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Abstract 

Background:  Fetal macrosomia is common occurrence in pregnancy, which is associated with several adverse prog-
nosis both of maternal and neonatal. While, the accuracy of prediction of fetal macrosomia is poor. The aim of this 
study was to develop a reliable noninvasive prediction classifier of fetal macrosomia.

Methods:  A total of 3600 samples of routine noninvasive prenatal testing (NIPT) data at 12+ 0–27+ 6 weeks of gesta-
tion, which were subjected to low-coverage whole-genome sequencing of maternal plasma cell-free DNA (cfDNA), 
were collected from three independent hospitals. We identified set of genes with significant differential coverages by 
comparing the promoter profiling between macrosomia cases and controls. We selected genes to develop classifier 
for noninvasive predicting, by using support vector machine (SVM) and logistic regression models, respectively. The 
performance of each classifier was evaluated by area under the curve (AUC) analysis.

Results:  According to the available follow-up results, 162 fetal macrosomia pregnancies and 648 matched controls 
were included. A total of 1086 genes with significantly differential promoter profiling were found between pregnan-
cies with macrosomia and controls (p < 0.05). With the AUC as a reference，the classifier based on SVM (CMA-A2) had 
the best performance, with an AUC of 0.8256 (95% CI: 0.7927–0.8586).

Conclusions:  Our study provides that assessing the risk of fetal macrosomia by whole-genome promoter nucleo-
some profiling of maternal plasma cfDNA based on low-coverage next-generation sequencing is feasible.
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Background
Fetal macrosomia was defined as fetal weight beyond 
4000 g or 4500 g, regardless of gestational age. The preva-
lence of fetal macrosomia has increased globally over the 
last several decades, and it occurred in approximately 8% 
of all pregnancies in 2016 [1]. Several studies reported 
that it is associated with an increased risk of the mater-
nal and neonatal complications, including increased like-
lihoods of emergency cesarean section (CS), shoulder 
dystocia, brachial plexus injury, perinatal asphyxia and 
neonatal mortality [1, 2]. Furthermore, a large body of 
literature has reported associations between macrosomia 
and long-term health risks, such as adult obesity, diabe-
tes, cardiovascular disease and cancer [3–8].

At present, the accuracy of antenatal estimation of 
fetal weight and prediction of macrosomia is poor. Both 
ultrasound biometry and clinical assessments, such as 
measuring fundal height, are commonly used methods 
to evaluate fetal intrauterine growth, but only with a 
sensitivity from 37 to 54% [9]. Moreover, those models 
could be used only during late pregnancy up to labor. 
Currently, the ability to block or delay the progress of 
macrosomia in the third trimester is limited; planned 
delivery by cesarean section is the most common clinical 
treatment to avoid further adverse influences on mater-
nal and neonatal outcomes. Hence, the early diagnosis of 
fetal macrosomia might contribute to successful health 
monitoring during pregnancy and reduce the incidence 
of maternal and neonatal complications.

Cell-free DNA (cfDNA) in plasma is an intensively 
applied serological marker. In healthy people, cfDNA is 
released by apoptotic myeloid and lymphoid cells after 
enzymatic processing; in particular physiological condi-
tions, such as pregnancy, 10% ~ 15% of cfDNA is derived 
from apoptotic placental trophoblasts, namely, cell-free 
fetal DNA (cffDNA) [10], which allows collection of fetal 
genetic information via noninvasive maternal blood tests. 
Currently, noninvasive prenatal testing (NIPT) is offered 
as a kind of screening test for common aneuploidies (e.g., 
trisomies 21, 18 and 13) in China. Additionally, cfDNA 
has also been used to screen for certain clinically signifi-
cant microdeletions and single-gene disorders [11–14].

In several analyses, the average length of cfDNA frage-
ments was 167 bp, a size which corresponds approxi-
mately to the DNA wrapped around a nucleosome 
(~ 147 bp) and a H1 linker fragment (~ 20 bp). Therefore, it 
has been accepcted that cfDNA is the fragment bounded 
to nucleosome [15–17]. Furthermore, evidence that 

cfDNA sequencing yields a genome-wide map of in vivo 
nucleosome occupancy and enables identification of its 
cell types of origin was recently reported [18]. In addition, 
a study of cfDNA analysis demonstrated that the genes 
with low-coverage in the region of ±1000 bp around the 
transcription start sites (TSSs) was active, which implied 
that low-coverage occurred in promoter regions along 
with increased gene expression [19]. In a previous study, 
our group proved that promoter profiling of cfDNA may 
be used as a biological biomarker for predicting preg-
nancy complications at early gestational [20]. Therefore, 
we hypothesized that cfDNA fragment distribution pat-
terns can infer their tissues-of-origin, e.g. apoptotic pla-
cental trophoblasts, maternal myeloid and lymphoid cells, 
and the differential coverages in the region of ±1000 bp 
around the TSSs can be used to distinguish pregnant 
women with complications and healthy controls.

The aim of this study was to investigate the difference 
in the cfDNA nucleosome footprint profile between mac-
rosomia and control pregnancies. Based on these dif-
ferences, classifiers can be developed through machine 
learning for macrosomia prediction.

Methods
Study participants
The study was approved by the Internal Ethics Com-
mittee of Nanfang Hospital, Southern Medical Univer-
sity (NFEC-2017-049), and all women provided written 
informed consent for the use of their data in ongoing 
research before the blood draw. This was a nested case-
control study. During the study period (Jan 1, 2016, 
and Aug 31, 2019), 3600 naturally conceived singleton 
pregnant women at 12+ 0 ~ 27+ 6 gestational weeks were 
recruited from three independent hospitals, namely, Nan-
fang Hospital of Southern Medical University (SMU), 
the Third Affiliated Hospital of Sun Yat-sen University 
(SYSU), and Cangzhou People’s Hospital. All plasma sam-
ples were subject to routine noninvasive prenatal testing.

Inclusion and exclusion criteria
Based on pregnancy outcomes and neonatal birth weight, 
pregnancies were classified into the macrosomia and 
control groups. The exclusion criteria were as follows: 1) 
gestational age at blood collection (less than 12 weeks or 
more than 28 weeks); 2) maternal overweight or obesity 
(BMI over 25 before pregnancy); 3) multiple pregnancy; 
4) singleton pregnancy with positive results on NIPT and 
ultrasound scans; 5) premature delivery; 6) birth weight 
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below 2500 g and 7) lost in the follow-up. Pregnancies 
meeting any of these criteria were excluded. We identi-
fied macrosomia cases and controls by retrospectively 
analyzing the participant follow-up results, including 
pregnancy outcomes and neonatal birth weight. Accord-
ing to the gestational weeks at blood collection and the 
sex of the fetus, each macrosomia case was randomly 
matched to four selected control cases.

In total, 810 NIPT samples (162 macrosomia and 648 
controls) were selected for further evaluation. Macrosomia 
was identified is cases with a birth weight beyond 4000 g.

Sample processing and next‑generation sequencing
Since pre-analytical factors can significantly affect cfDNA 
analysis [21, 22]. To guarantee that the samples from dif-
ferent hospitals would not be influenced by pre-analytical 
factors (e.g. storage temperature and time before pro-
cessing), we have formulated protocols for quality con-
trol. The peripheral blood samples were collected from 
each participant in cfDNA BCT tubes, and centrifuged 
for 10 minutes at 1600×g to collect the plasma. And then, 
to remove the residual cellular fragments, plasma sam-
ples were centrifuged at 16,000×g for 10 minutes. All 
plasma samples were stored frozen at ≤ − 80 °C, and the 
cfDNA was extracted from those frozen samples by using 
the QIAamp DNA Blood Mini kit (Qiagen) by following 
the manufacturer’s instructions.

To construct DNA library, a total of 40.5 μL of extracted 
DNA was needed by means of TruSeq DNA Sample Prep 
reagents (Illumina, Paris). The DNA libraries were meas-
ured by using Qubit (Life Technocologies), and the inte-
gration of DNA were verified by using Agilent Bioanalyzer 
2100 (Agilent Technologies). The purified libraries from 
twelve different individual samples were pooled, and mas-
sively parallel sequencing were performed on the Ion Proton 
sequencing platform (Life Technocologies) or the Next-
Seq500 sequencing platform (Illumina). The DNA sequenc-
ing was performed at a depth of 0.3× average coverage [23].

Sequence analysis
After removal of sequencing reads with low quality, 
sequencing reads were aligned to the hg19 human refer-
ence genome using BWA-MEM [24], and PCR duplicated 
were removed SAMtools (ver. 1.2) [25]. Read counts of 
regions ranging from − 1000 bp to + 1000 bp around tran-
scription start sites (TSS), defined as the primary transcrip-
tion start site (pTSS), were calculated using BEDTools (ver. 
2.17.0) and then normalized using the following formula:

(1)

Normalized pTSS =
Reads at pTTS

Totally mapped reads × length of pTTS(2kb)

Prediction model construction and validation
To obtain effective classifiers for predicting pregnan-
cies with fetal macrosomia, a three-stage workflow was 
designed, including exploration of genes with differential 
promoter profiling (discovery stage), construction of clas-
sifiers (training stage), and evaluation the performance of 
classifiers (validation stage) (Fig. 1).

At the discovery stage, we first sequenced cfDNA from 
maternal plasma samples collected from 47 macrosomia 
cases and 47 gestational age-matched controls, and the 
coverage at the pTSSs was compared between the two 
groups. P-values were then calculated using the Wilcoxon 
rank sum test and then adjusted to FDR using R software. 
pTSSs with fold change ≥1.3 and FDR ≤ 0.05 were consid-
ered significantly changed.

At the training stage, two machine learning models, 
including support vector machine (SVM) and logistic 
regression (LR), were used to develop promoter profiling-
based classifiers to distinguish macrosomia cases from con-
trols. To develop classifiers, a stepwise method was used 
to identify promoter combinations among genes showing 
differential coverage at the pTSSs. The robustness of the 
classifiers was assessed using leave-one-out cross-valida-
tion (LOOCV) [20, 23]. In brief, each subject in the train-
ing cohort was excluded from the training model in turn, 
with the remaining subjects all being submitted to train the 
model. The trained model was then used to predict the class 
(pregnancies with complications or controls) of the with-
held subject. This procedure continued until all subjects in 
the training cohort were classified. The performance of each 
classifier was evaluated by using receiver operating charac-
teristic (ROC) analysis, including area under curve (AUC), 
accuracy, sensitivity, and specificity. The classifier that 
achieved the maximum value of AUC in the training cohort, 
was considered to be the optimal classifier.

At the validation stage, for further evaluation, the effi-
ciency of optimal prediction classifier was assessed in three 
validation cohorts, separately. The composition of internal 
cohort was samples collected from SMU, and cohorts com-
posed of samples collected from SYSU and Cangzhou Peo-
ple’s Hospital were considered as external validation.

Results
Clinical characteristics
In total, we included 162 participants who developed 
macrosomia and 648 gestational age-matched con-
trols (Fig.  1). These participants were divided into 
four cohorts: a training cohort (samples from Nanfang 
Hospital of SMU), an internal validation cohort (sam-
ples from Nanfang Hospital of SMU), and two external 
cohorts (samples from the Third Affiliated Hospital of 
SYSU and Cangzhou People’s Hospital). The clinical 
characteristics of the participants are summarized in 
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Table 1. The gestational age and maternal age were not 
significant different in each cohort.

Promoter and terminator profiling of cfDNA revealed 
macrosomia‑associated patterns
To develop classifiers for predicting macrosomia, at 
the discovery stage, 47 pregnancies with macroso-
mia cases and 47 gestational age-matched controls 
were compared to identify gene transcripts with sig-
nificantly different promoter and terminator cover-
age. A total of 1086 significantly different TSS regions 
(FDR < 0.05 and fold change ≥1.3) were found. The list 
of transcripts with significantly different promoter and 
terminator coverage is shown in supplementary mate-
rials (Supplemental Table). Hierarchical clustering 
analyses showed an obvious separation of pregnancy 
with macrosomia from controls (P < 0.05) (Fig. 2).

Classifier development for macrosomia prediction
At the training stage, by the application of SVM and LR 
models, we constructed macrosomia classifiers that could 
differentiate the macrosomia cases from controls, and the 
performance of each macrosomia classifier was evalu-
ated by ROC analysis. The unique 12-gene combination 
(CMA-A1), namely, SMC3, MASTL, CREM, C1QTNF12, 
MLXIP, MAP3K9, IGSF6, APC2, GPM6A, TMEM128, 

NIPBL, and TMEM184A, achieved the best performance 
with an AUC of 0.7793 (95% CI: 0.7094–0.8491) in the 
LR model. The accuracy of the CMA-A1 was 81.28%, with a 
sensitivity of 72.34% and specificity of 83.51%.

The unique 12-gene combination (CMA-A2), namely, 
C10orf142, STX6, CORO1C, RCOR3, ITGB7, DUSP6, 
GSE1, RAB8A, KLC3, UBE2M, MCAT​, and GLE1, 
achieved the best performance with an AUC of 0.8298 
(95% CI: 0.7675–0.8921) in the SVM model, and the 
accuracy of the CMA-A2 was 84.25%, with a sensitivity of 
80.85% and specificity of 85.11%.

Classifier validation for macrosomia prediction
At the validation stage, to verify the efficiency of the opti-
mal prediction classifier, the CMA-A1 and CMA-A2 were used 
in the internal cohort, 2 external cohorts and all subjects. 
The CMA-A1 had AUCs of 0.8393 (95% CI: 0.7608–0.9178), 
0.8023 (0.7361–0.8686), 0.7108 (95% CI: 0.6404–0.7811) 
and 0.7716 (95% CI: 0.7352–0.808) in these four cohorts, 
respectively. The CMA-A2 had AUCs of 0.8512 (95% CI: 
0.7853–0.9171), 0.8459 (95% CI: 0.7822–0.9097), 0.7941 
(95% CI: 0.7309–0.8573) and 0.8256 (95% CI: 0.7927–
0.8586) in these four cohorts, respectively (Table 2, Fig. 3). 
The CMA-A2 had achieved larger AUC and accuracy in each 
cohort, especially in all subjects (P < 0.05). According to the 
predictive performance of these two classifiers, we selected 
the CMA-A2 as optimal classifier for further discussion.

Fig. 1  Study design flowchart for obtaining the macrosomia classifiers. a Samples collected from SMU. b Samples collected from SYSU. c Samples 
collected from Cangzhou People’s Hospital
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Performance of CMA‑A at different gestational weeks
To verify the the performance of CMA-A2 at different 
gestational age, we divided the samples into two groups 
according to the gestational ages at sampling. And the 
classifier was used to predict macrosomia in 455 samples 
(89 macrosomia cases) collected 17+ 0 gestational weeks 
and 355 samples (89 macrosomia cases) collected after 
17+ 0 gestational weeks, respectively. CMA-A2 had AUCs 
of 0.8146 (95% CI: 0.7704–0.8588) and 0.8403 (0.7908–
0.8898). To a certain degree, the accuracy of classifier 
increased with the progress of pregnancy. However, there 
was no evidence for a statistically significant difference 

in AUCs (P = o.449) (Supplemental Table 1). It suggested 
that the predictive performance of CMA-A2 was stable 
during 12+ 0 ~ 27+ 6 gestational weeks. Therefore, the 
prediction of macrosomia could start at 12+ 0 gestational 
weeks, as early as possible.

Discussion
cfDNA-based NIPT has been successfully used in clini-
cal practice as a kind of screening test for common aneu-
ploidies, certain clinically significant microdeletions and 
single-gene disorders; moreover, since tumor cells can 

Fig. 2  Gene transcripts with differential read coverages at primary transcription start sites (pTSSs). a Volcano plots of gene transcripts with 
differential read coverages at the TSSs, as detected using whole-genome sequencing for macrosomia. The blue, red and green blots indicate genes 
with upregulated, downregulated and no significant difference in promoter read depth coverage, respectively; b Heat map of the z-scores for 
promoters with differential read coverage using cfDNA-seq (FDR < 0.05). The two groups of women were separated using hierarchical clustering

Table 2  Performance of the classifiers

AUC​ Area under the receiver operating characteristic curve, 95% CI 95% confidence interval

Classifiers LR SVM

Cohort AUC (95% CI) Acc Sen Spe AUC (95% CI) Acc Sen Spe P-value

Training 0.7793 (0.7094–0.8491) 81.28% 72.34% 83.51% 0.8298 (0.7675–0.8921) 84.26% 80.85% 85.11% 0.111

Internal 0.8393 (0.7608–0.9178) 80.00% 90.48% 77.38% 0.8512 (0.7853–0.9171) 79.05% 95.24% 75.00% 0.655

External-1 0.8023 (0.7361–0.8686) 79.53% 81.40% 79.07% 0.8459 (0.7822–0.9097) 86.51% 81.40% 87.79% 0.219

External-2 0.7108 (0.6404–0.7811) 71.37% 70.59% 71.57% 0.7941 (0.7309–0.8573) 80.00% 78.43% 80.39% 0.005

All 0.7716 (0.7352–0.808) 77.53% 76.54% 77.78 0.8256 (0.7927–0.8586) 82.84% 82.10% 83.02% < 0.001
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release shedding DNA fragments into the bloodstream, 
becoming a portion of the total cfDNA, cfDNA-based 
NIPT can be used as a “liquid biopsy” for cancer detec-
tion and monitoring.

In this study, we demonstrated that at 12+ 0 ~ 27+ 6 
weeks of gestation, a method based on low-coverage 
whole-genome sequencing of cfDNA isolated from 
maternal circulating plasma was able to distinguish preg-
nancies of women who delivered an infant with mac-
rosomia from those who delivered healthy neonates. We 
successfully developed- a classifier for predicting the 
risk of macrosomia based on maternal plasma cfDNA 
nucleosome profiling. The CMA-A2, based on SVM mod-
els, a combination of 12 genes, namely, C10orf142, STX6, 
CORO1C, RCOR3, ITGB7, DUSP6, GSE1, RAB8A, KLC3, 
UBE2M, MCAT​, and GLE1, was the optimal gene combi-
nation to predict macrosomia, with the best performance 
and the highest prediction accuracy in 84.26% of the stud-
ied population (AUC, 0.8298, 95% CI: 0.7675–0.8921).

The classifier contained genes that may help us under-
stand the etiology of fetal macrosomia. Previous studies 
have reported a close relationship between metabolic 
disorders and macrosomia, and these infants may also 
suffered from disordered glucose metabolism and obe-
sity in later life [3, 26, 27]. CMA-A2 included DUSP6 (dual 
specificity phosphatase 6), which is associated with lipid 
metabolism and glucose homeostasis [28, 29]. It has 
been reported that CORO1C (coronin 1C) were highly 
expressed in adipose tissues, and it might be critical 
genes in the development and prognosis of obesity [30]. 
And ITGB7 (integrin subunit beta 7), is associated with 
Type 1 diabetes mellitus [31, 32]. Even though, the evi-
dence of relationship between the remaining genes and 
macrosomia haven’t been reported yet. Considering the 
relevant studies about macrosomia is rare, especially the 
verification of gene function. It is necessary that further 
experiments are carried out to confirm the biological 
sense of CMA-A2.

Fig. 3  Receiver operating characteristic (ROC) curves. ROC curves showing the performance of SVM and LR models to predict macrosomia in 
different cohorts. a ROC curves for classifiers in the training cohort; b ROC curves for classifiers in the internal cohort; c ROC curves for classifiers in 
external cohort-1; d ROC curves for classifiers in external cohort-2
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Currently, fetal birth weight prediction is not a part of 
routine prenatal examination before the late period of 
pregnancy. There are not sufficient studies on how pre-
natal examinations can screen for fetuses at risk of mac-
rosomia, especially in nondiabetic pregnant women. 
Currently, two-dimensional ultrasound is the most 
widely used prenatal technology for estimating fetal 
weight by measuring conventional parameters, includ-
ing abdominal circumference (AC), biparietal diameter 
(BPD), and femur length (FL). Given the poor capacity 
of routine two-dimensional ultrasound for predicting 
macrosomia, a range of other techniques or models have 
been researched. In previous work, we developed a new 
birth weight prediction model based on the combina-
tion of two- and three-dimensional ultrasound that could 
improve the estimation accuracy of fetal birth weight 
[33]. However, these models can be used only during late 
pregnancy up to labor. Even though the fetal weight can 
be predicted through ultrasound during late pregnancy, 
it is unable to taking clinical intervention measures, like 
nutritional guidance, to prevent the fetal weight gain, 
effectively. To avoid the complications of vaginal delivery 
in the pregnancy of macrosomia, cesarean section (CS) 
can be chosen to terminate the pregnancy. However, as 
with any surgery, CS is associated with short- and long-
term risk, and affect future pregnancies [34]. In our study, 
all maternal blood samples were collected in the first and 
second trimesters of pregnancy. This makes it possible to 
screen for fetal macrosomia at an early stage of gestation, 
and this method is earlier than other screening methods, 
would strengthen the management of pregnancy and 
would reduce the incidence of cesarean section.

Among the strengths of our study is the large sample 
size, comprising 162 cases of macrosomia and 648 con-
trols. In addition, our classifier can be applied during 
the early period of pregnancy, when women have their 
routine NIPTs for chromosomal abnormality screening; 
it makes early intervention and management feasible. 
What’s more, there is no require for additional blood col-
lection; it could be done as part of routine NIPTs without 
increasing the financial burden of women.

However, there are restrictions of this study. First, the 
retrospective design tends to engender overfitting, and 
the performance of the classifier is potentially overstated. 
Hence, before the classifier is applied to clinical practice, 
prospective studies that include pregnant women with 
singleton pregnancies in the first trimester are needed 
to further validate the prediction model. An additional 
restriction is that the construction of classifier merely 
included the coding genes. Previous studies have shown 
that the aberrant expression of miRNAs is related to 
macrosomia [35, 36]. However, to the best of our knowl-
edge, the levels of macrosomia-related miRNAs in the 

plasma of pregnant women have not been investigated. 
Further analysis may provide novel insight into the roles 
that miRNAs have played in the intrauterine develop-
ment of macrosomia. And a brand classifier model may 
achieve even more superior performance of predicting 
the risk of macrosomia prenatally, which is incorporate 
the TSSs of noncoding RNA.

Conclusions
In summary, an important conclusion we can draw from 
our results is that a high-performance classifier was suc-
cessfully developed for predicting the risk of macrosomia 
based on whole-genome sequencing of cell-free DNA, 
with potential for clinical implementation. It also might 
contribute to establishing new models for identifying and 
predicting other pregnancy-related diseases.
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