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ABSTRACT
Although radioactivity is released routinely at every stage 
of nuclear power generation, the regulation of these 
releases has never taken into account those potentially 
most sensitive—women, especially when pregnant, 
and children. From uranium mining and milling, to fuel 
manufacture, electricity generation and radioactive 
waste management, children in frontline and Indigenous 
communities can be disproportionately harmed due to 
often increased sensitivity of developing systems to toxic 
exposures, the lack of resources and racial and class 
discrimination. The reasons for the greater susceptibility 
of women and children to harm from radiation exposure 
is not fully understood. Regulatory practices, particularly 
in the establishment of protective exposure standards, 
have failed to take this difference into account. Anecdotal 
evidence within communities around nuclear facilities 
suggests an association between radiation exposure and 
increases in birth defects, miscarriages and childhood 
cancers. A significant number of academic studies tend 
to ascribe causality to other factors related to diet and 
lifestyle and dismiss these health indicators as statistically 
insignificant. In the case of a major release of radiation 
due to a serious nuclear accident, children are again on 
the frontlines, with a noted susceptibility to thyroid cancer, 
which has been found in significant numbers among 
children exposed both by the 1986 Chornobyl nuclear 
accident in Ukraine and the 2011 Fukushima-Daiichi 
nuclear disaster in Japan. The response among authorities 
in Japan is to blame increased testing or to reduce testing. 
More independent studies are needed focused on children, 
especially those in vulnerable frontline and Indigenous 
communities. In conducting such studies, greater 
consideration must be applied to culturally significant 
traditions and habits in these communities.

INTRODUCTION
Radioactivity is released at every stage of 
nuclear power production, from uranium 
mining to electricity generation to radioactive 
waste production. In some of these phases, 
toxic heavy metals are also released into the 
environment.

Children, women and particularly pregnant 
women living near nuclear production facili-
ties appear to be at disproportionately higher 
risk of harm from exposure to these releases. 
Children in poorer often Non-White and 

Indigenous communities with fewer resources 
and reduced access to healthcare are even 
more vulnerable—an impact compounded by 
discrimination, socioeconomic and cultural 
factors.

Nevertheless, pregnancy, children and 
women are underprotected by current regu-
latory standards that are based on ‘allowable’ 
or ‘permissible’ doses for a ‘Reference Man’. 
Early in the nuclear weapons era, a ‘permis-
sible dose’ was more aptly recognised as an 
‘acceptable injury limit,’ but that language 
has since been sanitised.1 Permissible does 
not mean safe. Reference Man is defined 
as ‘…a nuclear industry worker 20–30 years 
of age, [who] weighs 70 kg (154 pounds), is 
170 cm (67 inches) tall…is a Caucasian and 
is a Western European or North American in 
habitat and custom’.2

Very early research conducted in the USA in 
1945 and 1946 indicated higher susceptibility 
of pregnancy to radiation exposure. Pregnant 
dogs injected with radiostrontium had defects 
in their offspring and yet, complete results 
of these studies were not made public until 
1969.3

By 1960 however, U.S. experts were clearly 
aware that research indicated higher suscep-
tibility of children, when the Federal Radia-
tion Council (FRC) (established in 1959 by 
President Eisenhower) briefly considered 
a definition for ‘Standard Child’—which 
they subsequently abandoned in favour of 
maintaining a Standard Man definition,1 
later renamed Reference Man. The 1960 
report also recognised hormones as a radi-
ation ‘co-carcinogen’, which evokes later 
research indicating that radiation impacts 
the oestrogenic pathway, although the mech-
anism is not understood and has been poorly 
investigated.4
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And while the current U.S. Environmental Protection 
Agency (EPA) toxic exposure guidance recognises an 
enhanced early lifecycle susceptibility to a number of 
mutagens,5 recommending a risk factor increase of 10 
after birth and before the age of two for some of these 
toxics,6 radiation exposure standards are still based on 
Reference Man.

Differing impacts based on gender occur for a range 
of chemicals and various exposure scenarios. In some 
cases, males are more susceptible than females, while the 
reverse is also seen.7 For ionising radiation in particular, 
data from the survivors of the atomic bombings in Japan 
show ‘women from the same age-at-exposure cohort 
(26–30 years) suffered 50% more cancer…compared to 
the males’.8 The latest data from the atomic bombing 
survivor cohorts in Japan associate radiation exposure in 
utero with solid cancer mortality for adult females, but 
not males.9

Since female cumulative baseline rates for most cancer 
types are lower than male,10 11 exposure to radiation 
may be erasing a woman’s potential natural cancer resis-
tance, while also increasing her risk relative to a man’s. 
However, not enough research has been done in this area 
to be sure.

Current U.S. regulations allow a radiation dose to the 
public (100 mrem per year) which poses a lifetime cancer 
risk to the Reference Man model of 1 person in 143. 
This is despite the EPA’s acceptable risk range for life-
time cancer risk from toxics being 1 person in 1 million 
to 1 person in 10 000.12 As noted by the EPA, this gives 
radiation a ‘privileged pollutant’ status.13 Additionally, 
biokinetic models for radioisotopes are not sex-specific. 
A male model is still used for females. The models are 
also not fully age-dependent.14 Radiation damage models 
also fail to account for a whole host of childhood and 
pregnancy damage.1

There are known ‘windows of susceptibility’ in a life-
time, ‘includ[ing] periods of active cell differentiation 
and growth in the womb and in early childhood as well 
as adolescence, when the brain is continuing to develop’ 
during which ‘[c]hemicals can act like hormones and 
drugs to disrupt the control of development and func-
tion at very low doses…[i]n some cases, a susceptibility 
to disease also can persist long after the initial insult or 
exposure has ended’.15

Women and children in underserved communities are 
at still greater risk because of unique exposure pathways 
and systemic inequities. Traditional lifestyle and cultural 
patterns can also lead to increases in exposure. In the 
case of some Native Americans, exposure to toxics and 
radiation has been multigenerational, enduring over a 
period of 150 years.16

In an exploration of the studies, we find a notable lack 
of in-depth, independent research looking specifically at 
children as well as the wider population in Indigenous or 
minority communities. Uncertainties caused by this lack 
of study are used by officials to underprotect those most 
at risk.

We also find a marked contrast between the conclu-
sions of some of the studies and the anecdotal evidence 
on the ground.

Most of the primary research that has focused on the 
susceptibilities of women and children has consistently 
indicated disproportionate impacts, even among those 
possibly exposed to lower radiation doses. Impacts can 
include increases in childhood cancers, particularly 
leukaemia and central nervous system cancers,17 neuro-
logical disorders, respiratory difficulties, cardiovascular 
dysfunction, immune dysfunction, perinatal mortality18 
and birth defects.19 20 Rapid cell division is among the 
development processes thought to account for some of 
this susceptibility.

However, many studies are unable to link these adverse 
outcomes to radioactivity because the studies’ authors 
tend to use several faulty assumptions:

	► ‘doses will be too low to create an effect’—a beginning 
assumption ensuring poor hypothesis formation and 
study design.21 Therefore, when an effect is found, 
radioactivity has been predetermined not to have an 
association with the effect. This exclusion often leads 
to an inability to find an alternate associated disease 
agent;

	► ‘small negative findings matter’—In fact, what matters 
are positive findings or very large negative findings;22

	► ‘statistical non-significance means a lack of association 
between radiation exposure and disease’ — a usage a 
number of scientists in various disciplines now call 
‘ludicrous’23;

	► ‘potential bias or confounding factors are reasons to dismiss 
low dose studies’—In fact, when assessing low dose 
impacts, researchers should take care not to dismiss 
studies with these issues and researchers should mini-
mise use of quality score ranking.24

Consequently, we examine and reference studies even 
if they contain such faulty assumptions because they 
still indicate increases in certain diseases, such as some 
leukaemias, known to be caused by radiation exposure. 
Additionally, few alternative explanations were offered in 
the conclusions of these studies, meaning radiation expo-
sure might still have been the cause.

Uranium mining and racial discrimination
Uranium mining contributes significantly to the wide 
dispersal of radioactive waste streams into the air, water 
and soil. Uranium mining also leaves behind a massive 
debris field of discarded radioactive residues, rocks and 
heavy metals, known as tailings.

Heavy metals are also released by uranium mining 
and these can be as toxic, if not more so, than the 
radioactive elements. The 1960 FRC report recognised 
radiation as a cocarcinogen with hormones and viruses 
and chemicals, indicating synergistic impacts that have 
rarely been investigated. One study looking at medical 
impacts of the 1986 Chornobyl nuclear power plant 
disaster in Ukraine found that multiple congenital 
malformations were much higher in areas of combined 
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contamination, suggesting an additive and potentially 
synergistic effect between radioactive and chemical 
pollutants.20

In the USA, Native American communities have consti-
tuted the majority of the uranium mining workforce. 
In the American Southwest, Navajo Nation community 
members have experienced increases in a number of 
diseases,25 26 and lingering internal contamination from 
uranium mine waste among neonates and children.27 28 
Native Americans also present with chronic ailments—
such as kidney disease and hypertension—linked with 
living near and contact with uranium mine waste.

Additionally, comparing uranium mining health data 
from one race to another should be done with caution 
as ‘[t]he increased toxicity [of mining exposure] to 
Native miners underscores the potential for unique 
sensitivities to toxicants within the Native community 
as compared with all races results, questioning the deri-
vation of standards on the basis of data collected from 
other populations’.28

It is also worth noting that some Native American 
communities are living with a 150-year health legacy of 
potential exposure to radioactive and heavy metal mine 
waste. Research on humans,20 and additional studies on 
radioactivity and animals,29 30 indicate that legacy expo-
sures such as these result in a cumulative impact over 
generations and can leave descendants of a community 
more susceptible to damage from future exposures than 
their parents were.31

An examination of Navajo babies born between 1964 
and 1981 showed that congenital anomalies, develop-
mental disorders and other adverse birth outcomes were 
associated with the mother living near uranium mines 
and wastes.32 The results of this study, published in 1992, 
were not followed up until 2010 with the establishment 
of the Navajo Birth Cohort study, a community-based and 
community-driven initiative that examines the impact of 
chronic exposure to mine wastes on birth outcomes.28

Historic and recent official research has, on the whole, 
been systemically racist by failing to account for culturally-
specific exposure scenarios to Navajo. These include 
frequent contact with contaminated lands, waters and, 
in some cases, a nearly 100% reliance on locally grown 
and sourced foods,28 33 as well as failure to consider doses 
to Navajo Nation community members from the Trinity 
explosion—the first detonation of an atomic device.34 
Some research teams have attempted to address systemic 
racism by partnering with local community members and 
integrating local knowledge.33

In Jadugoda, India, where six uranium mines operate, 
the first opening in 1957, those affected are Indigenous 
peoples from the Santhal, Munda and Ho tribes. A local 
organisation, Jharkhandi Organisation Against Radia-
tion, has been documenting strange health anomalies in 
the community for years, including deformities and birth 
defects.

Their observations were supported by an independent 
study of the Jadugoda community, conducted in 2007 by 

Indian Doctors for Peace and Development, which found 
that the offspring of mothers living near uranium mining 
operations showed a significant increase in congenital 
deformities (4.49% vs 2.49%) (figure 1).

In addition to deformities, deaths were higher. Among 
mothers who lost their children after birth, 9.25% of 
mothers in the study villages reported congenital defor-
mities as the cause of death of their children as compared 
with only 1.70% of mothers in the reference villages.

The authors concluded that the finding of the study 
confirms the hypotheses that the health of Indigenous 
people around uranium mining is more vulnerable to 
certain health problems.35

However, other studies contradict these conclusions. A 
2013 study,36 concluded that the water was safe for people 
to drink. And, a study by scientists from India’s Bhabha 
Atomic Research Centre37 came to a similar conclusion. 
However, these studies are deficient in many ways, limiting 
their research to dose reconstruction rather than health 
outcomes and failing to consider inhalation or inges-
tion of radionuclides, other than from drinking water. 
Furthermore, the association with the Atomic Research 
Centre raises questions about conflict of interest.

People living in the town of Arlit in Niger, and those 
working in the huge majority French-owned uranium 
mine nearby, are exposed on a daily basis to levels of 
radioactivity higher than those found in the Chornobyl 
exclusion zone. Independent studies in Arlit,38 begin-
ning in 2003, found radioactively contaminated metals 
discarded from the mine routinely used in households, 
where children were exposed.

An independent study commissioned by the European 
Parliament and published in 2010, looked at health and 
environmental legacy conditions around uranium mines 
in both Gabon and Niger and found, in the case of Niger, 
that waste dumps and related processing facilities posed 
a severe environmental and health hazard to the local 
population. It also found evidence of radioactive contam-
ination of local water supplies, and contaminated dust, 
and that contaminated construction materials had been 
sold in markets and used to build dwellings in local 
towns.39 However, despite observations of the risks from 
multiple scientific sources, there is a paucity of actual 
health studies. The health outcomes are largely recorded 
anecdotally, by activists on the ground such as the Arlit-
based NGO, Aghirin’ Man.40

Figure 1  Congenital deformities among babies from 
mothers who lived near the Jadugoda uranium mining 
operations.
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In Australia, uranium contaminates drinking water 
around uranium mine sites at rates far higher than 
recommended. Aboriginal communities, most likely to 
inhabit land around these facilities, suffer from increases 
in cancers and stillbirths according to the findings 
described below.

A 2019 Australian government study found increases 
in low birth weight, fetal death and cancers, but a ‘lack 
of evidence’ that radiation was the cause, suggesting 
that alcohol and tobacco use, and a high-fat diet, could 
explain the increase in diseases.41 Radiation, which could 
have been a responsible agent, was eliminated because 
the researchers considered that the doses were too low 
to explain the remaining disease increases not attribut-
able to non-radiation exposure factors. This was despite 
the known connection between radiation exposure and 
low birth weight and cancers. This conclusion left the 
community with unexplained disease increases, a pattern 
seen all too often in radiation health studies.

In her analysis, Rosalie Schultz states that ‘We owe it to 
Aboriginal people living near mines to understand and 
overcome what’s making them sick’,42 and further points 
out that ‘Development of the Ranger mine entailed 
nullification of veto rights, disempowering Aboriginal 
communities and threatening their livelihoods. With 
mining came royalty money, expensive commodities, 
money‐hunger and alcohol’.

These examples serve to highlight the tension between 
the often strong anecdotal evidence and the common 
failure to attribute the causal factor to a potential 

exposure source already linked to the outcome of interest 
in other populations.

Routine radioactive releases from nuclear power plants
Nuclear power plants routinely release radioactivity as 
part of daily operation. In 2008, a landmark case-control 
study was published in Germany,43 known as the KiKK 
study.

It revealed an unsettling 1.6-fold increase in all cancers 
and a 2.2-fold increase in leukaemias among children 
under 5 years old living within 5 km of operating nuclear 
power plants.

In general, the incidences were higher the closer the 
children lived to the nuclear plant. The KiKK findings 
were backed up by other studies44 and a meta-analysis.45

However, the authors concluded that their findings 
were ‘unexplainable’ because the doses were assumed to 
be too low to cause cancer. But UK radiation researcher, 
Dr. Ian Fairlie, hypothesises that sudden large spikes 
in radiation releases during reactor refuelling resulted 
in higher doses. These could account for higher rates 
of leukaemia among children.46 Fairlie further posits 
that the observed high rates of infant leukaemias may 
be a teratogenic effect from radionuclides, particularly 
tritium, incorporated during pregnancy (figure 2).47

Other studies of natural and manmade background 
radiation associate childhood cancers with doses that 
are much lower than these spikes, but delivered contin-
uously.17 48 Taken together, these studies indicate that 

Figure 2  Selected radioisotopes: where they travel and primarily collect in the body.
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unique sensitivity to adverse effects of radiation exposure 
exists during pregnancy.

Catastrophic radioactive waste releases
There have been at least three catastrophic releases of 
radioactivity from civilian nuclear reactors due to melt-
downs: the 1979 Three Mile Island (TMI) disaster in the 
USA; the 1986 Chornobyl disaster in Ukraine and the 
2011 Fukushima, Japan nuclear disaster.

During the TMI crisis, there were 24 spontaneous 
abortions or stillbirths among pregnant women who 
were living within five miles of the nuclear facility and in 
their first 4 months of pregnancy. The expected number 
should be closer to 12. The researchers of a study exam-
ining this posit that this may be due to stress (measured 
by number of evacuation days), but live births had equiv-
alent evacuation days to abortions or stillbirths.49

Radiation from the TMI catastrophe was also associated 
with childhood leukaemia, although the study found only 
a small number of cases. Interestingly, the study authors 
note an association with radiation exposure and all child-
hood cancers was also present before the catastrophe, 
although with wide confidence intervals. The authors 
recognise this increase, particularly leukaemia, as 
compatible with increases reported near some other 
nuclear installations, but eliminated radiation as a likely 
cause because the exposures were low.50 Yet, the authors 
cite seven additional studies that found this effect. An 
alternative explanation has yet to be revealed even as 
more recent studies have indicated increases of child-
hood leukaemias around operating nuclear facilities and 
in levels of higher background radiation (see above).

Outcomes in the Former Soviet States (FSS) from 
initial exposure to Chornobyl radioactive fallout include 
thyroid cancers (predominantly among those exposed 
during childhood) and significant increases in leukaemia 
among children who were in utero or who were under 
6 years of age at the time of the Chornobyl catastrophe.51 
Also found were increases in radiation-induced organic 
mental disorders.52

Among those continuing to live in Chornobyl-
contaminated areas in the FSS, we see increases in cardio-
vascular disorders,53 54 decreased lung function,55 56 
defects of the lens of the eye57 and significantly increased 
rates of conjoined twins, teratomas, neural tube defects, 
microcephaly and microphthalmia.19 Further, research 
indicates significantly higher birth defects—some de 
novo—in the Chornobyl-contaminated Bryansk region. 
Projections indicate that certain birth defects will increase 
in the next few years.20

The Chornobyl disaster produced a phenomenon 
known as ‘Chornobyl heart’, where children were 
born with multiple heart defects—now being observed 
among children exposed as a result of the Fukushima 
catastrophe.58 Some of these impacts occur at low, 
chronic doses.

Outside of the FSS, children born in regions of 
Sweden with higher Chornobyl fallout performed worse 

in secondary school—particularly in maths—and had 
more behavioural problems.59 Similarly, in Norway, in 
utero exposure to Chornobyl radiation is associated with 
significantly lower verbal IQ, verbal working memory and 
executive functioning.60 61

In Central Europe, studies observed a statistically 
significant increase in childhood leukaemias.62 Perinatal 
mortality increased in European and FSS countries after 
the Chornobyl catastrophe, and increases in trisomy 21 
were found in Berlin and Belarus in 1987/1988. The 
cases coincided with exposure to Chornobyl fallout.63 64

Perinatal mortality rates increased significantly in 
Fukushima and six neighbouring prefectures after the 
Fukushima nuclear disaster began, although researchers 
debate the magnitude of the increase and further study 
is needed to associate increases with radiation from the 
catastrophe.65 66

After Fukushima, the International Commission on 
Radiological Protection made public its report encour-
aging the growing and eating of contaminated food to 
protect economic interests, while they also made recom-
mendations for how much radiation people should be 
exposed to.67 Yet, their models do not fully account for 
being a child, female or pregnant.

Thyroid cancers among those exposed to Fukushima 
radiation as children have increased 20 times the 
expected rate, with about 80% metastasizing68—indi-
cating increased severity of the cancer and suggesting 
screening and surgery was necessary.

Despite this, SHAMISEN, a project funded by the Euro-
pean Commission, has recommended against systematic 
thyroid screening after nuclear catastrophes, claiming 
over-diagnosis and psychosocial impact can result.69

Although it is correct that in some countries appar-
ently high levels of undiagnosed thyroid anomalies exist 
without clinical symptoms, banning thyroid screening 
altogether after nuclear disasters such as Fukushima 
denies those exposed the essential medical treatment 
that could catch aggressive cancers early.

The suggestion that medical examinations are psycho-
logically scarring has sometimes been proffered as a justi-
fication for avoiding looking for health impacts from 
radiation exposure after a nuclear accident.70 Fewer tests 
have led to fewer findings in some of the more recent 
studies.

Some advocates of reduced screening point to studies 
from South Korea that blame an ‘epidemic’ of thyroid 
cancers on increased screening. But data from Japan 
should not be compared with data from the South 
Korean study because the latter study excluded partici-
pants younger than 20 years, with only 2% in the 20–29 
age range.71 Conversely, the Fukushima health manage-
ment survey (FHMS) is examining those who were under 
18 years of age at exposure.72

Researchers also claim that any increasing thyroid 
cancer incidence rates in Japan are not due to radiation 
exposure because the age pattern of thyroid cancers 
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arising in Japan after Fukushima differs from that arising 
after Chornobyl in the former USSR countries.73

Five years after the Chornobyl disaster began, Belarus 
data indeed show a large increase in thyroid cancer diag-
noses in those aged 0–4 at time of exposure (AE),74 unlike 
the Fukushima data. However, the pattern in Ukraine 
and Russia is similar to the Fukushima data, which show 
increasing disease among younger age groups as more 
years pass. Ukraine and Russia, as with the Fukushima 
data, only demonstrated a high thyroid cancer inci-
dence in age group 0–4 AE beginning 12 years after the 
disaster,75 with this increase beginning in Ukraine about 
8 years later.76 This effect is indicated despite smaller 
overall subject participation numbers in the FMU study 
(40% decrease since the programme began), possibly 
due in part to pressure to opt out of FHMS thyroid 
screening.77

Comparisons between the Chornobyl data sets (which 
differ even between the FSS) and Fukushima data should 
consider, in particular, the various exposure rates. For 
instance, the health data indicate that rates differed 
substantially between Belarus (high rates) and Ukraine 
and Russia (lower rates).

In addition, research found an excess of thyroid 
cancer that is unlikely to be explained by an increase 
in screening.78 This conclusion is supported by a study 
published very recently that linked external radiation 
doses linearly to increases in thyroid cancers.75 Coupled 
with these dose findings, thyroid cancer metastasis, 
aggressive growth and recurrence, it seems enhanced 
screenings are entirely appropriate as many of these 
cancers are clinically relevant.79

Reprocessing: the dirty end of the nuclear fuel chain
Reprocessing—the cutting up of irradiated reactor 
fuel rods in a chemical bath to extract plutonium and 
fissile uranium—involves the annual discharge of tens of 
millions of gallons of radioactively contaminated liquids 
and the release of radioactive gases such as krypton, 
xenon and carbon-14.80

A 1990 UK study of the Sellafield reprocessing facility 
found higher incidences of leukaemia, particularly non-
Hodgkin’s lymphoma, among children near the site.81 It 
concluded that this might be associated with the fathers 
working at the plant and external doses of whole body 
penetrating radiation before conception. This would 
explain statistically the observed geographical excess. 
The study suggested that one effect of ionising radiation 
on the fathers could in turn be leukaemogenic in their 
offspring.

There have been challenges to this hypothesis and 
also challenges to those studies that contradict his paper. 
Gardner’s most notable opponent was the epidemiolo-
gist, Doll,82 who testified on behalf of Sellafield owners, 
British Nuclear Fuels, Limited, in a 1994 court case won 
by BNFL challenging Gardner’s paternal occupational 
exposure conclusion.

Kinlen, since the early 1990s the lead proponent of 
population mixing and a viral cause,83 continues to 
uphold this theory, as do others, including Draper et 
al,84 who viewed the observed associations as potentially 
chance findings or possibly other infectious sources. 
Kinlen, however, concedes that such a virus has not been 
specifically identified.

Other research has rejected the Kinlen hypothesis, 
including an investigation by Dickinson et al,85 who 
concluded that ‘Children of radiation workers had a 
higher risk of leukaemia/non-Hodgkin’s lymphoma than 
other children [rate ratio (RR)=1.9, 95% confidence 
interval (CI) 1.0 to 3.1, p=0.05]’. The researchers used 
a cohort rather than a case-control design, with wider 
temporal and geographic boundaries, and confirmed the 
statistical association between father’s preconceptional 
irradiation and child’s risk of leukaemia/non-Hodgkin’s 
lymphoma, and concluded that paternal preconcep-
tional irradiation could be a possible risk factor for 
leukaemia and/or non-Hodgkin’s lymphoma, and that 
such outcomes might be found beyond the local worker 
town of Seascale.

Law et al, also dismissed the population mixing hypoth-
esis.86 His work discovered increased risks of acute 
lymphoblastic leukaemias in areas with few outsiders or 
migrants as well as for non-Hodgkin’s lymphoma in areas 
with low numbers of child migrants. Law concluded that 
his findings therefore do not support the Kinlen popula-
tion mixing hypothesis.

A 1993 study similarly found elevated rates of child-
hood leukaemia around the La Hague reprocessing 
site in France.87 A second paper the following year had 
similar findings.88

The main by-product of nuclear power: radioactive waste
The selection of a deep geological repository—the option 
favoured by most nuclear countries for the management 
of irradiated reactor fuel—involves ethical as well as 
scientific challenges.

In the USA, the selection of the now abandoned Yucca 
Mountain high-level radioactive waste repository site in 
Nevada violated the treaty rights of the Western Shoshone 
on whose tribal land it is located. It also ignored the inevi-
table contamination of groundwater sources beneath the 
mountain, which would subsequently harm tribal and 
agricultural populations downstream.89

The Western Shoshone are particularly acutely attuned 
to the risks of radiation exposure, having lived down-
wind of the Nevada atomic test site, making them, as 
Ian Zabarte, Principle Man of the Western Bands of 
the Shoshone Nation of Indians, describes it, ‘the most 
bombed nation on Earth’. Further, in addition to the 
harm to health, Western Shoshone culture believes that 
‘rocks, water, plants and animals matter as much as people 
do’. Western Shoshone elder, Pauline Esteves describes it 
this way: ‘I believe the land and everything that lives on it 
are there to do good, not for radioactive materials’.



7Folkers C, Gunter LP. BMJ Paediatrics Open 2022;6:e001326. doi:10.1136/bmjpo-2021-001326

Open access

By mischaracterising the Yucca Mountain site as a 
remote and uninhabited desert, the U.S. government 
discriminated against a culture and heritage stewarded by 
the Western Shoshone, whose experiences dealing with 
radioactive exposures, like those of other Indigenous and 
minority communities of colour, cannot be equated to 
the guidelines of Reference Man.

The USA has now turned to ‘Consolidated Interim 
Storage’ for the ‘temporary’ accommodation of high-
level radioactive reactor waste, identifying two largely 
Hispanic communities in Texas and New Mexico as 
host sites.90 The approval process, which was not volun-
tary, has been challenged in court. However, given their 
increased sensitivity, any disposal of radioactive wastes in 
such parking lot-style facilities will put children in the 
host community at heightened risk of harm.

Elsewhere, the search for a radioactive waste manage-
ment plan continues, with only Finland currently building 
a deep geological repository. The question about harm 
to future generations remains unresolved, given the 
challenge of identifying the lethality of the repository 
contents to populations potentially a hundred thousand 
years or more into the future.

Conclusion
Despite the numerous observations globally, linking radi-
ation exposures to increased risks for children, pregnant 
and non-pregnant women and the well-demonstrated 
sensitivity to other toxicants during these life stages, 
exposure standards in the USA remain based on a Refer-
ence Man—a model that does not fully account for sex 
and age differences.

In addition, faulty research assumptions, unique expo-
sure pathways, systemic inequities and legacy exposures 
to both heavy metals and radioactivity from mining wastes 
add to the risks for women and children, especially those 
in underserved communities. Socioeconomic factors that 
drive higher deprivation of services in non-homogenous 
low-income communities of colour also put non-White 
children at higher risk of negative health outcomes 
when exposed to radioactive releases, than their White 
counterparts.

A first and essential step is to acknowledge the connec-
tion between radiation, heavy metal and chemical expo-
sures from industries and the negative health impacts 
observed among children, so that early diagnosis and 
treatment can be provided. Measures should then be 
taken to protect communities from further exposures, 
including a prompt phaseout of nuclear power and its 
supporting industries.

Studies are also urgently needed where there are none, 
and the findings of independent doctors, scientists and 
laboratories should be given equal attention and credence 
as those conducted by industry or government-controlled 
bodies, whose vested and policy interests could compro-
mise both their methodologies and conclusions.

Finally, in the face of uncertainty, particularly at lower 
and chronic radiation doses, precaution is paramount. 

This means listening to, and taking seriously, the evidence 
provided by those living close to operating or closed 
nuclear facilities, rather than dismissing their fears by 
using faulty research assumptions and uncertainties in 
the science to deny health impacts and prevent protec-
tive and corrective actions.
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