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Abstract: Parkinson's disease (PD) is a common progressive, neurodegenerative brain disease that is 
promoted by mitochondrial dysfunction, oxidative stress, protein aggregation and proteasome dysfunction in 
the brain. Compared with computer tomography (CT) or magnetic resonance imaging (MRI), non-invasive 
nuclear radiopharmaceuticals have great significance for the early diagnosis of PD due to their high 
sensitivity and specificity in atypical and preclinical cases. Based on the development of coordination 
chemistry and chelator design, radionuclides may be delivered to lesions by attaching to PD-related transporters and 
receptors, such as dopamine, serotonin, and others. In this review, we comprehensively detailed the current achievements 
in radionuclide imaging in Parkinson’s disease. 
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INTRODUCTION 

 As the second most widespread neurodegenerative 
disease in elderly people, Parkinson’s disease (PD) is 
characterized by cardinal motor symptoms, including tremor, 
rigidity, bradykinesia and postural instability [1]. The 
histopathological hallmarks of PD are dopamine depletion in 
the striatum, which results from the progressive degeneration 
of the substantial nigral dopamine neurons in patient brains 
[2, 3]. Certain etiopathogenic processes, such as mitochondrial 
dysfunction, oxidative stress, protein aggregation and 
proteasome dysfunction, are thought to promoted PD, which 
can lead to nigrostriatal cell dysfunction and death [4].  

 The prevalence rate of PD increases with age, and the 
overall prevalence of PD has recently been increasing 
because of an aging population [5]. Currently, the diagnosis 
of PD is primarily based on clinical symptoms, in addition to 
a favorable response to levodopa therapy [6, 7]. Therefore, 
rigorous diagnostic criteria are necessary to ensure that the 
diagnosis is applied consistently and reliably. 

 Almost 25% of PD patients with an antemortem clinical 
diagnosis were found to have no PD during postmortem 
examinations in clinical-pathological studies [8]. PD patients 
manifest symptoms only when 50 to 80% of the nigrostriatal 
neurons are lost. Clinical methods are not able to provide an 
early diagnosis before a significant loss of dopamine neurons 
has occurred. Computer tomography or magnetic resonance 
imaging can be used to diagnose Parkinson's disease, but 
they have obvious disadvantages, such as low sensitivity and 
specificity, particularly in certain atypical or preclinical 
cases. However, PD patients would benefit from early  
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diagnosis, particularly before severe dopamine neuron loss. 
Therefore, improvements to the accuracy of PD clinical 
diagnoses are necessary, and non-invasive nuclear imaging 
agents and nuclear imaging technology may provide these 
improvements. 

 Nuclides-based positron imaging tomography (PET) or 
single photon emission computed tomography (SPECT) 
imaging methods are emerging techniques for the diagnosis, 
staging and evaluation of PD as many new types of nuclear 
imaging agents are being developed and clinically applied 
[8]. After decades of research in the field, some progress has 
been made and imaging agents that are targeted to PD have 
become a popular research topic in the field of nuclides-
based imaging.  

 The study of PD imaging agents has developed for 
decades and has greatly progressed [9-12]. PD imaging 
agents, including positron imaging agents and single photon 
imaging agents using different nuclide types ([123I], [131I], 
[99mTc], [11C], [18F], etc.) may be categorized as dopamine 
transporter imaging agents, dopamine receptor imaging 
agents, serotonin transporter imaging agents and other 
receptor imaging agents. 

[18F]FDG 

 [18F]Deoxyglucose ([18F]FDG) is the most popular PET 
imaging agent for detecting glucose metabolism. Because the 
analogue of glucose, [18F]Deoxyglucose (Fig. 1), has the 
same cellular transport and phosphorylation processes as 
glucose [13-16] and glucose metabolism is very active in the 
brain, the partial or whole glucose metabolism in the brain 
can be measured via the dynamic distribution of [18F]FDG 
PET scanning [13, 14]. 

 [18F]FDG PET is useful for early PD diagnosis [17-19], 
progression assessment [20] and rehabilitation evaluation 
[21]. Generally, [18F]FDG PET imaging indicates normal or 
increased glucose metabolism in the striatum and, 
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occasionally, hypometabolism signs in the temporal parietal 
region. Therefore, an [18F]FDG PET imaging evaluation may 
be a useful adjunct for clinical examinations when performing 
a differential diagnosis for Parkinsonism [22]. Research 
performed by Juh et al [22] demonstrated that significant 
hypometabolism had occurred in the cerebral neocortex of 
PD patients. Twenty-four patients with idiopathic Parkinson's 
disease (IPD), progressive supra nuclear palsy (PSP), and 
multiple system atrophy (MSA) and 22 age-matched normal 
controls were assessed in this research. A total of 21 
Parkinsonism patients with final clinical diagnoses were 
visually and quantitatively evaluated using NeuroQ software 
in a study performed by Akdemir ÜÖ et al; their results 
indicated that brain [18F]FDG PET imaging could be a useful 
reference during the differential diagnosis of PD patients 
[23]. To track metabolic glucose uptake during brain activity, 
Olmo [24] and Haegelen et al [25] performed [18F]FDG PET 
on PD patients after the completion of a rehabilitation 
program. These authors observed glucose changes in several 
cerebral regions.  

DOPAMINERGIC SYSTEM IMAGING AGENTS 

[18F]DOPA 

 As described above, Parkinson's disease results from 
brain cell dysfunction in the region that controls movement. 
This dysfunction induces a shortage of dopamine, a neuro- 
transmitter that regulates important physiological functions, 

such as cognitive, learning, memory, body movement, etc. 
Dopamine (DA) is synthesized by tuberoinfundibular 
dopaminergic neurons in the hypothalamic dorsal medial 
arcuate nucleus (dmARN), is released from the median 
eminence, and is then delivered to the anterior pituitary by 
hypothalamohypophysial portal vessels. Dopamine loss 
results in the characteristic symptoms of Parkinson's disease. 

 In past decades, [18F] fluoro-3, 4-dihydroxyphenyl-
Lalanine ([18F]DOPA) has been used as an imaging probe to 
examine DA synthesis, storage, and turnover in the human 
brain using PET visualization [26-31]. [18F]DOPA (Fig. 2) 
traces the levodopa (LDOPA) metabolic pathway and 
provides metabolic information about LDOPA, which is 
quite distinct from the information provided by ligands of 
dopamine receptors, transporters or other targets within the 
dopaminergic system [28]. Kyono and Walker have 
successfully used [18F]DOPA PET to study DA dysfunctional 
rat models of PD [32, 33]. [18F]DOPA was also proved and 
used as an effective tool to study the pathogenesis of PD and 
the projection systems of dopaminergic neurons by Sharma 
and co-workers [34-37]. Additionally, Sharma reported the 
connection between coenzyme Q(10) and PD in mice by 
examining complex-1 and [18F]DOPA [38]. Asymmetric low 
radioactive uptake in the bilateral putamen and caudate 
nucleus can be observed in PD patients using [18F]DOPA 
PET scanning. [18F]DOPA PET also has been used in several 
studies to examine neuropathology, psychological cognition, 
PD evaluation and long-term follow-up in Parkinson's disease. 
A study performed by Pavese and co-workers revealed 
significant DA metabolism changes in the brain between 
early PD patients and healthy controls using [18F]DOPA 
[39]. Saito [40] performed multiple regression using an 
[18F]DOPA and [18F]FDG PET analysis to determine the 
specific cognitive and motor symptoms of brain regions in 
non-demented patients with PD. Their study demonstrated 
that changes in striatal [18F]DOPA uptake and corresponding 
FDG metabolic changes in the primary motor cortex 

 
Fig. (1). Structures of Glucose and [18F]FDG. 

 

Fig. (2). Structures of dopamine, levodopa, [18F]DOPA [11C]MHED and [123I]MIBG. 
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represented dysfunction in the corticobasal ganglia-
thalamocortical loop in the motor system; however, the 
change of [18F]DOPA uptake in the anterior cingulate gyrus 
may be affected by increased dopamine synthesis in the 
surviving dopamine neurons.  

 However, [18F]DOPA is rapidly cleared from peripheral 
tissues after intravenous injection, limiting its imaging 
timing and utility [40]. Consequently, alternative radiotracers 
have been investigated. In addition to [18F]DOPA [31-44], 
the sympathoneuronal imaging agents [11C]-meta-hydroxyl-
ephedrine (MHED) [45, 46] and [123I]-meta-iodobenzyl- 
guanidine (MIBG) (Fig. 2) [47-51] have also been used to 
evaluate cardiac sympathetic loss in PD [52]. 

Dopamine Transporter 

 The dopamine transporter (DAT) is a transmembrane 
protein that transports dopamine out of the neuron synapse 
and into the presynaptic cytoplasm. DAT is specifically 
expressed in DA neurons and its density highly corresponds 
to the number of DA neurons; therefore, DAT may be used 
to reflect the functional changes in DA neurons [53]. 
Physiological studies have indicated that DAT facilitates 
consistence of cellular DA, regulates DA signal intensity, 
and controls DA cleaning in synaptic gaps [54]. It has been 
demonstrated that in idiopathic Parkinson’s disease patients, 
DAT dramatically declined in the brain along with 
dopaminergic system degeneration; therefore, DAT nuclear 
imaging is thought to be a potential biomarker for the 
diagnosis of DA degeneration [55-59]. 

 The presynaptic terminals in the central nervous system 
(CNS) can be imaged using DAT probes, such as cocaine 
analogs, [123I]-N-2-carbomethyl-3-(4-iodophenyl)-tropane 
([123I]FP-CIT, [123I]-Ioflupane, [123I]β-CIT-FP), [123I]-β-
carbomethoxy-3β-(4-iodophenyl)tropane ([123I]β-CIT), [11C]-
N-2-carbomethoxy-3-(4-fluorophenyl)-tropane ([11C]CFT) 
[60-63], [123I]-Altropane [64, 65],2-β-carbomethoxy-3β-(4-
chlorophenyl)-8-(2-[18F]-fluoroethyl)-nortropane ([18F]FECNT) 

[66-68], [99mTc]TRODAT-1 [69, 70], [123I]PE2I, and other 
types of radiotracers, such as [11C]-methylphenidate ([11C] 
DMP) [71, 72] and others (Fig. 3). Consequently, dopamine 
release can be evaluated indirectly to diagnose Parkinson’s 
disease because DAT levels at the presynaptic site are able to 
be quantified. 

 [99mTc]TRODAT-1 and [123I]FP-CIT SPECT are 
commonly used to evaluate the impairment of the 
nigrostriatal pathway in Parkinson’s disease. These 
radioligands are also used for the early diagnosis and 
evaluation of clinical symptom severity in Parkinson’s 
disease because of their steady uptake, long retention time in 
the brain and their ability to clearly display DAT density in 
the striatum. Felicio et al [73] reported that SPECT 
using [99mTc]TRODAT-1 had 100% sensitivity and 70% 
specificity in clinically unclear Parkinsonian syndromes 
(CUPS). [123I]FP-CIT has been used for the differential 
diagnosis of essential tremor or Parkinson’s disease and 
predicts the clinical symptom severity of Parkinson’s 
disease. [123I]FP-CIT has also been used for the early 
diagnosis, PD follow-up and monitoring DAT changes in 
Parkinson’s disease patients [74-77]. A [11C]FE-CIT PET 
assessment demonstrated that the severity of nigrostriatal 
damage was not dependent on the age at onset during the 
early disease phase of sporadic PD patients [78]. Furthermore, 
[18F]FECNT evaluation indicated that PD heritability may be 
associated with more severe and widespread genetic 
dopaminergic injury [79]. The β-CIT striatal-to-nonspecific 
binding ratios in patient brains were evaluated using [123I]β-
CIT and a significantly increased S/N ratio was observed 
after selective serotonin reuptake inhibitor (SSRI) treatment 
[80-83]. A more recent study determined that SSRI 
paroxetine treatment was able to significantly increase the 
quantification of striatal [123I]FP-CIT binding to DAT in 
humans. These results indicate that in vivo [123I]FP-CIT and 
[123I]β-CIT are able to bind DATs as well as central 
serotonin transporters (SERTs) [84]. 

 
Fig. (3). Structures of DAT radioligands. 
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 Masilamoni et al [78] validated the use of [18F]FECNT as 
a PET radiotracer to assess the degree of striatal dopamine 
terminal denervation and midbrain dopaminergic cell loss in 
MPTP-treated Parkinsonian monkeys. Because humans and 
other primates are highly similar, [18F]FECNT, a highly 
sensitive and specific dopamine transporter ligand, may be 
effective for DAT imaging in PD patients.  

Dopamine Receptor Imaging Agents  

 Dopamine is synthesized in the CNS; however, the 
complicated neuronal dopamine physical functions are 
mediated in combination with different dopamine receptors 
(DA Receptor) in the brain.Although dopamine receptors are 
widely distributed in the brain, different subtypes of DA 
receptors presumably reflect different functional roles. Five 
subtypes of DA receptors have been investigated to date. 
Based on their pharmacological properties, the D2, D3, and 
D4 receptors are classified as D2-like receptors, which are 
able to directly induce physical functions after DA and DA 
receptor binding; and the D1 and D5 receptors, classified as 
D1-like receptors, have permissive and synergistic actions 
with D2-like receptors but do not have clear physical 
functions. Histochemical observations have indicated that 
dopamine receptors are classified with respect to connectivity; 
dopamine D1-like receptors are mainly expressed on striatal 
neurons that project into the substantia nigra, whereas  

D2-like receptors are mainly localized on striatal–pallidal 
neurons [85].  

 Particularly, the occurrence of PD with dopamine 
dysfunction is closely related to D2-like receptors, which are 
distributed in the cerebral hypothalamus, striatum, substantia 
nigra, and anterior pituitary. D2-like receptors have attracted 
much attention in the field of nuclear imaging. D2- 
like receptor imaging agents are primarily comprised  
of [11C]Raclopride [86-88], [123I]IBZM [89-92], [18F] 
Desmethoxyfallypride ([18F]DMFP) [93, 94], [11C]MNPA 
[94, 95], [131I]Epidepride and [124I]Epidepride [96-99], [11C] 
(+)-PHNO [100, 101], [11C]NMSP [102, 103], [18F]MCL-
524 [104], etc (Fig. 4). 

 D2-like receptor imaging agents may contribute to  
the early diagnosis, differential diagnosis, disease course, 
therapeutic efficacy monitoring and follow-up of PD. 
Verstappen et al [105] confirmed that there was asymmetric 
D2 receptor upregulation in PD in a study using [123I]IBZM 
and [123I]FP-CIT SPECT, but the sensitivity of the 
contralateral higher striatal [123I]IBZM binding was only 
56%. Therefore, the presence of contralateral higher striatal 
[123I]IBZM uptake did not have sufficient diagnostic 
accuracy for PD and an independent assessment using 
[123I]IBZM SPECT cannot determine the PD risk in patients 
with Parkinsonism that also have no contralateral up-

 

Fig. (4). Structures of DA receptor radioligands. 
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regulation of D2 receptors. Politis reported a significant 
reduction in the mean hypothalamic [11C]Raclopride binding 
potentials of PD patients compared with normal controls 
(0.2714+/-0.06 vs. 0.3861+/-0.04; mean+/-SD; p<0.05) [106]. 
However, D2 receptor imaging may be influenced by certain 
drugs, such as levodopa; therefore, some researchers believe 
that D2-like receptor imaging should be combined with  
DAT or other imaging methods for PD diagnosis. In recent 
research, the combined striatal D2R BP and cerebral influx 
ratio information from a single dynamic [11C]Raclopride 
PET imaging analysis successfully distinguished patients 
with PD or multiple-system atrophy with predominant 
Parkinsonism (MSA-P) with high accuracy [107]. 

 PET studies of dopamine D2 and D3 receptors (D2/D3) 
have predominantly been conducted using antagonists 
analogues, such as [11C]Raclopride. [108-110]. However, 
more recently developed agonist radioligands have 
demonstrated enhanced sensitivity to endogenous dopamine, 
such as [18F]DMFP [93], [11C]N-propyl-norapomorphine 
([11C]NPA) [111], [11C]MNPA [112], [11C]4-propyl-9-
hydroxynaphthoxazine [113]. A recent study indicated that 
[11C]Raclopride binding in the striatum of PD patients was 
prominently associated with the reduced endogenous 
dopamine and that [11C]NMSP demonstrated a smaller 
association with endogenous dopamine compared with [11C] 
Raclopride [113]. [18F]MCL-524, a [11C]MNPA analog, 
appears suitable for D2/D3 receptor binding quantification in 
vivo, encouraging future translation to human studies when 
compared with [11C]Raclopride [104]. 

Vesicular Monoamine Transporter Imaging Agent 

 The vesicular monoamine transporter (VMAT) is a 
transport protein complex that is responsible for transporting 
monoamine neurotransmitters into the synaptic vesicles, 
which are releasing neurotransmitters into monoaminergic 
neurons. VMAT is known to transport several neuro- 
transmitters, such as dopamine, serotonin, norepinephrine, 
epinephrine, histamine and others. One subtype of  
VMAT, VMAT2, is primarily expressed in a variety of 
monoaminergic cells in the CNS, such as mast cells, the 
sympathetic nervous system brain, and cells that contain 
histamine in the gut [114]. Because of these properties 
VMAT2 was considered to be a novel PD imaging probe. 
VMAT2 targeting produced excellent image quality and had 
the ability to differentiate reduced VMAT2 uptake sites in 
patients with PD; these properties have made non-invasive 
nuclear VMAT2 imaging a leader in the frontier of current 
PD imaging research.  

 There are two PD imaging agents that target VMAT2: 
[11C]DTBZ and [18F]AV-133. Both of these agents are based on 
a dihydrotetrabenazine scaffold (Fig. 5). Koeppe et al [115] 
performed PET imaging using [11C] Dihydrotetrabenazine 
([11C]DTBZ) to examine blood-to-brain ligand transport and 
striatal monoaminergic presynaptic binding in patients with 
DLB (dementia with Lewy bodies), PD, and AD and in 57 
healthy elderly controls. The imaging results indicated that a 
single PET neuroimaging analysis using [11C]DTBZ was 
able to differentiate DLB from both PD and AD. Furthermore, 
[11C]DTBZ combined with [18F]DOPA imaging has made 
significant progress in evaluating dopamine system damage 
and prognosis in animal models [115].  

 [18F]AV-133 is another 18F labeled dihydrotetrabenazine 
radiotracer that has a propanediol linker that is used for 
VMAT2 imaging. Okamura et al [116] analyzed the binding 
potential (BP) of [18F]AV-133 to VMAT2 in 17 PD patients 
and 6 healthy controls and determined that the BP of 
VMAT2 in PD patients was dramatically decreased in the 
posterior putamen, anterior putamen, and caudate nucleus; 
furthermore, the VMAT2 BP in caudate nuclei was closely 
correlated with clinical severity in PD patients. These results 
indicated that the novel 18F-labeled ligand [18F]AV-133 can 
sensitively detect monoaminergic reductions in neuronal 
termini in PD patients [117].  

5-HYDROXYTRYPTAMINE RECEPTOR AND 
TRANSPORTER IMAGING AGENTS 

 5-hydroxytryptamine (5-HT or serotonin) is an important 
monoamine neurotransmitter that is widely distributed in  
the brain. 5-HT is synthesized in the serotonergic neurons of 
the CNS and contributes to feelings of happiness. As 
neuropathology, neurochemistry and other related subjects 
have developed, there is the belief that 5-HT metabolic 
changes are important in the mechanism of PD. Recent 
research has determined that there is a significant decrease of 
the 5-HT transporter (SERT) in the striatum and other brain 
areas in PD patients [118-122]. Currently, there are several 
types of 5-HT relevant radiotracers available for imaging 
studies, including 5-HT1A receptor imaging agents and 5-HT 
transporter (SERT) imaging agents [123], etc. 

 The 5-HT1A receptor is the most widespread subtype of 
5-HT receptor, which is a G protein-coupled receptor and 
mediates inhibitory neurotransmission. 5-HT1A receptor 
activation has been proven to increase dopamine release and 
may be useful for improving PD symptoms. [11C]WAY-
100635 (Fig. 6) was a commonly used 5-HT1A receptor 
imaging agent. A PET study using [11C]WAY-100635 in 23 

 

Fig. (5). Structures of [11C]DTBZ and [18F]AV-133. 
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patients with PD and 8 age-matched healthy volunteers was 
performed by Doder et al [124]; they observed a 30% 
reduction of 5-HT1A binding potential in the midbrain raphe 
in PD patients, which strongly supported previous indirect  
in vivo evidence that implicated decreased serotonergic 
neurotransmission in PD.  

 

 
Fig. (6). Structure of [11C]WAY 100635. 

 

 Currently, there are several SERT imaging agents 
available, including [11C]DASB [125-127], [123I]ADAM [128, 
129], [11C]McN5652 [130, 131], [11C] MADAM[132, 133], 
[11C]HOMADAM [134, 135] (Fig. 7). However, 18F has some 
advantages over 11C, notably, 18F-labeled radiopharmaceuticals 
can be delivered if a cyclotron is not available. Therefore, 
numerous 18F-labeled SERT imaging agents have been 
developed and evaluated in animal models, such as 
[18F]McN5652 [136-141], [18F]ACF [142], 4-[18F]ADAM 
[143-145], 5-[18F]ADAM [146], [18F]AFM [147], [18F] 
FBASB [148] and [18F]FPBM [149] (Fig. 8). Among these 
agents, [18F]McN5652 has been demonstrated to be suitable 
for SERT quantification using PET analysis in humans in  
in vivo studies [150]. The 18F-labeled SERT radioligand, 4-
[18F]ADAM, has also been reported as a viable agent for 
both preclinical [143] and human studies [151-154]. 

 Politis et al [126] observed significant [11C]DASB 
binding reductions in the striatal, brainstem, and cortical 
regions in PD patients using [11C]DASB PET in 30 PD 
patients. Progressive non-linear serotonergic dysfunction 
was investigated in PD patients, which appeared not to 
influence SERT binding and did not determine disability 
levels or chronic exposure to dopaminergic therapy. Li and 
co-workers [155] performed [99mTc]TRODAT-1 and [123I] 

ADAM SPECT in four healthy and one 6-OHDA-induced 
PD monkey. Their study demonstrated that [99mTc]TRODAT-1 
uptake in the striatum of the PD monkey was remarkably 
lower than in the normal monkeys and that the thalamic and 
striatal uptake of [123I]ADAM was decreased in the PD 
monkey. The successful use of a dual-isotope SPECT using 
[99mTc]TRODAT-1 and [123I]ADAM suggests that it is 
possible to simultaneously evaluate dopaminergic and 
serotonergic system changes in PD models. 

OTHER IMAGING AGENTS 

 There are a variety of agents that may be used in non-
invasive nuclear PD imaging that are currently being tested 
in animal experiments or preclinical trials, such as [11C] 
MP4A [156] targeted acetylcholinesterase, [123I]5IA [157] 
and [18F]2FA [158] targeted nicotinic acetylcholine receptors 
in vivo (nAChRs), [123I]QNB [159] targeted muscarinic 
acetylcholine receptors (mAChRs), [11C](R)-PK11195 [160] 
targeted peripheral benzodiazepine sites (PBBS) and others 
(Fig. 9).  

 Recent results have demonstrated that in PD patients 
without dementia [161], as well as de novo or early PD 
patients, AchE is particularly reduced in the posterior 
cingulate and posterior temporo-parieto-occipital associative 
cortex [162]. It has been proven that PD patients without 
dementia have more severe cholinergic deficits in these  
areas compared with patients with AD [156, 160]. Brain 
cholinergic dysfunction was observed at a very early stage of 
PD using [11C]MP4A PET studies; furthermore, this 
dysfunction may precede the manifestation of motor 
symptoms. Interestingly, lower AChE activity in the  
cerebral cortex was also observed in the early PD group 
compared with the advanced PD group without dementia 
[156, 159]. A [18F]2FA PET study in PD patients observed 
decreasednicotinic receptors (nAChRs) in the nigrostriatal 
system, indicating that [18F]2FA could be a useful tool to 
study post-synaptic cholinergic transmission [158]. 

 In vivo SPECT imaging of muscarinic acetylcholine 
receptors using [123I]QNB in patients with dementia with 
Lewy bodies and Parkinson's disease dementia determined 
that significantly elevated mAChRs in the occipital lobe 
were associated with DLB and PD [157]. A [11C](R)-
PK11195 PET study in patients with idiopathic Parkinson's 

 

Fig. (7). Structures of [11C] or [123I] -labeled SERT radioligands. 
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disease confirmed that widespread microglial activation is 
associated with the PD pathological process [160]. 

 Parkinson's disease itself is not associated with a 
consistent pattern of cerebral blood flow alterations in the 
basal ganglia, but reduced parietal blood flow is often 
reported [163]. A recent study determined that hypo- 
perfusion in the inferior frontal region can be observed in 
patients with Parkinson's disease with dementia using 
[99mTc]HMPAO SPECT [164] (Fig. 9). Brain perfusion 
imaging agents, such as [99mTc]HMPAO, can also be used to 
measure cerebral tissue perfusion in PD patients [163-165]. 

 Several novel imaging approaches have been proposed 
that examine mitochondrial oxidative stress. Ikawa et al 
[166] evaluated a PET method using [62Cu]-diacetyl-bis 
(N(4)-methyl-thiosemicarbazone) ([62Cu]ATSM) (Fig. 9) to 

evaluate oxidative stress and the accompanying mitochondrial 
dysfunction during PD pathogenesis. Their study observed 
enhanced striatal oxidative stress, particularly in the 
contralateral striatum of PD patients compared with control 
subjects. Additionally, this increased oxidative stress was 
associated with the progression of disease severity. These 
findings indicate a potential correlation between oxidative 
stress and striatal neurodegeneration in PD. 

CONCLUSIONS 

 During the past three decades, nuclear brain imaging has 
proven to be a promising, powerful and unique method for 
the evaluation of brain function during normal and disease 
states. Research investigating Parkinson's disease diagnosis 
has occurred in tandem with the rapid evolution of molecular 
imaging technologies and their applications in preclinical 

 

Fig. (8). Structures of [18F] labeled SERT radioligands. 

 

 

Fig. (9). Structures of other imaging agents. 
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studies and clinical practice. Compared with traditional 
anatomical imaging technologies, PET nuclear imaging 
assessments provide spatial localization of metabolic 
changes as well as accurate and consistent quantification of 
their distribution. These properties have allowed PET 
nuclear imaging to be employed as a valuable tool during 
clinical neuro-disease examinations. These personalized 
highly sensitive and specific evaluations will be useful for 
the early diagnosis, prognosis and long-term follow up of 
Parkinson's disease. 
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LIST OF ABBREVIATIONS 

5-HT = 5-hydroxytryptamine 

BP = binding potential 

CNS = central nervous system 

CT = computer tomography 

CUPS = clinically unclear Parkinsonian syndromes 

DA = dopamine  

DAT = dopamine transporter 

IPD = idiopathic Parkinson's disease 

LDOPA = levodopa 

mAChR = muscarinic acetylcholine receptor 

MRI = magnetic resonance imaging 

MSA = multiple system atrophy 

MSA-P = multiple-system atrophy with predominant 
Parkinsonism 

nAChR = nicotinic acetylcholine receptor 

PD = Parkinson's disease 

PET = positron imaging tomography 

PBBS = peripheral benzodiazepine site 

PSP = progressive supra nuclear palsy 

SERT = serotonin transporter 

SPECT = single photon emission computed tomo- 
graphy 

SSRI = selective serotonin reuptake inhibitor 

VMAT = vesicular monoamine transporter 
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