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Abstract: Mathematical models of in vitro viral kinetics help us understand and quantify the
main determinants underlying the virus–host cell interactions. We aimed to provide a numerical
characterization of the Zika virus (ZIKV) in vitro infection kinetics, an arthropod-borne emerging
virus that has gained public recognition due to its association with microcephaly in newborns.
The mathematical model of in vitro viral infection typically assumes that degradation of extracellular
infectious virus proceeds in an exponential manner, that is, each viral particle has the same probability
of losing infectivity at any given time. We incubated ZIKV stock in the cell culture media and sampled
with high frequency for quantification over the course of 96 h. The data showed a delay in the virus
degradation in the first 24 h followed by a decline, which could not be captured by the model with
exponentially distributed decay time of infectious virus. Thus, we proposed a model, in which
inactivation of infectious ZIKV is gamma distributed and fit the model to the temporal measurements
of infectious virus remaining in the media. The model was able to reproduce the data well and
yielded the decay time of infectious ZIKV to be 40 h. We studied the in vitro ZIKV infection
kinetics by conducting cell infection at two distinct multiplicity of infection and measuring viral
loads over time. We fit the mathematical model of in vitro viral infection with gamma distributed
degradation time of infectious virus to the viral growth data and identified the timespans and rates
involved within the ZIKV-host cell interplay. Our mathematical analysis combined with the data
provides a well-described example of non-exponential viral decay dynamics and presents numerical
characterization of in vitro infection with ZIKV.
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1. Introduction

Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) primarily transmitted through a
bite of infected Aedes mosquitoes, belonging to the Flavivirius genus, which includes also West Nile
virus (WNV), Japanese encephalitis virus (JEV), dengue virus (DENV) and yellow fever virus (YFV).
Although its discovery in a Ugandan forest dates back to 1947 [1], the first sporadic outbreaks outside
Africa were reported in the Asia-Pacific region in 2007 [2] and 2013 [3]. Since then, it rapidly spread
to the Western hemisphere in 2016 [4] where it received public attention due to the association of
ZIKV infection with newborn microcephaly and other neurological abnormalities [5–8]. Currently,
no approved vaccine or therapeutic treatments exist to specifically target ZIKV infection and its
continuous re-emergence poses an important public health threat, especially in developing countries
where disease prevention mostly relies on decreasing the number of transmission events through
vector-control strategies.
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Understanding the rates and time scales of viral degradation is critical as it may play a significant
role in designing effective therapeutics and intervention strategies to control or eliminate the virus.
Conventionally, the loss of viral infectivity over time is described by a decreasing exponential function
of incubation time, which assumes that each virion has the same probability of losing infectivity at
any given time. However, experimental and theoretical work has recognized that exponential law is
not an exclusive driver of viral degradation, as, for example, heterogeneity in the viral population
was proposed to cause a deviation in the shape of the infectious virus degradation curve from the
exponential law [9,10]. The in vitro kinetics of Flavivirus genus has been mathematically studied in
terms of activation of the innate antiviral defense in vitro in DENV [11]. In this study, exponential
decay was assumed from the observed data and the estimated time DENV remained infectious was
reported to be 2.5 h. Experimental studies reported prolonged structural stability (measured as a loss
of infectivity) of ZIKV and reduced stability of DENV during short incubation periods [12]. In [13],
stability of the contemporary (H/PF/2013 and Paraiba/2015) and historic (MR766) ZIKV strains
were were quantified using the exponential decay model and half-lives of 5.1 h, 5.2 h and 3.5 h for
H/PF/2013, MR766, and Paraiba/2015 strains, respectively, were found. In addition, this study directly
compared the loss of infectivity in dengue virus type 2 (DENV2) and WNV generated reporter virus
particles, whose infectious half-lives were quantified to be 5.2 h and 17.7 h, respectively, which was in
agreement with previous findings [14–16].

Mathematical models of in vitro viral infections help provide accurate estimations of the rates
of the processes affecting virus-cell interactions and time scales on which these processes occur.
These measures have been determined for a number of viruses, including HIV-1 and simian–human
immunodeficiency virus [17–22], hepatitis C virus [23–27], poliovirus [28–30], influenza A virus and
its various strains [31–37], West Nile virus [38] and Ebola virus [39,40]. Specifically in [10,20,21,32,36],
different aspects of viral replication cycle were considered to provide a comprehensive description of
in vitro viral spread. In particular, the decay of infectious viral particles and the integrity of viral RNA
were measured over time to determine the rates at which infectivity and integrity are lost. Cellular
infection was carried out at different multiplicities of infection (MOI) to capture different dynamics of
early virus replication. Viral load was quantified at select times to obtain kinetic profiles. The collected
data were used to fit mathematical models of in vitro viral dissemination to estimate parameters
descriptive of the viral replication cycle.

In this study, we addressed how ZIKV (MR766 strain) loses infectivity. As in the studies above,
we measured the degradation of infectious ZIKV over time and discovered that it seems not to
be governed by the exponential law. Rather, infectivity of ZIKV is maintained for the first 24 h
after which it begins to decline. The manner with which ZIKV loses infectivity thus presents an
example that complements previous observations on ZIKV decay kinetics. We further characterized
the degradation of infectious ZIKV, and showed that a model in which viral decay is gamma
distributed could accurately describe ZIKV loss of infectivity. We then incorporated this viral
decay model into a mathematical model of viral dynamics, that was developed by Beauchemin
and colleagues [10,20,21,32,36], to quantify the main determinants of ZIKV infection kinetics in vitro.
As in [10,20,21,32,36], we measured temporal changes in the viral load in the extracellular milieu in
a series of experiments reflective of different aspects of the viral replication cycle and fit these data
to the mathematical model to quantify the model parameters. To minimize the influence of immune
responses to ZIKV infection, we used a mammalian cell line (Vero) that is incapable of producing type
I interferon in response to viral infections [41,42]. The proposed models reproduced experimental data
with high accuracy and delivered, to the best of our knowledge, the first numerical characterization of
in vitro ZIKV infection.
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2. Materials and Methods

2.1. Cells

Vero and HEK-293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM),
supplemented with 10% fetal calf serum (FCS) and 1% penicillin/streptomycin (P/S; Thermo Fisher
Scientific, Illkirch-Graffenstaden, France) in a humidified atmosphere at 37 ◦C with 5% CO2.

2.2. Virus

ZIKV was rescued by transfection of 200 ng the infectious clone in 50% confluent HEK-293T
cells (seeded the previous day in a six-well plate) using TransIT-LT1 transfection reagent (Mirus Bio,
Strasbourg, France). Four days after transfection, the supernatant was clarified by centrifugation,
virus titer determined by plaque assay and frozen at −80 ◦C. The virus stock used in this study was
generated by infection of Vero cells with rescued ZIKV, at an MOI of 0.001 PFU/cell. Five days post
infection, the supernatant was clarified by centrifugation, virus titer determined by plaque assay and
frozen at −80 ◦C prior to use in the growth curves.

2.3. Plaque Assay

Viral titration was performed on Vero cells plated 1 day prior to infection on 24 well plates.
Ten fold dilutions were performed in DMEM alone and transferred onto Vero cells for 1 h to allow
infection before adding DMEM with 2% FCS, 1% P/S and 0.8% agarose. Plaque assays were fixed with
4% formalin (Sigma-Aldrich, Saint-Quentin-Fallavier, France) 4 days p.i. (ZIKV) and plaques were
manually counted.

2.4. Decay Curves

Decay curves were carried out in the absence of cells. Briefly, viral plaque-forming units equivalent
to low or high MOI infections described below (growth curves) were placed in 12-well plates in
triplicate, and incubated at 37 ◦C. Virus was diluted in 1 mL cell culture media supplemented with 2%
FCS. At each time point (0 h, 4 h, 6 h, 8 h, 24 h, 48 h, 72 h, and 96 h), 60 µL and 5 µL were separately
aliquoted and frozen for further titration and RT-qPCR. 65 µL of fresh media was added to replace the
taken volume.

2.5. Growth Curves

Cells were plated in 12 well plates at 80–90% confluence one day before infection. At day 0,
virus was diluted in 300 µL PBS to obtain a multiplicity of infection (MOI) of 1 PFU per cell (high MOI)
or 0.01 PFU per cell (low MOI). After 1 h, the viral solution was removed, cells were washed three
times with PBS and new media (1 mL) supplemented with 2% FCS was added. At each time point 0 h,
4 h, 6 h, 8 h, 24 h, 48 h, 72 h, and 96 h for ZIKV infection 60 µL and 5 µL were separately aliquoted and
frozen for further titration and RT-qPCR. 65 µL of fresh media was added on top of cells to replace the
taken volume. Each growth curve was done in triplicates.

2.6. RT-qPCR

As described in [43], cell supernatants were heated 5 min at 60 ◦C for viral inactivation.
Quantitative RT-PCR (RT-qPCR) was then performed with TaqMan RNA-to-Ct One-step RT-PCR
kit (Applied Biosystems, Thermo Fisher Scientific, Illkirch-Graffenstaden, France) using the following
cycling conditions: 20 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles of 95 ◦C for 15 s, followed by 60 ◦C
for 1 min). The primer and probe sets used for each virus are shown in Table 3. RNA copy number
was derived from a standard curve generated using reactions containing 10-fold dilutions of known
amounts of in vitro generated RNA transcripts Each reaction contained a scale of diluted IVT to
calculate RNA copy number. The ZIKV primers bind to and amplify a 77 nucleotide region in the 5′
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end of the ZIKV genome (position 1192-1268). The primers and the problem used in RT qPCR are
given in Table 1.

Table 1. The primer and probe sets used in reverse transcription quantitative polymerase chain reaction
(RT-qPCR) to quantify ZIKV encapsulated genomes.

Forward primer (5′ to 3′) TCGTTGCCCAACACAAG
Reverse primer (5′ to 3′) CCACTAATGTTCTTTTGCAGACAT
Probe (5′ [6-FAM] to 3′) GCCTACCTTGACAAGCAATCAGACACTCA

2.7. Degradation of Encapsulated Genome and Infectious Virus

Stability of encapsulated genomes (Figure 1a) was quantified following the assumption that virus
particles degrade in an exponential manner over time, which was mathematically expressed as

dVrna

dt
= − 1

τrna
Vrna, (1)

where τrna (measured in (h)) is an average time for a viral genome to lose stability.
Experimental data showed that ZIKV does not lose infectivity in the first several hours

(Figure 1b,c). This suggests that the standard assumption of exponentially distributed viral decay
times is not appropriate to describe the loss of ZIKV infectivity. Therefore, we introduced ‘aging’ of
the infectious virus and separated infectious virus lifespan (τpfu) into (npfu) stages, each of which
last for an exponentially-distributed time of equal average length (τpfu/npfu) (measured in hours
(h)). For npfu = 1, the infectious virus lifespan was exponentially distributed, for npfu > 1 the

infectious virus lifespan followed gamma distribution. Only infectious virus in the last stage Vpfu
npfu was

allowed to lose infectivity completely. A similar approach was used to describe the duration of eclipse
and virus-producing phases of cells infected with SHIV [20,21] or influenza A virus [32]. Equations
describing the loss of virus infectivity are as follows

dVpfu
1

dt
= −

npfu

τpfu
Vpfu

1 ,

dVpfu
k=2,...,npfu

dt
=

npfu

τpfu
(Vpfu

k−1 −Vpfu
k ).

(2)

2.8. Mathematical Model of ZIKV In Vitro Kinetics

Time course ZIKV kinetics were numerically simulated using a viral dynamics mathematical
model that was develped and used to describe in vitro and in vivo infection of influenza A virus
and its variants [32,36], SHIV [20,21], or respiratory syncytial virus [10] as well as the interactions
between a fully functional virus and its defective interfering particles [44,45]. In this model, susceptible
target cells (T) become infected by infectious virus at any infectious stage (Vpfu

k=1,...,npfu
), measured in

plaque forming units per millilitre (PFU/mL) at the infection rate (β) (measured in mL × (PFU ×
h)−1). Upon successful infection, target cells enter an eclipse phase (the time between virus entry into
the cell to the beginning of viral release out of the cell) which is separated into (nE) stages. Eclipse
cells (Ei=1,...,nE ) remain in each stage i = 1, . . . , nE for an exponentially-distributed time of equal
average length (τE/nE) (measured in hours (h)). Only eclipse cells in the last compartment (EnE ) are
allowed to transition into the infectious state and begin producing viral genomes. Infectious phase
(the amount of time between the beginning and end of viral release out of a cell) is separated into (nI)
stages, and infectious cells (Ij=1,...,nI ) spend an exponentially-distributed time of equal average length
(τI/nI) (measured in h) in each stage before infectious cells in the last stage (nI) are removed from the
system. Infectious cells in all stages can produce infectious virus in the first infectious stage (Vpfu

1 ) at
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the rate (ppfu) (measured in PFU × (cell ×mL × h)−1) and encapsulated genomes (Vrna) (measured
in RNA/mL) at the rate (prna) (measured in RNA × (cell × mL × h)−1). The lifespan of infectious
virus is separated into (npfu) stages, each of which last for an exponentially-distributed time of equal
average length (τpfu/npfu) (measured in h). Encapsulated genomes remain stable for an average time

(τrna) (measured in h). We also assume that infectious virus (Vpfu
k ) in any stages k = 1, . . . , npfu infects

susceptible cells at the same rate. We do not consider coinfection or superinfection of already infected
cells; once a cell is infected, no more infectious virus can enter. The full model is given as

dT
dt

= −β T
npfu

∑
k=1

Vpfu
k ,

dE1

dt
= β T

npfu

∑
k=1

Vpfu
k − nE

τE
E1,

dEi=2...nE

dt
=

nE
τE

(Ei−1 − Ei),

dI1

dt
=

nE
τE

EnE −
nI
τI

I1,

dIj=2...nI

dt
=

nI
τI

(Ij−1 − Ij),

dVpfu
1

dt
= ppfu

nI

∑
j=1

Ij −
npfu

τpfu
Vpfu

1 ,

dVpfu
k=2...npfu

dt
=

npfu

τpfu
(Vpfu

k−1 −Vpfu
k ),

dVrna

dt
= prna

nI

∑
j=1

Ij −
1

τrna
Vrna.

(3)

The experiments to obtain viral load time course datasets began with overlaying the virus
supernatant on susceptible cells followed by a one-hour cultivation to allow cell infection.
The supernatant was then removed and cells were thoroughly washed off the remaining virus.
However, despite the repeated washing, we still detected residual infectious virus in the supernatant.
We utilized these data in modelling ZIKV in vitro kinetics by assuming that such residual virus

(Vpfures
k=1...npfu

) did not engage in the virus-cell interactions and was only allowed to decay according to

the following dynamics

dVpfures
1
dt

= −
npfu

τpfu
Vpfures

1 ,

dVpfures
k=2...npfu

dt
=

npfu

τpfu
(Vpfures

k−1 −Vpfures
k ).

(4)

To define the initial conditions for the system (3) and (4), we used the results of generalized target
theory [46]. Given the multiplicity of infection (MOI, the ratio of infectious virus in the inoculum to the
total number of susceptible cells), the proportion of susceptible cells that would receive any number of
infectious viruses (N) follows Poisson distribution [47]:

Proportion of cells receiving N infectious viruses =
MOIN exp(−MOI)

N!
. (5)
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We further allow only eclipse cells in their first stage, E1, to have received the virus. Therefore,
the proportion of cells in the first phase, E1, which received one or more infectious viruses is equivalent
to the total proportion of cells excluding those which did not receive any infectious virus

Proportion of E1 cells = 1− MOI0 exp(−MOI)
0!

= 1− exp(−MOI). (6)

Thus, the initial conditions are T(t = 0) = T0 × exp(−MOI), E1(0) = T0 × (1− exp(−MOI)),

E2,...,nE(0) = 0, I1,...,nI (0) = 0, Vpfu
1,...,npfu

(0) = 0, Vpfures
2,...,npfu

(0) = 0 and Vrna(0) = 0, where T0 = 2× 105

susceptible cells seeded in each well. The parameter Vpfures
1 (0) is a free parameter to be estimated.

2.9. Selection of Data Points for Parameter Estimation

Viral load measurements, both infectious virus (measured in PFU/mL) and encapsulated genomes
(measured in RNA/mL) which fell below the limit of detection for a given quantification method
were excluded from parameter estimation routine. The limit of detection of the infectious virus was
102 PFU/mL. The limit of detection of encapsulated genomes was set to 106 RNA/mL which was
equivalent to RT-qPCR Ct value equal or greater than 30.

3. Results

3.1. Quantification of ZIKV Stability Determinants

The capacity of the virus to invade the host cell and exploit its resources to replicate and produce
infectious progeny is time-limited and may have significant impacts on the overall viral dynamics.
To precisely calculate the average time for infectious virus to lose infectivity τpfu and for encapsulated
genomes to lose stability τrna, we incubated ZIKV stock at 37 ◦C for up to 96 h in cell culture media.
At 0 h, 4 h, 6 h, 8 h, 24 h, 48 h, 72 h, and 96 h, RNA was extracted for quantification by reverse
transcription quantitative polymerase chain reaction (qRT-PCR) to determine total encapsulated
genome concentration and infectious virus remaining in the media was quantified by plaque assay.

The ZIKV encapsulated genomes degraded slowly over time. This process was well described by
the model (1) assuming an exponentially distributed degradation time (τrna). By fitting Equation (1) to
encapsulated genome concentration time course data, we determined that ZIKV genome degradation
time (τrna) was 74.86 h (Figure 1a). The initial condition for encapsulated genome concentration (Vrna

0 )
was left as a free parameter. We extracted the parameter distributions and 95% credible regions (CrRs)
for the parameters using the module emcee [48], an implementation of the Markov chain Monte Carlo
(MCMC) method [49] in Python (Python Software Foundation, Python Language Reference, version
2.7, available at https://www.python.org/). This approach of using the MCMC and the Python
module emcee to generate the parameter posterior distributions and 95% CrRs for parameters of their
in vitro mathematical models was introduced by Beauchemin and colleagues [10,21,36]. The values of
τrna were found to be within [70.31, 76.43] h. The corresponding parameter posterior distributions and
95% credible regions are in Figure S1 in Supplementary Materials File S1. The best-fit parameter values
and their corresponding 95% CrIs are given in Table 2. Details of the fitting and MCMC procedures are
in Supplementary Materials File S1.

Table 2. Parameter values obtained from fitting Equation (1) to encapsulated genome data. 95% CrRs
were constructed from Markov chain Monte Carlo (MCMC) fits of the model (1) to encapsulated
genome data.

Parameter Description Units Value 95% CrR

τrna decay time of encapsulated genomes h 74.86 [70.31, 76.43]
Vrna

0 initial concentration of encapsulated genomes ×108 RNA/mL 3.42 [3.38, 3.65]

https://www.python.org/
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Figure 1. Time course decay of Zika virus (ZIKV) in the physical conditions of the in vitro kinetic
experiments. Decay of (a) encapsulated genomes and (b,c) infectious virus described by (b) exponential
distribution decay model (2) with npfu = 1 and (c) gamma distribution decay model (2) with
npfu = 8. Data are shown as the mean ± standard deviation. The best-fits are displayed as solid
green lines. The light shading around the best-fits corresponds to the model kinetics associated with
MCMC-accepted parameters. The dark shading represents 95% credible region.

Infectivity of ZIKV remained unchanged for the first 8 hours and began to notably decrease
after 24 h (Figure 1b,c). This suggests that infectious ZIKV does not decay in an exponential manner.
Data indicated that there is a delay in infectious ZIKV decay. We modelled this delay by introducing
(npfu) compartments so that infectious virus spends a time of (τpfu/npfu) in each compartment
i = 1, . . . , npfu before transitioning into the compartment i + 1. Since the amount of time spent
in each stage is exponentially distributed, the time during which virus remains infectious is described
by the sum of (npfu) exponential distributions, and in our case, by gamma distribution [50]. The model
is given by Equation (2) (Materials and Methods), in which npfu = 1 gives an exponential decay of
infectious ZIKV, whereas npfu > 1 gives a gamma-distributed decay of infectious ZIKV. To quantify
the decay time (τpfu), we varied (npfu) over a range of integer values from 1 to 20 and fit the model (2)
to the time course infectious virus degradation measurements (details on the fitting scheme are in
Supplementary Materials File S1). We set the initial virus concentration in the first stage, (Vpfu

1 (0)),

as a free parameter and in the remaining stages (Vpfu
k=2,...,npfu

(0)) to zero. We discriminated between

the individual fits based on the values of their associated objective functions and determined that the
number of compartments associated with the overall best-fit of the model (2) was npfu = 8. This is
graphically captured in Figure 2a, in which the scaled value of the objective function is plotted against
the number of viral compartments npfu and has a minimum at npfu = 8. Interestingly, for npfu = 1,
we obtained the worst fit of the model (2) in terms of objective function. This was also corroborated
visually by comparing the infectious ZIKV decay dynamics yielded by the model (2) for npfu = 1 and
npfu = 8 (Figure 1b,c, respectively), as well as the associated coefficients of determination R2 = 0.8774
and R2 = 0.9800, respectively. The gamma distribution decay model performed significantly better
than the exponential one also in terms of the MCMC associated p-value (p < 0.005). We determined
the degradation time of infectious ZIKV τpfu to be 39.55 h and 95% CrIs [38.93, 40.22] h (Table 3).
The posterior distributions of decay parameters are depicted in Figure S1 in Supplementary Materials
File S1. We note that Kakizoe and colleagues [20] propose other distributions that describe durations
of eclipse and virus-producing phases of infected cells and could describe ZIKV decay. We discuss
a model, in which the decay time is Weibull distributed in Supplementary Materials File S1.
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Figure 2. Selecting the number of compartments npfu, nE and nI . For each npfu and a pair (nE, nI),
we calculated the relative value of the objective function obtained from fitting as a fraction (SSR −
SSRmin)/(SSRmax − SSRmin), where SSR (sum of squared residuals) is the best-fit value of the objective
function for a given npfu or a pair (nE, nI) and SSRmax and SSRmin are the lowest and highest values
out of all objective function values. The normalized values range between 0 (best fits) and 1 (worst
fits). (a) To determine npfu, and thus the number of compartments in the decay model (2), Formula
(S4) in Supplementary Materials File S1 was used. Here, the maximum and minimum values of the
objective function (S4) over all npfu were SSRmax = 124.29 and SSRmin = 28.33. (b) To determine nE

and nI , and thus the number of eclipse and infectious compartments in the model (3), Equation (S7) in
Supplementary Materials File S1 was used. Here, the maximum and minimum values of the objective
function (S7) over all pairs (nE, nI) were SSRmax = 589.9 and SSRmin = 39.28.

Table 3. Parameter values obtained from fitting Equations (2) to viral titer data. The 95% credible
regions (CrRs) were constructed from MCMC fits of the model (2) to data.

Parameter Description Units Value 95% CrR
npfu = 1 npfu = 8 npfu = 1 npfu = 8

τpfu decay time of infectious virus h 14.02 39.55 [13.87, 14.73] [38.93, 40.22]

Vpfu
0 initial concentration of infectious virus ×105 PFU/mL 13.64 8.30 [11.64, 15.17] [7.46, 9.55]

3.2. Experimental Time Course Kinetics of ZIKV Infection In Vitro

To study the time course of ZIKV infection in vitro, characterize the shape of viral load kinetic
curves and evaluate viral kinetic parameters, we conducted two infection experiments in Vero cells
using two distinct initial viral concentrations with the multiplicity of infection (MOI) 0.01 and 1
infectious units per cell, hereafter referred to as low and high MOI infections, respectively (Figure 3).
Since Vero cells are an interferon-deficient mammalian cell line incapable of secreting type I interferon
in response to viral infection, we did not assume any immune response of that type in our model and
focused only on the interactions between the virus and cells.

The viral load kinetics appeared to proceed in a similar manner for both low and high MOI
infections. In the first four measured time points, 0 h, 4 h, 6 h, and 8 h the virus titers remained
unchanged which suggests that no production of the new infectious virus occurred during that time
period. The lack of decay dynamics in the first 8 h also reflects our observation from the decay
experiment, that is, infectious ZIKV does not lose infectivity in the first 8 h, as depicted in Figure 1b,c.
At 24 h, viral titers increased approximately a hundred-fold as the virus completed its replication cycle
in the cells infected by the inoculum. In the case of low MOI infection, viral titers continued to grow up
to 96 h, though the accumulation slowed down towards the end of the experiment. In the case of high
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MOI infection, viral titers peaked at 48 h and began to slowly decline as cells stopped producing new
virions and the remaining infectious extracellular virus began to degrade. The encapsulated genome
concentration in the medium as quantified by qRT-PCR appeared to mirror the time course kinetics of
infectious virus, though for the high MOI infection the accumulation of genomes slowed down at 48 h,
coinciding with the peak of infectious virus.
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Figure 3. Time course kinetics of infectious virus and encapsulated genome concentrations for two
distinct initial viral concentrations. (a) Multiplicity of infection (MOI) 0.01 and (b) 1 infectious units
per cell.

3.3. Quantification of ZIKV Life-Cycle Determinants

We numerically quantified the main determinants of ZIKV in vitro kinetics, in the model (3)
(graphically captured in Figure 4) represented by the rate of infection via infectious virus (β), the length
of eclipse phase (τE), the length of virus-producing phase (τI), the rate of infectious virus production
(ppfu), the rate of total encapsulated genome production (prna) and two additional free parameters

describing the initial concentration of infectious virus remaining in the well after washing (Vpfures
1 (0)),

which we will denote as (Vpfu
l (0)) for low-MOI infection and (Vpfu

h (0)) for high-MOI infection.
The residual infectious virus was not considered to engage in the cell infection and was only allowed
to decay. This dynamics were described by Equation (4).

In the Equation (3), cells in the eclipse and virus-producing phases move through multiple stages,
(nE) and (nI), respectively, before they transition into the virus-producing phase and are removed from
the virus-cell interactions, respectively. This type of multi-staged model, in which only the cells in
the last stage of virus-producing phase are allowed to disintegrate, was introduced by Beauchemin
and colleagues [10,32,36]. In their work, they decided the number of compartments for the eclipse
and virus-producing phases by evaluating the sensitivity of the model to changes (nE) and (nI) and
chose those values of nE and nI for which the model yields an overall best fit [10] or, alternatively,
the highest possible values nE and nI were selected if the model proved insensitive to changes in
these parameters [32]. Similarly to these studies, we decided the number of compartments for eclipse
and virus-producing phases, for each pair (nE, nI), both ranging from 1 to 40, by simultaneously
fitting the model (3) and (4) to low and high MOI viral load data fifty times, each time initiating the
procedure from a different set of values for β, τE, τI , ppfu, prna, Vpfu

l (0) and Vpfu
h (0). We then selected

the parameter set that was associated with the overall lowest value of the objective function (given
by the Formula (S7) in Supplementary Materials File S1) as the best-fit parameter set for a given pair
(nE, nI). Details of the fitting scheme are given Supplementary Materials File S1.

Figure 2b depicts the scaled values of the objective function for each pair (nE, nI) as a heatmap.
Considerably better fits of the model to the data were achieved for higher values of (nE) compared
to lower values of (nE) (horizontal axis in Figure 2b), though for nE � 1, the model was insensitive
to changes in (nE). This result aligns with the results obtained for other enveloped viruses, such as
influenza A virus, SHIV, and studies in which delays in the eclipse to virus-producing transitions
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Figure 3. Time course kinetics of infectious virus and encapsulated genome concentrations for two
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3.3. Quantification of ZIKV Life-Cycle Determinants

We numerically quantified the main determinants of ZIKV in vitro kinetics, in the model (3)
(graphically captured in Figure 4) represented by the rate of infection via infectious virus (β), the length
of eclipse phase (τE), the length of virus-producing phase (τI), the rate of infectious virus production
(ppfu), the rate of total encapsulated genome production (prna) and two additional free parameters

describing the initial concentration of infectious virus remaining in the well after washing (Vpfures
1 (0)),

which we will denote as (Vpfu
l (0)) for low-MOI infection and (Vpfu

h (0)) for high-MOI infection.
The residual infectious virus was not considered to engage in the cell infection and was only allowed
to decay. This dynamics were described by Equation (4).

In the Equation (3), cells in the eclipse and virus-producing phases move through multiple stages,
(nE) and (nI), respectively, before they transition into the virus-producing phase and are removed from
the virus-cell interactions, respectively. This type of multi-staged model, in which only the cells in
the last stage of virus-producing phase are allowed to disintegrate, was introduced by Beauchemin
and colleagues [10,32,36]. In their work, they decided the number of compartments for the eclipse
and virus-producing phases by evaluating the sensitivity of the model to changes (nE) and (nI) and
chose those values of nE and nI for which the model yields an overall best fit [10] or, alternatively,
the highest possible values nE and nI were selected if the model proved insensitive to changes in
these parameters [32]. Similarly to these studies, we decided the number of compartments for eclipse
and virus-producing phases, for each pair (nE, nI), both ranging from 1 to 40, by simultaneously
fitting the model (3) and (4) to low and high MOI viral load data fifty times, each time initiating the
procedure from a different set of values for β, τE, τI , ppfu, prna, Vpfu

l (0) and Vpfu
h (0). We then selected

the parameter set that was associated with the overall lowest value of the objective function (given
by the Formula (S7) in Supplementary Materials File S1) as the best-fit parameter set for a given pair
(nE, nI). Details of the fitting scheme are given Supplementary Materials File S1.

Figure 2b depicts the scaled values of the objective function for each pair (nE, nI) as a heatmap.
Considerably better fits of the model to the data were achieved for higher values of (nE) compared
to lower values of (nE) (horizontal axis in Figure 2b), though for nE � 1, the model was insensitive
to changes in (nE). This result aligns with the results obtained for other enveloped viruses, such as
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influenza A virus, SHIV, and studies in which delays in the eclipse to virus-producing transitions
were investigated [20,34,50,51]. The model was insensitive to changes in (nI) (vertical direction in
Figure 2b). Due to insensitivity of the model to the precise values of nE and nI , we fixed nE and nI to
their maximal allowed values nE = nI = 40, as was done in [36], to avoid a biologically implausible
scenario, in which cells would be allowed to initiate and stop releasing viral particles instantly after
they become infected and enter the virus-producing phase, respectively, which would be possible if
the exponentially distributed duration of both phases were allowed [32].
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Figure 4. Graphical representation of the model (3) described in Materials and Methods. Susceptible
target cells (green) get infected by infectious virus at any stage of its infectious life (dotted rectangle).
After entering an eclipse phase, eclipse cells (orange) remain in the eclipse phase for an average time (τE),
after which they transition into the virus-producing phase and begin releasing virus. Virus-producing
cells (red) remain in virus-producing state for an average time (τI) and produce infectious virus at the
rate (ppfu) and total encapsulated genomes at the rate ((prna) the latter is not displayed). Infectious
virus remains infectious for an average time (τpfu). Encapsulated viral genomes remain stable for
an average time ((τrna), not displayed).

The best-fit parameters values of the model (3) for the selected pair (nE, nI) = (40, 40) are
given in Table 4. We again used the MCMC to evaluate 95% credible regions and determine
posterior distributions for all model parameters (given also in Table 4). These are captured in
Figure 5. The MCMC revealed correlations between the model parameters. The length of the
virus-producing phase (τI), the posterior distribution of which had a peak at around the best-fit
value τI = 30.4 h and a flat left tail capturing a shorter virus-producing phase, was strongly
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correlated with the infectious virus and total encapsulated genome production rates, (ppfu) and (prna),
respectively. These rates showed peaks at around the best-fit values 9.65 PFU/(cell ×mL × h) and
4.11× 104 RNA/(cell ×mL ×h), respectively and exhibited flat right tails, representing even faster
production rates. Here, the experimental data could not inform the model to distinguish between
having more virus produced during a short virus-producing phase (high (ppfu) and (prna), low (τI)) and
having less virus produced during a longer virus-producing phase (low (ppfu) and (prna), high (τI)),
resulting in a negative correlation between production rates and the length of virus-producing phase).
The length of the eclipse phase (τE), the best-fit value of which was 27 h, was found to be negatively
correlated with the length of the virus-producing phase (τI) as longer eclipse phase is be balanced out
by a shorter virus-producing phase (and higher viral production rates) to reproduce the data. Similar
reasoning can be applied to explain correlations for the remaining viral parameters.

1.4

1.45

1.5

1.55

lo
g
1
0
 τ
E

0.0

1.0

2.0

3.0

lo
g
1
0
 τ
I

0.5

1.5

2.5

3.5

lo
g
1
0
 p
p
fu

4.0

5.0

6.0

7.0

lo
g
1
0
 p
rn
a

1
1.5

2
2.5

3
3.5

lo
g
1
0
 V
p
fu
l
(0
)

 7  6  5  4

log10 β

3.2
3.4
3.6
3.8

4
4.2

lo
g
1
0
 V
p
fu
h
(0
)

1.4 1.45 1.5 1.55

log10 τE

0.0 1.0 2.0 3.0

log10 τI

0.5 1.5 2.5 3.5

log10 ppfu

4.0 5.0 6.0 7.0

log10 prna

1 1.5 2 2.5 3 3.5

log10 V
pfu
l (0)

3.2 3.4 3.6 3.8 4 4.2

log10 V
pfu
h (0)

Figure 5. Parameter posterior distributions and pair-wise posterior plots obtained from MCMC run
of the model (3) and (4). The orange targets indicate the best-fit parameter values given in Table 4.
The solid dark lines enclose the 95% credible regions.

Table 4. Parameter values obtained from fitting the Equations (3) and (4) to low and high MOI infection
datasets (viral titers and total encapsulated genomes). 95% credible regions (CrRs) were constructed
from MCMC fits of the model (3) and (4) to low and high MOI infection datasets.

Parameter Description Units Value 95% CrR

β rate of infection by infectious virus ×10−6 mL/(PFU × h) 2.19 [0.165, 15.15]
τE length of eclipse phase h 27 [25.94, 33.13]
τI length of infectious phase h 30.41 [1.171, 191.07]

ppfu infectious virus production rate PFU/(cell ×mL × h) 9.65 [8.05, 214.12]
prna encapsulated genome production rate ×104 RNA/(cell ×mL × h) 4.11 [2.752, 99.37]

Vpfu
l (0) residual infectious virus in low MOI infection ×102 PFU/mL 1.80 [0.44, 4.17]

Vpfu
h (0) residual infectious virus in high MOI infection ×103 PFU/mL 5.12 [2.88, 9.13]
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The time course infection kinetics of newly produced ZIKV yielded by the model (3) and (4) is
depicted in Figure 6. In the case of low MOI infection (Figure 6a), the model allowed for multi-step
virus kinetics when the first round of virus released from the cells initially infected by the inoculum
was followed by the second round of viral release out of the cells infected by a newly produced
virus, here represented by two subsequent influxes in viral load. In the case of high MOI infection
(Figure 6b), single-step virus kinetics was reproduced by the model depicting a sharp increase in virus
load within 48 h accumulated during the synchronized infection of the majority of initially infected
cells. We note that continuous sampling of viral supernatant for quantification at each measured time
had only negligible effects on the model output (Figure S3, details are in Supplementary Materials
File S1) and thus was omitted in the simulations. Overall, the presented model was able to deliver
a realistic description of ZIKV in vitro infection experimental data.
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Figure 6. Time course of ZIKV infectious virus load and encapsulated genomes for (a) low (blue) and
(b) high (red) MOI viral load data. Data are shown as the mean ± standard deviation. The best-fits are
displayed as solid green lines. The light shading around the best-fits corresponds to the model kinetics
associated with MCMC-accepted parameters. The dark shading represents 95% credible region.

4. Discussion

The combined approach of experimental and mathematical modelling allowed us to characterize
the ZIKV infection kinetics in vitro, the aspects of which remained unexplored. Experimental data we
generated showed that the inactivation of infectious ZIKV particles does not proceed in an exponential
manner. We introduced a mathematical model of infectious virus degradation dictated by gamma
distribution which was able to explain the lack of decay dynamics in the first 24 h followed by a decline
onwards. We estimated the decay time of infectious ZIKV (MR766 strain) to be almost 40 h, which was
longer compared to the previously reported 7.5 h (when back-calculated from the half-life of 5.2 h,
assuming an exponential decay model) [13]. The observed discrepancies in the ZIKV infectivity could
be explained by different techniques used to quantify the infectious virus. We measured the amount of
infectious virus left in the stock in the cell line that we used to perform plaque assay, that is, Vero cells,
whereas in [13] flow cytometry was performed on ZIKV-infected Raji-DC-SIGN-R cells. This allows
to measure the ability of a virus to infect a cell for one cycle, but not necessarily to remain infectious
and infect neighbouring cells. This is, however, essential when measuring infectious virus that can
re-infect new cells in the context of a growth curve.

We quantified the in vitro ZIKV infection kinetics and revealed correlations between the viral
parameters. The low values for the length of the virus-producing phase of infected cells (τI) (short
virus-producing phase) were compensated by increased viral production rates, resulting in negative
correlations between those parameters. We hypothesize that the inability of the model to fully
identify the length of the virus-producing phase (τI) could be due to an insufficient number of
data points collected during the late phase of infection. Our experiment was terminated at 96 h
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post-inoculation when the viral load is still on the increase in the case of low MOI infection and
peaking and slowly declining in the case of high MOI infection. To be able to fully capture the post-peak
decline, the timespan of the experiment would need to double, given the very slow accumulation of
infectious ZIKV. Another possibility to overcome this problem would have to include collecting timely
measurements of susceptible, infected and dead cells. Therefore, identifying the times and frequencies
with which viral load measurements need to be collected is crucial, as these are usually more accessible
to mathematical modellers.

Previous experimental work showed late-onset apoptosis 48 h after infection of human lung
epithelial A549 cells with ZIKV isolate PF13 (previously described in [52]), which occurred at a slower
rate compared to the course of viral production. Delayed apoptosis of A549 and Vero cells were also
reported for the viral molecular clone of the epidemic strain from Asian lineage, BeH819015 isolated in
Brazil in 2015, which occurred after the maximum production of viral progeny [53]. These experimental
observations are in good agreement with our experimental and modelling results as the model predicts
the best-fit value for the length of the virus-producing phase (τI) to be 30.4 h with the peak of viral
production to be between 24 and 48 h. This could suggest that the left tail of the posterior distribution
of (τI) does not reflect realistic durations of the virus-producing phase. Although not all cells at the
end of their virus-producing phase will undergo apoptosis, considering such approximation in the
mathematical model will help to predict and quantify the timing of ZIKV-induced cellular death.

The viral dynamics model (3) assumes that all virus-producing cells in each stage produce
infectious virus and encapsulated viral genomes at the same (maximum) rates (ppfu) and (prna),
respectively. However, not all cells in the virus-producing stage will begin releasing virus at the
same rate. This might be influenced either by the multiplicity of cellular infection or phenotypic
heterogeneity in the cell population. The effects of multiple infection of cells with different copies
of the same virus on the virus kinetics was described in [54], while the effects of increased viral
replication in multiple-infected cells was studied in [55]. One can generalize the terms for release
of virus in the model (3) by introducing the terms ∑nI

j=1 ppfu, j Ij and ∑nI
j=1 prna, j Ij, in which cells in

different stages j = 1, . . . , nI exhibit different production rates (ppfu, j) and (prna, j). A delay between
productive infection of cells and virus release can be modelled by setting ppfu, j = 0 and prna, j = 0 for
the first m stages [50]. The age of productively infected cells might influence the virus production rates,
as suggested by [56], with the youngest and oldest cells experiencing low to no production of virions.
In our model, this could be approximated by setting the production rates to zero for the first m and for
the last nI −M stages, where m < M. These conditions could implicitly account for the limitations
in cellular resource availability during the viral replication cycle, particularly towards the end of the
virus-producing phase of infected cells.

Predictions from our mathematical model are limited to the studied ZIKV strain (African lineage
MR-766) and the cell line used to study viral replication kinetics (African green monkey kidney
Vero cells). The replication kinetics of different ZIKV isolates were experimentally investigated to
characterize lineage-specific phenotypes. Asian and African ZIKV isolates were reported to display
minimal lineage-specific differences in their growth curves in Vero cell line [57,58]. In contrast,
the African strain ArD 41525 was described to consistently exhibit faster replication kinetics not only
in the Vero cell line but also in HEK-293 (human), DEF (avian), and RK-13 (rabbit) cells lines [59].
Therefore, it is not straightforward to generalize the results from our mathematical model as different
strains can exhibit distant growth kinetics or the same strain may perform differently in various cell
lines. For example, ZIKV was shown to accumulate slower in mosquito cells compared to mammalian
cells [57]. This was attributed to different physical conditions that are required for the cultivation
of mammalian and mosquito cells, as the latter are incubated at lower temperatures (usually 28 ◦C)
than the former (usually 37 ◦C). In addition, inactivation of infectious ZIKV could be affected by
different temperatures, too, as reported in [12]. Thus, strain-specific and host cell-specific modelling
studies would be desirable to identify and quantify these specificities, which would strengthen our
understanding of the main drivers of ZIKV-host cell iterations.
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In this study, we described the in vitro kinetics of ZIKV, a member of the Flavivirus genus,
which remained largely unexplored, by applying the synergistic combination of mathematical
modelling and experimental data. Our study thus represents a step to quantitatively elucidate
the in vitro dynamics of ZIKV infection in a manner that is inaccessible through conventional
experimental approaches.
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