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Complete Genome Sequence of Vibrio rotiferianus Strain AM7
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ABSTRACT We isolated the novel strain Vibrio rotiferianus AM7 from the shell of an
abalone. In this article, we report the complete genome sequence of this organism,
which was obtained by combining Oxford Nanopore long-read and Illumina short-
read sequencing data.

ibrio is a Gram-negative, heterotrophic, and usually aerobic or facultative anaerobic

marine bacterial genus belonging to the class Gammaproteobacteria. Vibrio rotife-
rianus was first isolated from cultures of the rotifer Brachionus plicatilis in 2003 (1), and
subsequently various species have been isolated from aquatic organisms (2, 3). To date,
several genome projects have been initiated for V. rotiferianus, but a complete genome
sequence has been obtained only for strain B64D1 (4). To gain insight into the genomic
evolution of V. rotiferianus strains at high resolution, we conducted complete genome
sequencing of V. rotiferianus strain AM7, which was isolated from an abalone purchased
at a fish market in Tokyo, Japan. The shell surface of the abalone was swabbed using
a sterilized swab, and single colonies were isolated via streaking onto LB agar plates
containing 4% (wt/vol) sea salts (LBSS; Sigma). Eight colonies, which appeared on the
plate after incubation at 37°C for 16 h, were investigated via 16S rRNA sequencing
analysis of the near full-length of the gene. Seven of the colonies were identified as
Halomonas spp., and the other was identified as V. rotiferianus and designated as AM7.
We subjected V. rotiferianus AM7 to whole-genome sequencing.

For genomic DNA extraction, AM7 was grown in LBSS broth at 37°C for 18 h.
Genomic DNA was prepared using a MagAttract high-molecular-weight (HMW) DNA kit
(Qiagen) according to the manufacturer’s instructions. The obtained genomic DNA was
subjected to long- and short-read sequencing (5). For long-read sequencing, short
genomic fragments were removed using a short-read eliminator (Circulomics). The o i
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sequencing data were quality trimmed using fastp v.0.20.0 (Q, =30; read length, =10
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TABLE 1 Genome statistics and genomic features of Vibrio rotiferianus strain AM7

GC content Avg read
Chromosome or plasmid Length (bp) (%) No. of CDSs? No. of rRNAs No. of tRNAs depth (x) Accession no.
Chromosome 1 3,515,444 44.9 3,062 37 119 30.0 AP019798
Chromosome 2 2,016,094 444 1,805 3 15 29.4 AP019799
Plasmid 243,273 42.0 252 0 0 54.1 AP019800

aCDSs, coding sequences.

bases) (7), yielding 650,801 paired-end reads (100 Mbp) with an average length of
153.3 bp.

For complete de novo genome assembly, both long- and short-read data were
processed using Unicycler v.0.4.4 (8), followed by a final polishing step using Pilon
v.1.23 (9), generating two closed contigs for circular chromosomes and another closed
contig for the plasmid. Automatic annotation was then performed using the annotation
pipeline DFAST v.1.1.0 (10). The genome statistics and genomic features are summa-
rized in Table 1. Based on the coverage of short reads to the complete chromosome/
plasmid sequences, the relative copy number of plasmids to chromosomes was esti-
mated to be approximately 2. The average nucleotide identities to the closest genome
sequences were 97.6% between AM7 chromosome 1 and B64D1 chromosome 2
(GenBank accession number CP018312.1) and 96.5% between AM7 chromosome 2 and
B64D1 chromosome 1 (accession number CP018311.1).

Data availability. The GenBank accession numbers for the complete genome
sequence of V. rotiferianus AM7 are AP019798 (chromosome 1), AP019799 (chromo-
some 2), and AP019800 (plasmid) (Table 1). The raw sequencing data were deposited
in the DDBJ SRA database under the accession numbers DRR184147 (lllumina data) and
DRR184148 (Nanopore data).
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