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Abstract: Alpinia oxyphylla Miquel (Zingiberaceae) has been reported to show antioxidant, anti-
inflammatory, and neuroprotective effects. In this study, two new eudesmane sesquiterpenes, 7α-
hydroperoxy eudesma-3,11-diene-2-one (1) and 7β-hydroperoxy eudesma-3,11-diene-2-one (2), and
a new eremophilane sesquiterpene, 3α-hydroxynootkatone (3), were isolated from the MeOH extract
of dried fruits of A. oxyphylla along with eleven known sesquiterpenes (4–14). The structures were
elucidated by the analysis of 1D/2D NMR, high-resolution electrospray ionization mass spectrometry
(HRESIMS), and optical rotation data. Compounds (1–3, 5–14) were evaluated for their protec-
tive effects against tert-butyl hydroperoxide (tBHP)-induced oxidative stress in adipose-derived
mesenchymal stem cells (ADMSCs). As a result, treatment with isolated compounds, especially
compounds 11 and 12, effectively reverted the damage of tBHP on ADMSCs in a dose-dependent
manner. In particular, 11 and 12 at 50 µM improved the viability of tBHP-toxified ADMSCs by
1.69 ± 0.05-fold and 1.61 ± 0.03-fold, respectively.

Keywords: Alpinia oxyphylla; eudesmane sesquiterpene; eremophilane sesquiterpene; adipose-
derived mesenchymal stem cell; antioxidant; oxidative stress

1. Introduction

Alpinia oxyphylla Miquel (Zingiberaceae) is a flowering plant, and the genus of Alpinia
comprises 250 species worldwide and is mainly distributed across subtropical regions [1].
It has been used both as a food [2] and a traditional herbal medicine in Korea, China,
and Japan [3,4]. The fruit of A. oxyphylla was reported to exhibit diverse pharmacolog-
ical activities, such as anti-inflammatory [5], anti-ulcer [6], anti-allergy [7], and neuro-
protective effects [8]. Previous studies have revealed the presence of different classes
of chemicals in A. oxyphylla, including monoterpenes [9], sesquiterpenes [1,4,10], diter-
penoids [11], flavonoids [12], diarylheptanoids [12], and steroids [13]. Among them,
sesquiterpenes, such as 12-hydroxynootkatone [14], nootkatone [4], oxyphyllanene C,
and oxyphyllanene E [1], are responsible for the inhibition of nitric oxide (NO) produc-
tion in interferon-γ and lipopolysaccharide-treated RAW264.7 macrophage cells. As part
of our ongoing project to investigate the antioxidant constituents of herbal medicines,
the chemical exploration of A. oxyphylla led to the identification of three novel com-
pounds: two eudesmane sesquiterpenes—7α-hydroperoxy eudesma-3,11-diene-2-one
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(1) and 7β-hydroperoxy eudesma-3,11-diene-2-one (2)—and an eremophilane sesquiter-
pene, 3α-hydroxynootkatone (3). The following known compounds were also identi-
fied as 3,4-dehydronootkatone (4) [15], nootkatone (5) [14], 7-epi-teucrenone (6) [16], teu-
crenone (7) [17], 11(12)-dien-2,9-dione (8) [18], 9β-hydroxynootkatone (9) [14], oxyphyllol
B (10) [10], (4R, 5S, 7R)-13-hydroxynootkatone (11) [19], nootkatone-11,12-epoxide (12) [20],
nootkatone-11,12-diol (13) [14], and (11S)-12-chloronootkaton-11-ol (14) by comparison
with reported data [21] (Figure 1). The isolated compounds, except for 4, due to the lim-
ited amount, were evaluated for their protective effects against tert-butyl hydroperoxide
(tBHP)-induced oxidative stress in adipose-derived mesenchymal stem cells (ADMSCs).
As a result, compounds 11 and 12 demonstrated potent cell-protective effects. tBHP is a
powerful oxidizing compound that causes oxidative stress in stem cells. It results in re-
duced endogenous defense molecules, such as superoxide dismutase-SOD and glutathione.
As a result, the cellular organelles such as mitochondria are damaged, which leads to cell
death. In this study, we aimed to isolate sesquiterpenes from the dried fruits of A. oxyphylla
and to preliminarily screen their effects of preventing the death of tBHP-toxified MSCs.
Based on the results, the potent compounds will be chosen to further evaluate their effects
on preserving the activity of intracellular defensive molecules in MSCs of interest in the
next studies.
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2. Results and Discussion
2.1. Structure Elucidation

Compound 1 was isolated as a yellow oil. Its molecular formula, C15H22O3, with
five degrees of unsaturation, was determined based on the high-resolution electrospray
ionization mass spectrometry (HRESIMS) ion peak at m/z 251.1643 [M + H]+ (calculated for
C15H23O3

+, 251.1642). The ion peak at m/z 217.1598 [M + H − H2O2]+ [22,23] and neutral
loss of 51 Da (H2O2 + NH3) from the ammonium adduct, m/z 268.1872 [M + NH4]+ [24] are
characteristic evidence for the presence of the hydroperoxy group. The 1H-NMR spectrum
of 1 showed three olefinic protons (δH 5.90 (dt, J = 2.9, 1.3 Hz, 1H), 5.37 (t, J = 1.3 Hz, 1H),
5.21 (brs, 1H)), one methine (δH 2.37 (m, 1H)), four methylenes (δH 2.41 (m, 1H)/1.54 (m,
1H), 2.30 (dd, J = 16.2, 1.3 Hz, 1H)/ 2.14 (dd, J = 16.2, 1.3 Hz, 1H), 2.19 (m, 1H)/1.78 (td,
J = 14.1, 4.1 Hz, 1H), 1.53 (m, 1H)/1.42 (td, J = 13.9, 4.1 Hz, 1H), and three methyls (δH
0.96 (brs, 3H), 1.93 (t, J = 1.3 Hz, 3H), 1.84 (brs, 3H)). The 13C-NMR and distortionless
enhancement by polarization transfer (DEPT) spectra displayed fifteen carbon signals,
including one carbonyl group at δC 198.9; four quaternary carbons at δC 162.0, 141.5, 86.7,
and 37.9; four methylenes at δC 54.1, 37.2, 28.7, and 26.7; an olefinic methylene at δC 118.5;
three methyls at δC 22.1, 18.9 and 17.0; one methine at δC 44.5; and one olefinic methine
at δC 127.2. The 1H and 13C-NMR spectra of 1 (Tables 1 and 2) were found to be similar
to those of the known eudesmane sesquiterpene, 7-epi-teucrenone (6) [16], except for a
substitution of a tertiary hydroperoxy group (δC 85.9) [25,26] instead of a tertiary hydroxy
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group (δC 74.4) [16] at C-7, which was supported by the downfield shifted signal of C-7
(δC 86.7). Five degrees of unsaturation indicated a dicyclic ring system possesses one
carbonyl group and two double bonds. The planar structure of 1 was established based on
a comprehensive analysis of COSY, HSQC, and HMBC correlations, as shown in Figure 2.
Key HMBC correlations from H-1 to C-2/C-5, H-3 to C-1/C-5/C-15, H-15 to C-3/C-4/C-5,
and H-5 to C-15 were used to elucidate ring A. Ring B was confirmed by HMBC correlations
from H-6 to C-5/C-7/C-8/C-10 and H-8 to C-10. The HMBC correlations from H-12 to
C-7 and H-13 to C-7/C-11/C-12 suggested an isopropylidene group positioned at C-7. All
figures of HRESIMS and 1D, 2D NMR of compound 1 were provided in supplementary
material (Figures S1–S8).

Table 1. 1H-NMR spectroscopic data of compounds 1–3.

1 2 3

Position δH, mult (J in Hz). δH, mult (J in Hz) δH, mult (J in Hz)
1α 2.30, dd (16.2, 1.3)

2.26, s 5.84, d (1.5)1β 2.14, dd (16.2, 1.3)
2
3 5.90, dt (2.9, 1.3) 5.90, dq (2.9, 1.4) 4.39, dd (5.3, 2.2)
4 2.03, dd (7.1, 5.3)
5 2.37, m 2.83, ddq (13.2, 2.9, 1.4)

6α 1.54, m 1.55, dd (14.0, 13.2) 1.76, m
6β 2.41, m 2.34, dt (14.0, 2.9) 1.81, t (12.3)
7 2.59, m

8α 1.78, td (14.1, 4.1) 1.71, m 2.07, m
8β 2.19, m 1.91, m 1.32, dd (13.1, 4.5)
9α 1.53, m 1.34, m 2.55, tdd (12.9, 4.5, 1.5)
9β 1.42, td (13.9, 4.1) 1.72, m 2.29, ddd (12.9, 4.5, 2.7)
10
11
12a 5.37, t (1.3) 5.08, brs 4.75, t (1.5)
12b 5.21, brs 5.04, t (1.4) 4.72, brs
13 1.84, brs 1.84, m 1.72, brs
14 0.96, brs 0.89, brs 1.28, brs
15 1.93, t (1.3) 1.91, t (1.4) 0.92, d (7.1)

OH 3.26, d (2.2)

The 1H-NMR data were acquired using CDCl3 at 400 MHz.

Table 2. 13C-NMR spectroscopic data of compounds 1–3.

1 2 3

Position δC, type δC, type δC, type
1 54.1, CH2 54.0, CH2 119.6, CH
2 198.9, C 199.5, C 199.8, C
3 127.2, CH 127.1, CH 73.4, CH
4 162.0, C 163.7, C 44.0, CH
5 44.5, CH 42.4, CH 41.3, C
6 28.7, CH2 28.5, CH2 43.7, CH2
7 86.7, C 85.1, C 40.1, CH
8 26.7, CH2 27.2, CH2 34.6, CH2
9 37.2, CH2 35.2, CH2 33.1, CH2
10 37.9, C 37.2, C 170.7, C
11 141.5, C 147.8, C 148.3, C
12 118.5, CH2 112.5, CH2 109.9, CH2
13 18.9, CH3 18.9, CH3 21.1, CH3
14 22.1, CH3 22.0, CH3 9.0, CH3
15 17.0, CH3 16.2, CH3 22.7, CH3

The 13C-NMR data were acquired using CDCl3 at 100 MHz.
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The relative configuration of 1 was determined through the NOESY experiment
(Figure 3). The NOE correlations between H-6β and H-12b as well as H-6α and H3-14
indicated that both the C-7 hydroperoxide and C-14 methyl groups were α-positioned.
In addition, the NOE correlation between H-5 and H-12b suggested a β-oriented proton
at C-5. The optical rotation was obtained to determine the absolute configuration of 1;
a weak negative specific rotation, [α]25

D : −1.2 (c 0.25, CH3OH), was observed, indicating
the presence of a racemic mixture. Based on these observations, the structure of 1 was
elucidated as 7α-hydroperoxy eudesma-3,11-diene-2-one.
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Compound 2 was isolated as a white powder. Its molecular formula, C15H22O3, with
five degrees of unsaturation, was confirmed based on the HRESIMS ion peak at m/z
251.1639 [M + H]+ (calcd for C15H23O3

+, 251.1642) (Figure S16). The fragmentation pattern
showed the same pattern as mentioned in 1 to confirm the presence of a hydroperoxy
group. The comparison of the 1H and 13C-NMR spectroscopic data revealed that the planar
structure of 2 was identical to that of 1, which was further supported by the analysis of the
2D NMR spectra, as shown in Figure 2 (Figures S9–S15). The relative configurations of a
hydroperoxy group at C-7 in the eudesmane sesquiterpene were determined using 13C-
NMR chemical shift differences at C-11 and C-12 [16,17] as well as NOESY spectrum. The
resonances for C-11 and C-12 in 2 were downfield and upfield shifted, respectively, both
by 6 ppm, compared to those of 1, suggesting that the relative configurations at C-7 in 2
were different from those in 1. The H-6α was observed as dd with relatively large coupling
constants of 14.0 Hz (2JH-6α, H-6β) and 13.2 Hz (3JH-5, H-6α), which indicated H-6α and H-6β
are axial and equatorial orientations, respectively. The NOE correlations between H-6α
and H-14, as well as between H-6α and H-12a revealed that an isopropylidene group at C-7
of 2 was positioned on the same side with a methyl group (H3-14). Again, to determine the
absolute configuration of 2, the optical rotation was obtained, and a weak positive specific
rotation, [α]25

D : +3.16 (c 0.19, CH3OH), was observed, concluding the presence of a racemic
mixture. Based on these observations, the structure of 2 was elucidated as 7β-hydroperoxy
eudesma-3,11-diene-2-one, a 7-epimer of 1.

Compound 3 was isolated as a white powder. Its molecular formula, C15H22O2, with
five degrees of unsaturation, was determined based on the HRESIMS ion peak at m/z
235.1692 [M + H]+ (calcd for C15H23O2

+, 235.1693) (Figure S24). The 1H-NMR spectroscopic
data (Table 1) indicated three olefinic protons (δH 5.84 (d, J = 1.5 Hz, 1H), 4.75 (t, J = 1.5 Hz,
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1H), 4.72 (brs, 1H)), three methyls (δH 1.72 (brs, 3H), 1.28 (brs, 3H), 0.92 (d, J = 7.1 Hz,
3H)), three methylenes (δH 1.81 (t, J = 12.3 Hz, 1H)/1.76 (m, 1H), 2.07 (m, 1H)/1.32 (dd,
13.1, 4.4 Hz, 1H), 2.55 (tdd, J = 12.9, 4.5, 1.5 Hz, 1H)/2.29 (tdd, J = 12.9, 4.5, 2.7 Hz, 1H)),
and three methines (including oxygenated methine) at δH 4.39 (dd, J = 5.3, 2.2 Hz, 1H),
2.59 (m, 1H) and 2.03 (dq, J = 6.1, 5.3 Hz, 1H). The 13C-NMR spectrum showed fifteen
carbon signals: three methyls (δC 22.7, 21.1, and 9.0), three methylenes (δC 43.7, 34.6, and
33.1), one olefinic methylene δC 109.9, three methines (δC 73.4, 44.0, and 40.1), one olefinic
methine (δC 119.6), three quaternary carbons (δC 170.7, 148.3, and 41.3), and one carbonyl
(δC 199.8). Based on the 1H and 13C-NMR spectral analyses of 3 (Figures S17 and S18,
Table 1), the structure was similar to that of an eremophilane sesquiterpene, nootkatone
(5), except for the presence of an additional hydroxy group at C-3 in 3 [27]. Analysis of the
COSY, HSQC, and HMBC spectroscopic data (Figures S20–S22) revealed the connectivity
of the structure. The key HMBC correlations were as follows: from H-1 to C-5/C-9, H-3 to
C-2/C-4, H-15 to C-3/C-4, H-4 to C-2, H-14 to C-4/C-5/C-6/C-10, H-6 to C-5/C-7/C-8, and
H-9 to C-5, confirming the core planar structure of 3. An isopropylidene group at C-7 was
confirmed based on the HMBC correlations from H-12 to C-7 and H-13 to C-7/C-11/C-12.
The relative configuration of 3 was assigned by NOE correlations, as shown in Figure 3
(Figure S23). The NOE correlations between H-7/H3-14, H3-14/H3-15, and H3-15/OH-3
suggested the α-orientation of the H-7, H3-14, H3-15, and β-orientation of H-3, which is
further supported by the absence of NOE correlation between OH-3 and H-4. The absolute
configuration of 3 was determined as 3S, 4S, 5S, 7R by comparing the optical rotation value,
[α]25

D : +6.18 (c 0.15, CH3OH), with that of (4R,5S,7R)-nootkatone (5) [27]. Accordingly, the
structure of 3 was elucidated as (3S,4S,5S,7R)-3α-hydroxynootkatone.

2.2. Biological Activities of Isolated Compounds on ADMSCs

In this study, we tested the protective effects of compounds 1–3 and 5–14 on oxidative
stress-induced ADMSCs. The activity of compound 4 could not be evaluated due to
amount limitations. Tert-butyl hydroperoxide (tBHP) was used as an inducer of ADMSC
death by generating excessive intracellular reactive oxygen species and reducing the
activity of endogenous defensive molecules, such as superoxide dismutase-SOD and
glutathione [28]. It was found that tBHP triggered ADMSC death dose-dependently
(Figure 4). Particularly, the relative viability of ADMSCs after exposure to 0, 50, 75, 100, and
150 µM tBHP was 100.0 ± 3.3%, 103.3 ± 6.6%, 88.7 ± 6.4%, 53.8 ± 8.6% (p < 0.0001), and
25.1 ± 1.3% (p < 0.0001), respectively. To investigate the effects of the isolated compounds,
100 µM tBHP was chosen to induce oxidative stress in ADMSCs. Figure 5 shows the
relative cell viability of the control (only tBHP treatment) and treated groups (co-treatment
with tBHP and compounds). Interestingly, compounds 8 to 13 effectively prevented
oxidative stress-induced ADMSC death, as indicated by a minimum 1.4-fold improvement
in cell viability at 50 µM. Among these, compounds 11 and 12 exhibited the highest
protective effects, which were improved by 1.69 ± 0.05-fold (p < 0.0001) and 1.61 ± 0.03-
fold (p < 0.0001), respectively, at 50 µM. Meanwhile, compounds 3 and 6 only slightly
inhibited the toxic effects of tBHP on ADMSCs, with 1.21 ± 0.14-fold and 1.20 ± 0.12-fold
higher cell viability at 50 µM, respectively. We found that all the remaining compounds
were ineffective in recovering ADMSCs from chemically induced oxidative stress at all
tested concentrations. Further analysis would be necessary to investigate the relationship
between structure and its effect.
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Cells only treated with 100 µM tBHP were used as controls. The cell viability test was performed at 24 h after treatment.
The data represent two independent experiments. * p < 0.05, ** p < 0.01, $ p < 0.001, # p < 0.0001.

A. oxyphylla is commonly used for its antioxidant, anti-inflammatory, and neuropro-
tective effects, but the effects of its active compounds remain to be explored [29–32]. In the
present study, we successfully proved the protective effects of 13 isolated sesquiterpenes on
the viability of ADMSCs exposed to tBHP-induced oxidative stress. In neurodegenerative
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diseases, neuronal stem cells experience a high level of oxidative stress, which impairs their
regenerative capacity [33]. Although we could not isolate neuronal stem cells for the test,
our results provide clear evidence for the prevention of oxidative stress in ADMSCs using
several potent isolated sesquiterpenes. Future studies would be required to investigate the
impact of these compounds in in vivo neurodegenerative disease models.

3. Materials and Methods
3.1. General Procedures

Optical rotation was measured using a JASCO P-2000 polarimeter (Tokyo, Japan). The
NMR spectra were acquired on a 400 MHz Agilent NMR spectrometer (DD2, Santa Clara,
CA, USA) using CDCl3. The HRESIMS was performed on an Agilent 6220 Accurate-Mass
TOF LC/MS system. Silica gel (230–400 mesh, Merck KGaA, 64271 Darmstadt, Germany)
and RP-18 (YMC gel ODS-A, 12 nm, S-150 µm, YMC Co., Ltd., Kyoto 600-8106, Japan).
Thin Layer Chromatography (TLC) analysis was performed on silica gel 60 F254 (0.2 mm
thickness, Merck KGaA, 64271 Darmstadt, Germany) and RP-18 F 254S (Merck KGaA,
64271 Darmstadt, Germany) plates by visualization under UV light at 254 nm, 365 nm, and
10% (v/v) of sulfuric acid followed by heating. Preparative HPLC was performed using
an Acme 9000 system (Young Lin, Anyang, Korea) equipped with a YMC-Pack Pro C18
column (5 µm, 250 × 20 mm i.d.).

3.2. Plant Materials

The dried fruits of A. oxyphylla were purchased from the Insan Oriental Herbal Market
in Seoul, Korea. A voucher specimen (No. EA323) was deposited at the Natural Product
Chemistry Laboratory at Ewha Womans University, Seoul, Korea.

3.3. Extraction and Isolation

The dried fruit of A. oxyphylla (3 kg) was extracted with 100% MeOH three times
for 48h at room temperature. The resultant extract after removing solvent was dissolved
in H2O then fractionated with hexanes, methylene chloride (MC), EtOAc, and n-BuOH,
sequentially. The hexane-soluble fraction (94 g) was subjected to a silica gel column
using hexanes:EtOAc (99:1 to 50:50) as a step of the gradient solvent system to yield
19 subfractions (Fr. A1–A19). Subfraction Fr. A8 (13.9 g) was chromatographed over a
silica gel column and eluted with hexanes:acetone (99:1 to 98:2) to afford 17 fractions
(Fr. B1–B17). Reversed-phase (RP) C18 column chromatography (CC) was carried out
with Fr. B7 (5.3 g) using MeOH:H2O (2:1 to 3:1) to yield 15 subfractions (Fr. C1–C15).
Subfraction Fr. C9 (2.97 g) was chromatographed over a silica gel column eluted with
hexanes:EtOAc (99:1 to 0:100) to obtain 25 subfractions (Fr. D1–D25). The combined
subfraction Fr. D7–D9 (1.40 g) was fractionated over a silica gel column by elution with
hexanes:EtOAc (98:2 to 90:10) to yield compound 5 (1.45 mg). Fr. D13–D15 (125.63 mg),
eluted with hexanes:EtOAc (99:1 to 60:30), was chromatographed using a silica gel column
to obtain 13 fractions (Fr. E1–E13). Fr. E6 (70.20 mg) was subjected to RP-C18 CC using
MeOH:H2O (2:1) to give thirteen subfractions (Fr. F1-F13), and compound 3 (1.46 mg)
was obtained from Fr. F7. Subfraction Fr. F8 (30.60 mg) was further fractionated using
RP-C18 CC and eluted with MeOH:H2O (1:1 to 2:1) to isolate compound 8 (16.14 mg). The
combined subfraction Fr. D16–D17 (110.20 mg) was subjected to a silica gel column by
elution with hexanes:EtOAc (99:1 to 80:20) to afford 12 subfractions (Fr. G1–G12). The
combined subfraction Fr. G8–G9 (22 mg) was chromatographed over an RP-C18 column
and eluted with MeOH:H2O (1:1 to 2:1) to afford 10 fractions (Fr. H1–H10). Compound
13 (2.56 mg) was isolated after RP-C18 chromatography of the combined subfraction Fr.
H4–H5 (10.20 mg) by elution with MeOH:H2O (1:1 to 2:1) to afford 8 fractions Fr. I1–I8.
Subfraction Fr. I4 (1.29 mg) was purified using RP-C18 HPLC with MeOH:H2O (9:7) as the
mobile phase to obtain compound 12 (1.25 mg). The combined subfraction Fr. G10–G11
(16.77 mg) was chromatographed over an RP-C18 open column using MeOH:H2O (1:1 to
2:1) to yield compounds 4 (0.94 mg) and 14 (0.80 mg). The combined subfraction D19–D20
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(2.97 g) was chromatographed over an RP-C18 column by elution with MeOH:H2O (4:1 to
1:0) to obtain 11 subfractions (Fr. L1–L11). Along with these eleven fractions (Fr. L1–L11), 2
(19.04 mg) and 9 (20.22 mg) were purified using an RP-C18 column with MeOH:H2O (2:1 to
1:0) from the combined subfraction Fr. L3–L4 (1.54 g). Compound 1 (5.00 mg) was separated
from subfraction Fr. M4 with RP-C18 HPLC using MeOH:H2O (2:1, 0.1% acetic acid in
MeOH) as the mobile phase. Subfraction Fr. L5 (1.37 g) was fractionated with RP-C18 CC
with MeOH:H2O (3:1) as the eluent to afford 10 (80.15 mg). Subfraction Fr. D21 (109.42 mg)
was chromatographed over an RP-C18 column and eluted with MeOH:H2O (1:1 to 1:0) to
afford 19 fractions (Fr. K1–K19), including compound 11 (12.74 mg). Subfraction Fr. K7
(13.02 mg) was subjected to RP-C18 CC and eluted with MeOH:H2O (2:1 to 1:0) to isolate
compound 6 (7.14 mg). We separated compound 7 (0.90 mg) using RP-C18 HPLC with
MeOH:H2O (3:1) as a solvent system from subfraction Fr. K13.

(5S*,7S*,10R*)-7α-Hydroperoxy eudesma-3,11-diene-2-one (1): yellow oil; [α]25
D : −1.2 (c

0.25, CH3OH); 1H and 13C-NMR, see Tables 1 and 2; HRESIMS [M + H]+ m/z 251.1643
([M + H]+ (calcd for C15H23O3

+, 251.1642).
(5S*,7R*,10R*)-7β-Hydroperoxy eudesma-3,11-diene-2-one (2): white powder; [α]25

D : +3.16
(c 0.19, CH3OH); 1H and 13C-NMR, see Tables 1 and 2; HRESIMS [M + H]+ m/z 251.1639
([M + H]+ (calcd for C15H23O3

+, 251.1642)
(3S,4S,5S,7R)-3α-Hydroxynootkatone (3): white powder; [α]25

D : +6.18 (c 0.15, CH3OH);
1H and 13C-NMR, see Tables 1 and 2; HRESIMS [M + H]+ m/z 235.1692 (calcd for C15H23O2

+,
235.1693).

3.4. Culture of Mouse ADMSCs

Experiments on animals were performed according to the national guidelines and
with the approval of the Institutional Ethical Committee, Yeungnam University, Republic
of Korea. ADMSCs were obtained from C57BL/6 mice (male, 8-week age; Samtako,
Republic of Korea). The cells were carefully characterized using specific surface markers
and differentiation capacities, according to previous studies [34]. ADMSCs were cultured
in MEM-α supplemented with 10% fetal bovine serum (Thermo Fisher Scientific, Waltham,
MA, USA) and 1% penicillin/streptomycin 100X (Hyclone Laboratories, South Logan, UT,
USA). The cells were used within passages 3–5.

3.5. Effect of Isolated Compounds on the Viability of tBHP-Damaged ADMSCs

The stock solution of each compound was prepared in advance by dissolving it in cell
culture-grade DMSO (Sigma-Aldrich). To investigate the effect of the compounds, ADMSCs
were chemically induced with tBHP (Tokyo Chemical Industry, Tokyo, Japan), and cell
viability was measured using a cell counting kit 8 (CCK-8; Dojindo, Molecular Technologies
Inc., Rockville, MD, USA). Briefly, ADMSCs were trypsinized and cultured in 96-well plates
at a density of 5000 cells/well. The following day, the cells were incubated in a medium
containing 100 µM tBHP and the compounds at various concentrations (3–50 µM) for 24 h
in a CO2 incubator at 37 ◦C. The cells were then washed twice using phosphate-buffered
saline (pH = 7.4; Hyclone Laboratories) and incubated in a medium (120 µl/well) containing
5% CCK-8 reagent for 2 h at 37 ◦C. The absorbance of the supernatant in a 96-well plate
was measured at 450 nm using a plate spectrophotometer (Spark 10M; Tecan, Männedorf,
Switzerland). Relative cell viability was calculated by comparing the absorbance of the
control and treated cells. The data were analyzed using the GraphPad Prism software
version 8.4.2.

4. Conclusions

In this study, three new and eleven known sesquiterpenes were isolated from the dried
fruits of Alpinia oxyphylla. Their structures were elucidated and identified by NMR spectro-
scopic methods. In the screening for biological activities on adipose-derived mesenchymal
stem cells (ADMSCs) of the isolates 1–3, 5–14, compounds 8 to 13 effectively prevented
oxidative stress-induced ADMSC death. Among these, compounds 11 and 12 showed the
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highest protective effect. These results supported that A. oxyphylla fruit-derived sesquiter-
penoids and active compounds enriched extract can be applied to regenerative medicine
therapies by prevention of oxidative stress in ADMSCs, which can be differentiated into
neurons, osteoblasts, pancreatic cells, etc. Further examination using in vivo degenerative
disease models is required in future studies.
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