable to in-

terpret in a phylogeny with such limited variation. We cannot

exclude that some lineages with true series of mutations (e.g.,

like lineage B.1.1.7, Tang et al. 2021) are excluded this way,

but only if these lineages have very few sequences in our data

set; furthermore, the exclusion of certain lineages is not

expected to lead to biases in our analyses. The final tree and

its related alignment contains 147,137 SARS-CoV-2 genomes.

Estimation of Mutation Rates

To separate mutation events into different categories, each

position of the reference genome (NC_045512.2/

MN908947.3/Wuhan/Hu-1, see https://www.ncbi.nlm.nih.

gov/nuccore/MN908947, last accessed May 9, 2021) was

classified as coding or noncoding. Given the very short evo-

lutionary distances considered, the choice of reference ge-

nome is unlikely to significantly affect our inferences; in

fact, changing the reference genome would only invert the

direction of a handful of mutation events. Start and stop

codons were not considered in the following analysis. The first

and last 100 bp of the genome, in addition to sites marked as

problematic in https://github.com/W-L/ProblematicSites_

SARS-CoV2/blob/master/problematic_sites_sarsCov2.vcf (last

accessed May 9, 2021) (De Maio et al. 2020a; Turakhia et

al. 2020a), were also not considered here. We counted

“possibilities” of mutations based on the reference genome:

for example a noncoding C allele in the reference genome

represents three possibilities for noncoding mutations (C!A,

C !G, and C !U). For coding sites, we split synonymous,

nonsynonymous, and nonsense mutation possibilities into

separate counts. Similarly, we also used the reference ge-

nome to define the number of possible mutations within

each genetic context. Sites that were masked in the alignment

were still used here to define the genetic context of possible

mutations at neighboring nonmasked sites.

We then inferred a mutational history with parsimony over

our global maximum-likelihood tree, as described in Turakhia

et al. (2020a). Given the very short branches of the SARS-

CoV-2 phylogeny (median 0 and mean 0.46 mutations per

phylogenetic branch per genome) uncertainty in ancestral

state reconstruction conditional on the phylogenetic tree is

negligible. The software for this analysis is available from

https://github.com/yatisht/strain_phylogenetics (last accessed

May 9, 2021). Given this inferred mutational history, for

each site x we count all the mutation events Nj;d
x inferred

from the reference allele rx at position x to any alternative

allele j 6¼ rx, and with i descendants, excluding those that

are descendants of further downstream mutations at the

same site. Note that we do not count mutation events that

modify a nonreference allele. For example, if at a U position of

the genome we have a U !C mutation, and in one of the

descendants of this mutation event we have a C !A muta-

tion at the exact same position, then we count the first U!C

mutation but not the second C !A; this is done to aid the

normalization of mutation counts, see below. The inferred

mutation events excluded this way are 2,040 out of a total

116,945 (1.7% of the total). At each site and for each muta-

tion type, we kept counts of three different classes of muta-

tions: 1) those with only one descendant tip (“singletons”); 2)

those with � 2 and � 4 descendants (“2–4 descendants”);

and 3) those with >4 descendants (“>4 descendants”). This

is done to help rule out the possibility that low-frequency

sequence errors might cause many artefactual mutations

and bias our rate inference; in fact, such artefactual mutations

are expected to tendentially have only very few descendants.

Sites with frequent sequencing errors are already addressed

by masking the corresponding alignment columns, following

De Maio et al. (2020a) and Turakhia et al. (2020a). Numbers

of mutations and mutation possibilities observed across the

SARS-CoV-2 genome are given in figure 1 and supplementary

figure S1, Supplementary Material online. Note that the num-

ber of observed mutations is often higher than the number of

mutation possibilities. For example, a reference 4-fold degen-

erate site with a reference A allele counts as one A!C, one A

!G, and one A !U synonymous mutation possibility.

However, an A!C mutation event can occur multiple times

along the phylogeny at this site, possibly resulting in multiple

A !C synonymous mutations observed. When classifying

mutation events into different categories, we assume that

mutations happen in the genetic background of the reference

genome. This might be inaccurate in some cases, but given

the overall low level of divergence the effect of this approxi-

mation is expected to be very limited. In fact, given that

genomes in our data set have on average about 11.9 differ-

ences from the reference, and, for simplicity, assuming that

these changes are uniformly distributed across the genome

and across samples, then the probability that any of two sites

neighboring a mutation event (e.g., those determining if the

mutation is synonymous) is different from the reference (and

therefore that the reference context misrepresents the muta-

tion context) is about 0.08%. This is likely to be an overesti-

mate since mutation events happen on internal branches of

the tree, which are on average more similar to the reference

genome than the sampled genomes themselves, and so will

have an average number of differences from the reference

genome below the values used here of 11.9. To estimate

relative mutation rates, we divide the number of mutations

inferred for a certain class by the number of its mutation

possibilities. For example, the relative rate of synonymous

mutations ra;b from allele a to allele b with more than four

descendants is estimated as:
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P
x2fyjry¼ag

P
d>4 Iðx; bÞNb;d

x
P

x2fyjry¼ag Iðx; bÞ ; (1)

where fyjry ¼ ag is the set of genome positions where the

reference allele is a, and where I(x, b) is an indicator function

that returns 1 if changing the reference at position x into allele

b is a synonymous mutation, and 0 otherwise.

The low mutation rate observed in SARS-CoV-2, and in

particular the low number of mutation events per phyloge-

netic branch, makes parsimony an efficient and reliable ap-

proach to infer mutational histories (Turakhia et al. 2020b).

However, phylogenetic inference from large SARS-CoV-2

data sets is difficult due to elevated computational demand

and phylogenetic uncertainty (Morel et al. 2020), and we

cannot exclude the presence of errors in our phylogenetic

tree, and therefore in our mutational history.

To test the effects of our approximations on the estimated

mutation rates, we also used a different approach, more sim-

ilar to the classical maximum likelihood inference of substitu-

tion rates in phylogenetics (see, e.g., Yang 2007), to estimate

synonymous and nonsynonymous mutation rates. To do this,

we used the same phylogenetic tree and inferred mutational

history as above. This time, however, we count all mutations,

A B

C D

FIG. 1.—Numbers of possible mutations, observed mutations, and sites with alternative alleles. On the X axes are the 12 distinct types of mutation

events, A!C, A!G, etc. In green, we always show the number of genome positions at which the considered mutation type is possible. In (A) and (C), we

consider all possible mutations, whereas in (B) and (D), we consider only synonymous mutations. In (A) and (B) we show, on the Y axis, the numbers of sites

with alternative alleles in the alignment (blue color hues). Note that Y axis scales differ among plots. In dark blue, we show the number of all sites with

alternative variants of the given type; in blue, we only show the number of such sites at which the alternative variant is present in at least two sequences; in

light blue, only sites at which the considered alternative allele is present in at least five sequences. By definition, in plots (A) and (B) green bars are necessarily

taller than all blue ones. In (C) and (D) we show, in red, orange and yellow, the numbers of mutation events inferred with parsimony on our phylogeny. In red

we show the number of mutation events of the considered type with exactly one descendant; in orange the number of these mutations with at least two but

less than five descendants; in yellow, those with at least five descendants. Mutation possibilities (green) can be fewer than inferred mutations events (red,

orange and yellow in plots C and D) for certain types of mutations since the same mutation event can be inferred multiple times at the same site in different

parts of the phylogenetic tree.

Mutation and Selection in SARS-CoV-2 GBE
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no matter their background, as long as they don’t happen

within masked regions of the alignment or from a stop codon.

This removes our approximation of only considering mutation

events from the reference allele. Also, this time we keep track

of the context of each mutation events using the recon-

structed ancestral genome at the considered mutation event,

removing the assumption that the context of a mutation is the

same as the reference genome at that position. Finally, when

counting mutation possibilities, we consider each position in

the reconstructed ancestral genomes, and weigh them using

the corresponding branch lengths below them, therefore ac-

counting for the fact that the genome evolves along the phy-

logeny when estimating mutation possibilities. The estimates

obtained with this approach are very similar to those from our

main approach described above (see supplementary fig. S4,

Supplementary Material online).

Finally, we also consider another alternative approach to

estimating mutation rates, based on counting the number of

alignment columns at which alternative alleles are observed.

We classify three classes of variant allele: 1) those present in

any number of sequences; 2) those present in at least two

sequences; 3) those present in at least five sequences.

Numbers of different types of variable sites found in our align-

ment are given in figure 1 and supplementary figure S1,

Supplementary Material online. This last approach is similar

to those used by previous studies of SARS-CoV-2 mutation

rates, and we use it for comparison with our new main

approach.

Results

Neutral Mutation Rates in SARS-CoV-2

Here, we want to estimate the underlying mutability of dif-

ferent nucleotides, in a way that is as unbiased as possible

with regards to how these mutations might affect the ability

of the virus to replicate and spread. To do this, first, we mostly

focus on synonymous mutations, since a synonymous muta-

tion is expected to affect, on average, the fitness of the virus

considerably less than a nonsynonymous mutation (Cuevas

et al. 2012). Second, we only consider new SARS-CoV-2

mutations observed within the human host population, and

ignore long-term divergence (between-species substitutions)

which is expected to be more affected by selective forces

(McDonald and Kreitman 1991) and more subject to the

issues of rate changes (see, e.g., Panchin and Panchin 2020)

and saturation (see, e.g., Duchêne et al. 2014). Although we

cannot exclude that selection still affects some of the patterns

observed below, for example, making some types of synony-

mous mutations more lethal for the virus than others, we tried

to reduce these biases as much as possible as follows:

First, to put our results in the perspective of previous stud-

ies, we looked at numbers of sites with alternative alleles.

When looking at patterns across the whole genome, it

appears that all transitions (C !U, U !C, A !G, and G

!A) are quite common, as well as G !U mutations; note

however that A and U bases have more opportunities to mu-

tate as they are more common in the genome (fig. 1A). If we

focus only on possible synonymous mutations (which we ex-

pect to be less likely affected by strong selection), we see that

C!U and G!U synonymous alternative variants are present

at the vast majority of sites at which such variants are possible

(fig. 1B). This means that sites at which synonymous C !U

and G!U mutations might have occurred are possibly satu-

rated with such mutations. In fact, using our phylogenetic

approach to estimate numbers of mutation events of each

type at each genome position, we clearly see that C!U and

G !U are the most frequent mutations (fig. 1C), despite

having fewer opportunities to occur due to GC content being

lower than AT content. Focusing again on synonymous muta-

tions, we can see that, although we don’t infer more overall G

!U mutations than U!C or A!G ones, given the very low

number of sites at which synonymous G !U mutations are

possible, G !U and C !U are the synonymous mutations

that occur proportionally more often (fig. 1D). We also ob-

serve similar patterns for noncoding, nonsynonymous, and 4-

fold degenerate sites (supplementary fig. S1, Supplementary

Material online). These observations suggest that the G !U

and C!U underlying neutral mutation rates are considerably

higher than all others.

Our results further suggest that inferring mutation rates

from counting the number of sites with variants ( the counts

in fig. 1A and B, and as in, e.g., Rice et al. 2020; Simmonds

2020 ) can lead to underestimating the G !U and C !U

synonymous mutation rates. This is because sites at which

such mutations are possible are probably often saturated

(multiple mutation events of exactly the same type have oc-

curred along the phylogeny). However, saturation in previous

studies was probably not as extreme as here since we inves-

tigate a considerably larger number of genomes (147,137 vs,

e.g., 14,599 in Rice et al. 2020 and 865 in Simmonds 2020).

Another difference of our approach from most previous stud-

ies (but similar to Rice et al. 2020), is that we aim to disen-

tangle the contribution of selection acting on the amino acid

sequence from the underlying mutation rates, and to do this

we separate synonymous and nonsynonymous mutations.

This has a considerable further effect on the inference of

the G!U mutation rates, because there are only a few sites

at which a G!U mutation is synonymous, and so most pos-

sible G!U mutations are probably under significant purifying

selection; skews in the genetic code ( and in particular the fact

that the genetic code tends to be more robust to transitions

than transversions; Freeland and Hurst 1998; Goldman 1993 )

are probably an important factor here. Furthermore, G is less

frequent in the SARS-CoV-2 genome than U, in particular at

4-fold degenerate sites (sites where any 1-base mutation is

synonymous) with a frequency of 6.5%, compared with fre-

quencies of A (28.9%,) C (11.4%), and U (50.9%); this causes

De Maio et al. GBE
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a further underrepresentation of observed G !U mutations

relative to the underlying G!U mutation rate.

A confirmation that many synonymous G sites are satu-

rated with mutations can be seen in figure 2 and supplemen-

tary figure S2, Supplementary Material online. C !U and G

!U mutations are by far the most homoplasic (the same

mutation occurs more than once along the phylogeny), espe-

cially at synonymous and noncoding positions. This is unlikely

to be the result of positive selection favoring these mutations,

or of phylogenetic tree inference or parsimony mutation in-

ference errors (since this effect is only observed in C!U and

G!U mutations) and seems instead the result of underlying

relatively high neutral C!U and G!U mutation rates.

We also mostly find individual C !U or G !U mutations

among the most homoplasic mutations of the genome: 55 out

of 59 total mutation events that occur more than 60 times at

the same position are C!U or G!U. Here we ignore sites that

are so homoplasic as to probably cause issues in phylogenetic

inference (De Maio et al. 2020a; Turakhia et al. 2020a); these

sites were masked before any analysis here, and are namely the

G!U mutation at position 11083, and the C!U mutations at

positions 16887 and 21575. These three sites appear as the

most mutable in the genome. However, the next three most

homoplasic mutations of the genome that we identify here are

neither C!U nor G!U mutations. The most recurrent one is

the A!G nonsynonymous (K!R) mutation at position 10323

which we inferred to have occurred 138 times, with a total of

1,187 descendants, found in 30 !50 context

CTTAAGCTTAAGGTTGATACA. The second is a A !G non-

synonymous (K !R) mutation at position 21137, which oc-

curred 130 times with a total of 472 descendants, found in

context ATACAACAAAAGCTAGCTCTT. The third is a T !C

synonymous mutation at position 27384 which occurred 119

times, with a total of 808 descendants, found in context

TGGAGATTGATTAAACGAACA. We suspect that these three

mutations are the results of frequent ADAR (“Adenosine

Deaminase Acting on RNA”) activity, considering also their con-

text. For example, the first two are A!G mutations with a G

downstream and an A upstream (see Ko et al. 2012; Porath

et al. 2014). The third site is probably affected by ADAR acting

on the negative strand, since its T!C mutation is the reverse

complement of the typical A !G ADAR pattern. The fourth

highly homoplasic mutation we found that is not G!U or C

!U is the 11th most common in the genome, a G!A non-

synonymous (G!S) mutation at position 1820, with a total of

409 descendants and in context

AGCTAAAAAAGGTGCCTGGAA.

One of the principal aims of our work is to estimate mu-

tation rates while controlling the effect of selection acting on

the amino acid sequence, and trying to account as much as

possible for other issues such as homoplasic mutations. To do

this, first, we focus on synonymous mutations, which are

expected to be less subject to selective constraints than non-

synonymous ones, whereas being much more abundant than

noncoding mutations. Second, we use inferred counts of mu-

tation events (using parsimony inference along our phyloge-

netic tree, see Materials and Methods); this accounts for the

saturation of mutation events at more mutable positions, as

discussed before. Third, we separate mutation counts accord-

ing to the number of observed descendants of each muta-

tion—this allows us to have independent estimates, and to

have estimates that do not rely on inferred mutation events

with one descendant, which might be enriched in sequencing

errors or RNA degradation (in the case errors RNA

A B

FIG. 2.—Reoccurrence of mutation events at the same sites. Proportion of sites (Y axis) where a given mutation (color, see legends) appears a certain

number of times (X axis) along the phylogeny. (A) synonymous sites; (B) nonsynonymous sites.
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degradation would be present in our alignment). Fourth, we

normalize mutation counts by the number of mutation pos-

sibilities (see eq. 1), so to account for the fact that certain

mutation types (e.g., synonymous G!U mutations) are pos-

sible at fewer sites than other mutation types. For this last

point, we divide the number of inferred mutations of a certain

type (e.g., red, orange and yellow bars in fig. 1D) by the

number of sites at which such mutations are possible (e.g.,

green bars in fig. 1D), always considering the reference ge-

nome as the mutational ancestral background. We find that

the G!U transversion mutation rate is similar to C!U tran-

sition rate (fig. 3 and supplementary fig. S3, Supplementary

Material online), and that they are both considerably higher

than all other rates (about four times higher than the next

highest rate, G !A, see table 1). We confirm that all other

transitions, U!C, G!A, and A!G, have lower rates, but

higher than all remaining transversions. In particular, the mu-

tational process seems highly asymmetrical and strand asym-

metrical, with mutation rate G !U being 82.0 times higher

than U!G and 21.1 times higher than C!A (table 1). This

strand asymmetry is likely the result of ROS (“reactive oxygen

species”) and APOBEC activity on single-strand RNA

(Graudenzi et al. 2021; Mourier et al. 2021).

Our results differ markedly from those studies that either

estimated mutation rates by comparing numbers of sites with

alternative alleles, did not divide these counts by the numbers

of opportunities for such mutations, and/or did not control for

the biases in the genetic code by separating synonymous and

nonsynonymous mutations (e.g., Kosuge et al. 2020; Wang

et al. 2020). Our results are instead more consistent with those

of studies that did take some of these steps and highlighted

similarly high C!U and G!U mutation rates in SARS-CoV-2

(e.g., Rice et al. 2020). When we use an approach more similar

to classical maximum-likelihood substitution rate inference

(e.g., Yang 2007, see Estimation of Mutation Rates section),

we find almost the same results (supplementary fig. S4,

Supplementary Material online), suggesting that our approx-

imations have little effect on our inferred rates. Although ele-

vated C!U mutation rate in SARS-CoV-2 has been frequently

observed and usually attributed to the effects of APOBEC ac-

tivity, the elevated G!U has been discussed much less, but it

has been usually suggested to be the result of the activity of

ROS, see Rice et al. (2020) and Mourier et al. (2021). The

number of descendants of mutation events seems to have

little impact on our inferred relative mutation rates (fig. 3B);

this suggests that phenomena like RNA degradation or se-

quencing errors, which are expected to overwhelmingly result

in inferred mutation events with one descendant, do not con-

siderably affect our mutation rate estimates.

Context Dependencies

One of the observations that suggests APOBEC activity being

the leading cause of the elevated C!U mutation rate in SARS-

CoV-2 is that nucleotide context seems to affect the C !U

mutation rate in a way that is consistent with the action of

some of the human APOBECs (Mourier et al. 2021). Here we

study the effect of neighboring base context on C!U muta-

bility. We divide the set of possible and observed C!U muta-

tions in classes based on the nucleotide context (50 to 30

preceding and following base). Even though we focus only

on C!U mutations, it is still important to separate synonymous

and nonsynonymous mutations, since different contexts can

lead to synonymous or nonsynonymous C !U mutations

with different proportions. Additionally, different contexts can

be present with different frequencies in the SARS-CoV-2 ge-

nome. Focusing on synonymous mutations, and using the nor-

malization procedure outlined above, we find that UCG!UUG

appears to be the most mutable context (fig. 4A and supple-

mentary fig. S5, Supplementary Material online). Note that this

pattern is not observed if one considers unnormalized mutation

counts, particularly those from nonsynonymous mutations (sup-

plementary fig. S6, Supplementary Material online).

This confirms previous results which suggested an elevated

UCG !UUG mutation rate (Kosuge et al. 2020; Rice et al.

2020; Sadykov et al. 2020), attributed to either the context

specificity of APOBEC mutational targets, or to selection

against CpG dinucleotides (Mourier et al. 2021). We discuss

selection in the next section. Here, we note that although we

found a signal of context affecting mutation rates in SARS-

CoV-2, and although at least part of this observation is con-

sistent with some of the known sequence targets of APOBEC,

overall, C!U mutations occurring in UCG or more generally

UC!UU context represent only part (and a very small part for

UCG) of all C!U mutations in SARS-CoV-2 (supplementary

fig. S1, Supplementary Material online) and contribute to only

a small part of the C!U relative hypermutability.

Regarding long-range sequence context (nearest five bases

in each direction), we observe that U in the two bases pre-

ceding a C seems to have a C!U mutagenic effect, whereas

G in the previous two bases and C in the following two bases

seem to reduce the mutation rate (supplementary fig. S7,

Supplementary Material online).

Given the relatively high G !U mutation rate, we per-

formed a similar analysis of context effects on G !U muta-

tions. However, despite the elevated mutation rate, G !U

synonymous mutations are quite rare (supplementary fig. S8,

Supplementary Material online) and so estimates of context-

dependent rates are expected to have substantial uncertainty.

Additionally, some contexts are not possible for G !U syn-

onymous mutations, for example, AG !AU mutations are

never synonymous (supplementary fig. S8, Supplementary

Material online). The effect of sequence context on G !U

mutation rate appears overall limited, although a G being

preceded or followed by a C (CG and GC contexts) seems

to have a higher G !U mutation rate (fig. 4B and supple-

mentary fig. S9, Supplementary Material online).
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Testing for Selection at Synonymous Sites Using Mutation

Frequencies

Previous authors have discussed the effect of selection on

synonymous mutations in SARS-CoV-2. For example, the el-

evated mutation rate in CpG context has been interpreted as

a sign of selection against CpG content in SARS-CoV-2 in

order to avoid zinc finger antiviral proteins (ZAP), see

Mourier et al. (2021). This is consistent with similar evidence

found from depleted CpG content in other coronaviruses

(Woo et al. 2007). However, evidence from CpG content

and substitution rates can be confounded by skewed muta-

tion rates and mutational contexts like the ones due to

APOBEC activity, which might be the leading cause of muta-

tion in SARS-COV-2.

To overcome this limitation, and in order to disentangle the

contribution of mutation and selection over the synonymous

evolution of SARS-CoV-2, Rice et al. (2020) compared

equilibrium frequencies inferred from SARS-CoV-2 mutation

rates to observed nucleotide and dinucleotide frequencies.

Since selection tends to raise the frequency of favorable alleles

in a population, and to decrease the frequency of deleterious

alleles, if a certain nucleotide is advantageous over another at

synonymous sites, for example, if C is advantageous over U, it

is expected that relatively more U !C mutations will reach

fixation (completely replace the ancestral allele in the popula-

tion) than C!U mutations. This means that, in the long term,

there would be fewer U nucleotides in the genome than

expected based on the mutation rates estimated from ob-

served genetic variation within the population. Rice et al.

(2020) observed that U nucleotides are less common at 4-

fold degenerate sites in SARS-CoV-2 than expected from

SARS-CoV-2 genetic variation within humans, and concluded

that there is ongoing selection against U nucleotides in SARS-

CoV-2. With a similar analysis, they also concluded that there

is no ongoing selection against CpG content in SARS-CoV-2,

despite opposite prior expectations (see Woo et al. 2007;

Mourier et al. 2021).

Rice et al. (2020) assumed that the evolutionary process is

stationary, that is, that mutation rates and selective pressures

did not change recently (e.g., since the introduction of SARS-

CoV-2 into humans). This assumption is however debatable.

Due to the recent host shift and to the fact that many muta-

tions in SARS-CoV-2 seem to be the consequence of host

immune system activity, a recent significant change in muta-

tion rates and selective pressure in SARS-CoV-2 (associated

with its introduction to humans) is likely. In fact, studies have

suggested that the current G ! U mutation rate of SARS-

CoV-2 in humans, for example, is much higher than in its

A B

FIG. 3.—Estimated synonymous mutation rates in SARS-CoV-2. To estimate synonymous mutation rates in SARS-CoV-2, we used the counts of inferred

synonymous mutation events (see fig 1D) normalized by the numbers of reference genome sites at which such mutations might have occurred. On the X axis

are the 12 distinct types of mutation events, A!C, A!G, etc. In red, orange and yellow we show respectively rates obtained from counts of mutation

events with one descendant, more than one but less than five descendant, and five or more descendants. (A) Mutation rates represented as average

numbers of mutation events inferred per site at which such mutation type is possible. (B) Relative mutation rates (the sum of all bars of one specific color is

1.0).

Table 1.

Mutation Rates Estimated from 4-Fold Degenerate Sites

To A To C To G To U

From A 0.039 0.310 0.123

From C 0.140 0.022 3.028

From G 0.747 0.113 2.953

From U 0.056 0.261 0.036

NOTE.—Only mutation events with more than one descendant have been con-
sidered here. Rates have been normalized as typically done in phylogenetics, the
normalizing constant being the sum of the rates multiplied by the frequency of the
ancestral allele:

P
a;bqa;bpðaÞ, where a, b are nucleotides, qa;b is the original unnor-

malized rate from allele a to b, and pðaÞ is the frequency of a at 4-fold degenerate
sites.

Mutation and Selection in SARS-CoV-2 GBE
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reservoir hosts (Panchin and Panchin 2020; Sapoval et al.

2021). Specifically, Panchin and Panchin (2020) estimated

that the G ! U mutation rate in SARS-CoV-2 increased 9-

fold with its introduction in humans, possibly due to differ-

ence in ROS activity between hosts.

The U content at 4-fold degenerate sites in the SARS-CoV-2

reference genome is 50.9%. This value is expected to represent

very closely the U content at 4-fold degenerate sites just before

the introduction of the virus to the human populations. The

approach of Rice et al. (2020) consists of comparing this value

with the equilibrium U content at 4-fold degenerate sites esti-

mated from mutation rates inferred from variant sites within the

human host population; a higher equilibrium U content is inter-

preted as evidence of selection, on average, against U content.

To highlight some of the issues with this approach, we consider

how a shift in mutation rates associated with the human host

might affect equilibrium U content. We consider four different

sets of mutation rates, each of which leads to different equilib-

rium nucleotide frequencies (which we estimated using the py-

thon package discreteMarkovChain v0.22 https://pypi.org/

project/discreteMarkovChain/, last accessed May 9, 2021).

First, we consider the mutation rates at 4-fold degenerate sites

estimated following Rice et al. (2020) on our data set (inferred

from the numbers of sites with variant alleles, as in fig. 1B);

second, we use the same rates but decreasing the G!U mu-

tation rate 9-fold (to mimic the putative reservoir mutation rate

estimated in Panchin and Panchin 2020); third, we use our

estimates of mutation rates as in table 1; lastly, we use the rates

as in table 1 but again decreasing the G!U mutation rate 9-

fold. Using these four sets of mutation rates we obtain equilib-

rium U content at 4-fold degenerate sites of respectively

65.5%, 52.6%, 77.4%, and 64.9%. Therefore, it is clear

that changes in mutation rates associated with host shift can

have dramatic effects on equilibrium frequencies, which can

affect the inference of selective pressure using this approach.

Furthermore, this analysis is based on the assumption that se-

lective pressures on U content are the same in humans and in

the reservoir host, which is not obvious.

To address these issues, we propose an alternative ap-

proach to test for selection acting on synonymous mutations.

Since selection increases the frequency of favorable alleles and

decreases the frequency of deleterious alleles within a popu-

lation, we expect selection to change the relative proportion

of alleles at different population frequencies. The McDonald–

Kreitman test (McDonald and Kreitman 1991), for example,

compares numbers of synonymous and nonsynonymous

within-species polymorphisms and between-species differen-

ces; within this framework, purifying selection is expected to

decrease the number of nonsynonymous between-species

substitutions more than the number of nonsynonymous

within-species polymorphisms.

However, the emergence of SARS-CoV-2 in humans is rel-

atively recent, too recent for variants (and especially a statis-

tically sufficient number of variants) to have reached fixation

within the human population, making this type of test inap-

plicable. Instead, we use an alternative version in which we

compare low-frequency mutations against high-frequency

ones. Although our aim is to focus on comparing different

types of synonymous mutations, we first apply this approach

to compare synonymous and nonsynonymous mutations, so

as to make the similarity to the McDonald–Kreitman test more

apparent. Nonsynonymous mutations in SARS-CoV-2 appear

significantly shifted toward lower frequencies (fig. 5), consis-

tent with the expectation that purifying selection tends to

decrease the frequencies of nonsynonymous mutations

more than the frequencies of synonymous mutations.

Next, we focused on the hypothesis that U variants at syn-

onymous sites are on average mildly deleterious (Rice et al.

A B

FIG. 4.—C !U and G !U synonymous mutation rates in different base contexts. Here mutation rates are calculated as in figure 3A. (A) C !U

mutations. (B) G !U mutations. The X axis shows the context of the considered mutation (e.g., in A, A_G represents the trinucleotide ACG and its

synonymous mutation rate into trinucleotide AUG). Colors are as in figure 3.
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2020). This time, not all of our comparisons are significant,

but those that are, consistently suggest that selection favors U

variants (fig. 6), not the opposite. As we discussed before, the

difference with the estimate from Rice et al. (2020) probably

lies in the assumption of stationarity in SARS-CoV-2 evolution

(although we also used a larger data set and a different ap-

proach to estimate mutation rates). It’s hard to draw clear

conclusions regarding individual genes, as, expectedly, we

lose statistical power when analyzing each gene individually,

in particular for the shorter genes (supplementary figs. S10

and S11, Supplementary Material online).

A possible explanation for the pattern we observe is that

many mutations increasing U content are C !U or G !U,

and therefore may sometimes reduce CpG content. Selection

against CpG content has already been suggested in corona-

viruses (Woo et al. 2007), and is expected due to ZAP activity

(Mourier et al. 2021). However, using our approach the evi-

dence in support of this hypothesis is not significant (supple-

mentary fig. S12, Supplementary Material online). Similarly,

when investigating possible selection affecting GC content,

only one of the comparisons is significant (supplementary fig.

S13, Supplementary Material online).

Discussion

In this study, we investigated mutation rates and selection at

synonymous sites in SARS-CoV-2. We used a different meth-

odology than previous studies, so as to exploit more than

147,000 SARS-CoV-2 genome sequences while trying to

avoid inaccuracies due to mutation saturation. Our approach

also controls for the fact that different types of mutations can

have, on average, different fitness due to their impact on the

amino acid sequence and due to skews in the genetic code. In

fact, we focus on synonymous mutations, which are expected

to be subject to lower selective pressure than nonsynonymus

mutations. Also, we did not assume equilibrium in SARS-CoV-

2 genome evolution, which is unlikely given the recent shift of

host the virus underwent. We also investigated some possible

selective pressure affecting synonymus mutations.

We found that two mutation rates, C!U and G!U, are

similar to each other and much higher than all others muta-

tion rates, leading to extremely frequent homoplasies. This

also means that the SARS-CoV-2 mutation process is very

far from being symmetric or strand symmetric; it is also con-

siderably far from equilibrium. We found some sites with ex-

tremely high non-C !U non-G !U mutation rates that are

consistent with targeted ADAR activity.

A consequence of these findings is that popular and effi-

cient phylogenetic substitution models such as JC69 (Jukes

et al. 1969), HKY85 (Hasegawa et al. 1985), or GY94

(Goldman and Yang 1994) might be inappropriate with

SARS-CoV-2 data and might cause biases in the inference

of phylogenetic trees (Turakhia et al. 2020a), selection (van

Dorp et al. 2020a; Graudenzi et al. 2021), and recombination

(Yi 2020) due to the neutral high recurrence of certain muta-

tions. It is therefore probably important to adopt phylogenetic

substitution model that can account for elevated C!U and G

!U rates, such as the nonreversible UNREST model (Yang

A B

FIG. 5.—Evidence of selection affecting the population frequency of synonymous versus nonsynonymous mutations. Counts and rate ratios of SARS-

CoV-2 synonymous and nonsynonymous mutations at different frequencies in the human population. (A) Counts of possible mutations (green), singleton

mutations (red), mutations with >1 and � 4 descendants (orange), and mutations with >4 descendants (yellow). (B) Ratios of higher versus lower

frequency mutation rates. In the absence of selection, ratios should not be significantly different between the classes of synonymous and nonsynonymous

mutations. Instead, we measure a significant deviation in each comparison, with nonsynonymous mutations being relatively depleted of high frequency

mutations. We calculated P values using the chi2_contingency function of the Scipy.stats package (Virtanen et al. 2020). On the X axis, “single” refers to

mutations with one descendant, “low” to mutations with 2–4 descendants, and “high” to mutations with >4 descendants. For example, “high versus

single” refers to the comparison of rate of mutations with >4 descendants versus the rate of mutations with one descendant.
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1994), or otherwise to control for the skews in the mutational

process (see, e.g., Graudenzi et al. 2021). In our experience,

we have found the UNREST model to often cause numerical

instability in current phylogenetic packages that allow it (data

not shown here). In the future, if we want to alleviate these

biases, it will be important to implement such more general

substitution models more broadly and in a more numerically

stable way.

When investigating selection at synonymous sites possibly

affecting CpG or GC content, we found mostly nonsignificant

patterns. We also investigated the possibility of selection

against U content in SARS-CoV-2 (Rice et al. 2020), but found

evidence in the opposite direction. Although further analyses

will be needed to establish with confidence what kind of se-

lection acts on SARS-CoV-2 synonymous mutations, we sug-

gest that inference based on assumption of genome

equilibrium can be biased by changes in mutation rates and

selective pressures associated with host shift. Although we

tried to account for possible biases as much as possible, our

methods still have some limitations. First of all, our inference

of mutation events is based on a prior phylogenetic inference,

but tree inference from SARS-CoV-2 data can be unreliable, in

particular regarding low-level branches of the phylogeny

(those closer to the samples and further from the root), in

part due to the low genetic diversity among sequences, but

more importantly due to highly homoplasic mutations and

sequencing errors (Morel et al. 2020; Turakhia et al. 2020a);

Removing extremely homoplasic sites and putative errors can

be of help, but, as we have shown, the mutational spectrum

in SARS-CoV-2 is highly skewed, and so removing all homo-

plasic sites would result in removing most C!U and G!U

synonymous mutations, which in turn would cause the loss of

a large part of the available phylogenetic signal. As mentioned

above, our phylogenetic inference might also have been neg-

atively affected by the choice of substitution models;

however, currently, more realistic models like UNREST are ei-

ther not implemented or are numerically unstable in suffi-

ciently efficient phylogenetic packages such as Minh et al.

(2020), Price et al. (2010), and Kozlov et al. (2019). In this

study, we tried not to rely excessively on individual inferences

of mutation events, but rather focused on general patterns

averaged over many sites and clades, which we think should

provide robust inference despite the fact the inference of in-

dividual mutation events might not be reliable. However, a

potential bias that might affect our result derives from the fact

that some sites are very homoplasic, and our phylogenetic

inference might lead to an over-parsimonious inference of

their mutational history. This, in turn, might lead us to under-

estimate their mutation rate and overestimate their number

of descendant tips per mutation events. In the future, a

Bayesian phylogenetic approach might be useful to assess

and possibly resolve this issue and assess its impact on our

inference of selective pressure; however so far Bayesian phy-

logenetic inference has proved prohibitive with data sets of

this size.

To further investigate and disentangle selective and muta-

tional forces in SARS-CoV-2, it would be very promising to

combine an analysis of between-patients and within-patient

SARS-CoV-2 genetic variation. In a similar way as selection is

expected to decrease the frequency of deleterious SARS-CoV-

2 alleles at the human population level, the same is true at the

within-host levels, as selection is expected to act on within-

host deleterious mutations and often prevent them from

reaching high frequency and transmit further on. Although

within-patient genetic diversity data can indeed be very infor-

mative of the SARS-CoV-2 evolutionary patterns (Di Giorgio

et al. 2020; Kuipers et al. 2020; Graudenzi et al. 2021), it is

important to consider that such data is also more prone to

sequencing, read processing, and RNA degradation issues.

These issues cause some errors in consensus sequences (De

A B

FIG. 6.—Test of selection affecting U content at synonymous sites. Values are the same as in figure 5, but this time we focus on synonymous mutations

that decrease U content (“<U”), increase it (“>U”), or leave it unaltered (“¼U”). Only P values below 0.1 are shown.
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Maio et al. 2020a; Turakhia et al. 2020a) but they are

expected to be even more problematic at the level of detected

within-host variation. Indeed, so far there is reason to be cau-

tious when interpreting these data (De Maio et al. 2020a),

especially with specific data sets (see https://virological.org/t/

gained-stops-in-data-from-the-peter-doherty-institute-for-in-

fection-and-immunity/486, last accessed May 9, 2021). Given

reliable data regarding evolution at different levels (e.g.,

within a patient, between patients, and between hosts), it

would be interesting to combine these sources of information

to improve estimates of selective pressures (see, e.g., Wilson

et al. 2011; De Maio, Schlötterer, et al. 2013b).

Our methodology to detect selection could also be improved

by using the full site frequency spectrum of mutations, instead

of categorizing mutations into frequency classes (see, e.g., Zeng

and Charlesworth 2009; Clemente and Vogl 2012). However, it

is important to consider that complex epidemiological dynamics

and sampling biases in SARS-CoV-2 mean that it is hard to

interpret the shape of any individual site frequency spectrum

in terms of the effects of mutation and selection. We infer

mutation and selection patterns by comparing properties of

site frequency spectra associated with different mutation types.

This approach should be robust to the effects of variable pop-

ulation dynamics and sampling biases, since these forces are

expected to affect in the same way site frequency spectra as-

sociated with different mutation types.

Although we only applied our methods to SARS-CoV-2

genome data, the same approaches could be used for varia-

tion data from other viruses. Other studies have suggested

that mutation rates in SARS-CoV-2 are quite different from

those in SARS-CoV and MERS, with SARS-CoV-2 showing, for

example, higher G !U rates (Panchin and Panchin 2020;

Sapoval et al. 2021). It would be of interest to test if these

estimates would change after controlling for saturation and

selection at the amino acid level.

In the future, we hope to extend our current approach to

also study insertions and deletions (indels): their frequency,

recurrence, and possible fitness effects (see, e.g., Kemp

et al. 2020). However, we expect that incorporating indels

in our approach will be challenging since standard phyloge-

netic approaches rarely model indels.
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