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Abstract

Objective—Recently, several studies have documented the presence of a bimodal distribution of 

spike waveform widths in primary motor cortex. Although narrow and wide spiking neurons, 

corresponding to the two modes of the distribution, exhibit different response properties, it 

remains unknown if these differences give rise to differential decoding performance between these 

two classes of cells.

Approach—We used a Gaussian mixture model to classify neurons into narrow and wide 

physiological classes. Using similar-size, random samples of neurons from these two physiological 

classes, we trained offline decoding models to predict a variety of movement features. We 

compared offline decoding performance between these two physiologically defined populations of 

cells.

Main results—We found that narrow spiking neural ensembles decode motor parameters better 

than wide spiking neural ensembles including kinematics, kinetics, and muscle activity.

Significance—These findings suggest that the utility of neural ensembles in brain machine 

interfaces may be predicted from their spike waveform widths.
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Introduction

Neural interface systems for control have recently made a number of important advances in 

recording capabilities, decoding algorithms, and output devices [1, 2]. In particular, these 

systems have seen nearly a doubling of simultaneously recorded neurons every seven years 

using either high density electrode arrays, or more recently, optical calcium fluorescence 

imaging [3]. These advances have provided an ever growing set of rich, high-dimensional 

signals for control [4]. And yet, decoding ability has not increased correspondingly with the 
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growth of input signals, but rather has plateaued. This disparity arises, in part, because high-

dimensional input signals require larger models to relate neural activity to motor features. 

These models are harder to train for a given size of data, are more prone to overfitting, and 

thereby less generalizable [5–7]. As such, there is some debate about the optimal size of 

decoding models [8].

One approach to reduce the dimensionality of neural feature space is to take advantage of 

the fact that the state space of neural activity patterns is much smaller than the full 

dimensionality of the neural features being analyzed [9–11]. That is, the responses of 

individual neurons are correlated, and the number of latent dimensions needed to explain the 

variability in the ensemble activity is less than the total number of recorded neurons. Indeed, 

recent reports have shown that the activity of moderately large neural ensembles (tens to 

hundreds of cells) can be described by a few orthogonal latent dimensions in neural state 

space [10]. Within this framework, these latent dimensions may be used as control axes for a 

prosthetic device [11, 12].

Another approach to constrain the dimensionality of neural feature space is to perform 

model selection using some statistical selection criterion [7]. The guiding principle of this 

approach is to identify relevant (i.e. predictive) neural features by fitting a model on training 

data. Several different criteria have been proposed to rank feature relevancy including 

correlation coefficient [13, 14], mutual information [15], and decoding accuracy [16, 17], 

while additional criteria, such as Akaike information criterion (AIC) [18], Bayesian 

information criterion [6, 19], and automatic relevance determination [5, 20] are used to 

determine the optimal number of features to include in a model.

Instead of approaching model selection as a dimensionality reduction or statistical problem, 

we wondered if physiological properties of motor cortical neurons could guide the choice of 

which neurons to use in a decoder. One physiological property that has received much 

attention recently is spike waveform width. In particular, primary motor cortex (MI) exhibits 

a bimodal distribution of extracellular, spike waveform widths [21–23]. Although 

extracellular recordings cannot directly determine cell type or morphology, these two modes 

exhibit different physiological and functional properties [24]. That study observed that 

population responses among narrow spiking neurons exhibited more pronounced oscillatory 

power in the beta frequency band (15–35 Hz) as was observed in the local field potential. 

Moreover, during peri-movement epochs, narrow, unlike wide spiking neurons, spatially 

coordinate their firing activity in a way that is consistent with both the wave propagation 

observed in the local field potential oscillations and the underlying anatomical horizontal 

connectivity [24, 25]. We reasoned that the narrow spiking neural population may be more 

closely related to movement because narrow spiking neurons form a network of functional 

connections that is aligned with the spatial pattern associated with movement onset. Thus, 

we hypothesized that narrow spiking neurons would lead to more accurate movement 

decoding as compared to wide spiking neurons.
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Material and methods

Neurophysiology

All surgical and experimental procedures were approved by either the University of Chicago, 

or Northwestern University Animal Care and Use Committees, and conformed to the 

principles outlined in the Guide for the Care and Use of Laboratory Animals (NIH 

publication no 86–23, revised 1985). Five rhesus macaques (macaca mulatta) were 

implanted with 96 channel Utah electrode arrays in the upper limb area of MI contralateral 

to their working arm (for details about the exact placement of the electrode arrays, see [26, 

27]). Neural signals were collected from these arrays using a Cerebus neural data acquisition 

system (Blackrock Microsystems, Salt Lake City, UT). Unit spiking activity was sorted 

offline using semi-manual spike sorting software (Offline Sorter, Plexon Inc., Dallas, TX).

Behavioral tasks

This experiment consisted of three different tasks involving movement of the upper limb. In 

the first task, two rhesus macaques were trained to play an instructed-delay, center-out 

reaching task (for a description of the task see [27]). Briefly, animals were trained to control 

the position of a cursor using a two-link robotic exoskeleton (BKIN Technologies, Kingston, 

Ontario, CA). The position of the cursor was projected directly above the position of the 

animal's hand. A trial began when the animal moved the cursor to a center target and 

maintained it there for 500 ms. After that time, the animal was cued to move to one of eight 

possible peripheral targets positioned radially around the center target, then had to wait 1000 

ms until a go cue appeared. At this point, the animal was free to move from the center target 

to the peripheral one. Upon hitting the peripheral target, the animal had to hold the cursor at 

the peripheral target for 500 ms to complete the trial successfully. Fluid reinforcement was 

delivered on each successful trial.

Two additional rhesus macaques were trained to play a random target pursuit (RTP) task in 

multiple experimental conditions (for a detailed description of the task and experimental 

design see [26]). Briefly, animals used the same robotic exoskeleton to make planar reaching 

movements to square targets randomly distributed within a 10 × 6 cm workspace. Every time 

the cursor hit the target, a new target appeared at a random location. In order to complete a 

trial successfully, an animal had to sequentially hit seven targets. Failure to hit a target 

within 5 s of its appearance resulted in an aborted trial. Fluid reinforcement was delivered 

for every successful trial.

One rhesus macaque was trained to perform an isometric wrist flexion task. The upper arm 

was constrained largely to a para-sagittal plane with the elbow at a 90° angle and the 

forearm horizontal, in an orientation midway between supinated and pronated. The monkey's 

wrist was maintained in line with its forearm by securing its hand in a box, which was 

custom-fit with padding to minimize movement. A six-degree of freedom torque cell was 

mounted on the box, such that the axes of measurement aligned with those of the wrist. 

Cursor movement was proportional to the force along the flexion-extension and radial-ulnar 

deviation axes. The task required the monkey to move the cursor from a central target to one 

of eight peripheral targets separated by 45°. The force targets were set for each monkey to be 
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submaximal (approximately 20%–30% MVC) in order to reduce fatigue. To initiate a trial, 

the monkey held the cursor in the central target (requiring no force) for 0.5 s, after which a 

randomly selected outer target appeared. The monkey was required to move the cursor to the 

outer target within 5 s, and to maintain that force for 0.5 s in order to receive fluid 

reinforcement.

Classification of narrow and wide spiking neurons

We classified units into two discrete physiological classes based on their spike waveform 

width. To determine the width of each sorted unit, we measured the difference in time 

between the peak and trough of the average waveform. An additional quantity, waveform 

signal-to-noise ratio (SNR), was defined as the magnitude of the peak minus the trough in 

the average waveform divided by the average standard deviation of the waveform across 

time [26]. Only units with SNRs greater than 3 were used in the subsequent analyses.

For each dataset, a Gaussian mixture model [28] was used to classify spike waveforms into 

narrow and wide categories. Mathematically, the Gaussian mixture model attempts to 

describe the distribution of spike waveform widths as a sum of K Gaussian distributions. 

Each Gaussian in the mixture model is referred to as a component (indexed with the 

variable, k), and is fit with a unique mean and standard deviation, μk, and σk, respectively. 

Each component also has an additional parameter, πk, representing the proportion of data 

described by that component. Expressed as an equation, this model may be specified as

where p(w) is the probability of observing a spike waveform width, w, and N (w|μk, σk) 

indicates a Gaussian distribution with mean, μk, and standard deviation, σk. This model 

included an additional regularization parameter, λ, that was added to each σk to ensure that 

σk remained strictly positive for every component (see [28] for a more complete treatment 

on fitting Gaussian mixture models. Matlab function fitgmdist, The Mathworks, Natick, 

MA).

To confirm that the spike waveform width distributions were bimodal, we varied the number 

of components, K, in the mixture model, and computed the AIC, a goodness of fit statistic 

for each model [29]. As we increased K, we also increased λ proportionately to ensure that 

each additional component was non-degenerate. A chi-square test of homogeneity was used 

to compare the proportion of narrow and wide neurons across recording sessions in a given 

animal [30].

Computing other response properties of cells

In addition to determining the waveform width of each cell, we also measured its average 

firing rate, and, for center-out datasets, the preferred direction and tuning strength. Average 

firing rate was determined by dividing the spike counts of each cell by the duration of the 

recording. Firing rate variance was computed using the following formula:
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where n is the number of 50 ms bins, yb is the spike count in bin b, and ȳ is the average 

spike count over all bins. To determine preferred direction and tuning strength, we fit a 

cosine-tuning model of the form:

where yi indicates the number of spikes between the go cue and target hit on trial i, α is the 

overall firing rate of the cell, β is the gain of the cosine tuning model, xi is the angular 

location of the peripheral target on trial i, ϕ is the preferred direction of the cell, and ∊ is a 

normally distributed error term. This model was fit using the Matlab function lsqcurvefit. 

The tuning strength of the cell was defined as the proportion of variance in spike counts 

explained by this tuning model.

Decoding analysis

Input features—Spiking activity from every neuron was binned into 50 ms bins. Only 

neurons with firing rates >1 Hz and waveform SNR > 3 were used in subsequent analyses. 

The number of neurons that satisfied these criteria is listed in table 1. In general, the spike 

counts of each neuron in the preceding 20 time bins (i.e. 20 filter taps, 1 s of history) were 

used as input features to the decoding model, however, we varied the number of taps 

between 4 and 32 in one analysis to explore the effect of the number of taps on decoding 

performance (figure 4). In total, the input dimensionality to the decoding model was equal to 

the number of neurons multiplied by the number of taps (which was 20, unless otherwise 

noted).

Output features—Several different motor related quantities were decoded including 

kinematic and kinetic features as well as muscle activity. Output features were decoded in 50 

ms bins.

In center-out datasets, we decoded shoulder and elbow (joint) torque (computed as described 

in [31]), joint angular velocities, Cartesian x and y velocities of the cursor, and wrist speed. 

In the isometric wrist dataset, j141203, we decoded the activity of 11 muscles of the forearm 

and hand including extensor digitorum communis (EDC), adductor pollicis longus (APL), 

flexor digitorum profundis (FDP), extensor carpi radialis (ECR), EDC 2 (EDC2), 

brachioradialis (Brad), pronator teres (PT), flexor carpi ulnaris (FCU), flexor digitorum 

superficialis (FDS), flexor carpi radialis (FCR), and FDS 2 (FDS2).

Decoding model—All computations were carried out offline in the Matlab programming 

environment. We employed a standard causal Wiener filter model to decode movement 

related quantities from neural activity [8, 19, 32–34]. Mathematically, this model satisfies 

the following objective:
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where yt is a motor quantity at time bin t, xt–u is a vector of spike counts corresponding to 

time bin t—u, α is an intercept term, βu is a vector containing the coefficient of each filter 

tap at time lag, u, and ‖ · ‖2 denotes the ℓ2 norm. This model is arguably one of the simplest 

neural decoding models, yet it has been widely used and has been shown to achieve a high 

degree of decoding accuracy [8, 19, 32]. Model goodness of fit was quantified using the 

coefficient of determination, R2 given by the following formula:

where yt, ŷt, and ȳ denote the observed motor quantity, the fitted motor quantity, and the 

time averaged motor quantity, respectively.

Models were trained on 75% of available data and tested on the remaining 25%. We found 

that the proportion of data allocated to training and test sets did not have an appreciable 

effect on subsequent analyses.

Bootstrap analysis—In order to compare decoding performance between narrow and 

wide spiking neural populations, we drew random ensembles of N neurons from each 

population repeatedly (100 times, with replacement), trained linear decoding models, and 

measured the decoding performance on a separate set of test data. This process was applied 

to each dataset individually. The number of neurons in the ensemble, N, was varied 

systematically to quantify how decoding performance scaled in each population.

Matching procedure—In order to control for underlying differences in response 

properties between narrow and wide spiking neural populations, we developed a greedy 

matching algorithm to select neurons with similar response properties. We chose an 

ensemble of N wide spiking neurons completely at random. Then, for each selected wide 

spiking neuron, we found the narrow spiking neuron whose response property (e.g. firing 

rate) was closest to the wide spiking neuron, where closeness was defined by a distance 

metric (described below for each feature). If the narrow spiking neuron that was closest to 

the current wide spiking cell was already matched to another wide spiking cell, the next 

closest unmatched narrow spiking neuron was matched to that wide spiking neuron. We 

matched several underlying response properties including firing rate, waveform SNR, 

preferred direction, and tuning strength. For firing rate, waveform SNR, and tuning strength, 

we used the absolute value of the difference as our distance metric (i.e. the Euclidean 

distance). For a circular variable like preferred direction, we used the absolute value of the 

angle between preferred directions as our distance metric.
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Results

We recorded spiking activity from single units in primary MI while monkeys engaged in a 

variety of tasks involving the upper limb. We computed the spike width of each sorted unit 

(figure 1) and classified it as either narrow or wide. We then compared offline decoding 

performance of these two classes of cells across many different tasks. A preliminary version 

of these results was presented as a conference proceeding [35].

Narrow and wide spiking neural ensembles

We used a Gaussian mixture model to classify neurons as either narrow or wide spiking 

based on their spike waveform widths (figure 2). A separate model was trained on each 

recorded dataset (summary statistics of each model given in table 1). To verify that each 

distribution was indeed bimodal, we fit additional Gaussian mixture models with varied 

numbers of Gaussian components. For all datasets, we found that a two-component model 

(i.e. a bimodal distribution) had optimal AIC values. The mean spatial locations of narrow 

and wide spiking neurons across the cortical sheet were not significantly different 

(Bonferroni corrected Hotelling's T2 test) suggesting that subsequent decoding results are 

not due to differences in the location of the neurons on the cortical sheet.

We examined the consistency of the bimodal distribution across time. In monkeys Rs and Rj, 

we analyzed datasets that were collected 230 and 24 d apart, respectively. We performed a 

Chi-square test of homogeneity to assess whether the proportion of narrow spiking units was 

the same across datasets. We found no evidence of a significant difference in the proportion 

of narrow spiking units (p < 0.42 and p < 0.18 for animals Rs and Rj, respectively) across 

time.

The previous statistical test ensured that the relative proportion of narrow and wide spiking 

units was the same across time; however, we did not directly gauge whether the average 

waveform width of each population was similar across time. Accordingly, we performed a t-
test on the average waveform width of each class across time. In both animals, we found no 

evidence to suggest that the average waveform width of the narrow spiking class was 

significantly different across time (Rs: t49 = −0.82, p < 0.21, Rj: t182 = −0.18, p < 0.43). 

With respect to wide spiking neurons, animal Rs showed no significant difference across 

time (t20 = −0.26, p < 0.40), although there was a significant difference in Rj (t93 = − 1.97, p 
< 0.026).

Decoding kinetics and kinematics

We built simple linear decoding models to predict a variety of kinematic and kinetic motor 

features based on the activity of either narrow or wide spiking neural ensembles. For our 

initial analysis, we considered neural data that were collected while animals were 

performing an instructed-delay, center-out reaching task. We found that narrow spiking 

neural ensembles outperformed wide spiking neural ensembles at a variety of different 

ensemble sizes (figure 3, see methods for details about model training and validation). We 

performed a two-way ANOVA using waveform class (i.e. narrow or wide) and ensemble size 

as factors. We observed a highly significant main effect of waveform class on decoding 
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performance for each motor feature (median improvement in R2 was 0.15 across datasets/

motor features; p < 1e-8 for every dataset/motor feature combination, Bonferroni adjusted 

for multiple comparisons).

One potential explanation for the difference in decoding performance across waveform 

classes is that the optimal number of taps for each waveform class could differ. To test this 

possibility, we fixed the number of neurons in the decoder and systematically varied the 

number of filter taps from four (200 ms of history) up to 32 (1600 ms of history). Again we 

observed that narrow spiking neurons outperformed wide spiking neurons irrespective of the 

number of taps in the model (figure 4(A), ANOVA, F1,784 = 139.81, p < 1e-8, F1,784 = 

407.77, p < 1e-8, for x and y velocity, respectively), or model regularization (figure 4(B), 

ANOVA, F1,784 = 628.90, p < 1e-8, F1,784 = 270.81, p < 1e-8, for x and y velocity, 

respectively). Although decoding performance varied with the number of taps in the model, 

the relative improvement from using narrow spiking ensembles was fairly constant across 

the range of taps with the narrow spiking populations always outperforming wide spiking 

populations (figure 4(C)).

Given that the number of taps in the decoder could not explain the difference in decoding 

ability, we next sought to control for several underlying response properties of these two 

populations. In general, narrow spiking neurons had higher firing rates, higher firing rate 

variance, and higher waveform SNRs (figures 5(A)–(C)), although in one dataset, 

mk080828, wide spiking neurons had higher firing rates and firing rate variance. For two 

datasets, b080725 and j141203, narrow spiking neuron rates were significantly higher (KS 

test, p < 0.0002 and p < 0.003, respectively, Bonferroni adjusted for multiple comparisons), 

and, narrow spiking neuron rate variability was significantly higher (KS test, p < 0.00 002, 

and p < 0.00 006, respectively). Narrow spiking neuron waveform SNRs were significantly 

greater than wide spiking SNRs in two datasets, rs050225, and rs051013 (KS test, p < 

0.0002 for both datasets). Additionally, narrow spiking neurons showed stronger directional 

selectivity as revealed by their higher tuning strengths (figure 5(D)). This trend was 

significant in both datasets from animal Rj (KS test, p < 0.007 for both datasets). However, 

there was no significant difference in the distribution of preferred directions across 

waveform class in any dataset (circular medians test [36], p > 0.05 for all datasets, figure 

5(E)).

We developed a matching procedure to control for any putative differences between narrow 

and wide spiking neurons (see Methods for details). Random samples of wide spiking 

neurons were matched with narrow spiking units that exhibited the same firing rate, 

waveform SNR, preferred direction, or tuning strength each independently. This matching 

procedure yielded samples of narrow and wide spiking neurons that had statistically 

indistinguishable averages. Even after controlling for one underlying response property, 

narrow spiking units still almost always outperformed wide spiking units across a variety of 

motor features (figure 6 for wrist speed and figure 7 for x and y, velocities).

Decoding muscle activity

To further link narrow spiking neural activity with motor output, we examined data from an 

isometric center-out wrist task. Here, we attempted to predict the activity of 11 different 
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upper limb muscles based on narrow and wide spiking neural ensembles (figure 8). We 

found that each muscle's activity was also better predicted by narrow spiking ensembles 

(median improvement in R2 was 0.06 across all motor features; ANOVA, EDC F1,692 = 525; 

APL F1,692 = 416; FDP F1,692 = 213; ECR F1,692 = 810; EDC2 F1,692 = 453; Brad F1,692 = 

354; PT F1,692 = 488; FCU F1,692 = 219; FDS F1,692 = 335; FCR F1,692 = 90; FDS2 F1,692 = 

625; p < 1e-8 for all muscles).

Discussion

Interpretation of narrow and wide spiking neural ensembles

It is tempting to assume that narrow and wide spiking neurons correspond to inhibitory 

interneurons and pyramidal cells, respectively, because generally, inhibitory interneurons 

exhibit narrow spike waveform widths while pyramidal cells have wider widths [37–40]. 

However, recent evidence suggests that such a clear delineation is unlikely. One study found 

a relationship between Betz cells, projection cells in layer V of MI, and spike waveform 

width, such that the largest Betz cells had the narrowest waveform widths [22]. This 

population of cells is thought to comprise approximately 10%–20% of neurons in layer V 

[41]; however, due to their large size, they are oversampled, and may actually represent 

closer to 50% of recorded projection neurons [41, 42]. Though the extent to which our data 

are subject to this sampling bias remains unknown, it is nevertheless likely that at least some 

of the narrow spiking neurons we recorded were indeed large projection neurons. Moreover, 

inhibitory interneurons exhibit a variety of spike widths including a small proportion with 

wide waveforms [23]. Thus, spike waveform width is not a reliable indicator of cell type.

In the present study, we found that narrow spiking neural ensembles substantially 

outperformed wide spiking ensembles in a variety of decoding contexts, and that this 

improvement in decoding performance was related to motor output. A fairly straightforward, 

albeit speculative explanation of this finding is that a substantial proportion of cells that we 

classified as narrow spiking neurons correspond to the largest Betz cells, and thus, the 

activity of the narrow spiking neural population contains more direct information about 

efferent motor activity.

Using Gaussian mixture models, we found that the distribution of spike waveform widths 

was best described by a mixture of two Gaussians based on AIC values; however, this 

finding does not imply that the true distribution of waveform widths is bimodal, nor are we 

arguing that it is. Indeed, the spike waveform width distribution was more clearly bimodal in 

some datasets than others. We used the Gaussian mixture model as a principled way of 

identifying the boundary between narrow and wide populations. In this way, it represents an 

improvement over previous methods based on specifying an arbitrary threshold [21]. The 

mixture model also provided a quantitative means of assessing the modality of the waveform 

width distribution rather than assuming bimodality.

Application to a clinically relevant BMI

Recent reports have shown that small ensembles of neurons are capable of achieving a high 

degree of decoding performance [3, 43]. As BMIs scale to increasingly large degrees of 
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freedom, these small ensembles may be used to control individual DoFs. In one study, 

individual control dimensions were allocated 10 neurons based on a statistical selection 

criterion [44]. In our data, we observed that small ensembles of narrow spiking neurons 

could achieve performance comparable to, if not better than large ensembles of wide spiking 

neurons. This suggests that a dynamic allocation scheme could be devised based on the 

width of recorded neurons such that some DoFs would be controlled by small ensembles of 

narrow spiking neurons, while other DoFs would be controlled by larger populations of wide 

spiking neurons yet each DoF would have the same expected level of performance despite 

being controlled by a different number of neurons.

An additional hurdle impeding the development of a clinically viable BMI is that few 

properties of the neural response are stable over long periods of time [45]. Here, we found 

that the bimodal distribution of spike waveform widths was similar across a timespan of 

several months. Additionally, in every dataset we analyzed, we observed a variety of spike 

waveform widths. Although there was some variability in the boundary between narrow and 

wide populations across animals, we observed both narrow and wide populations of cells in 

seven datasets recorded from five animals.

In summary, our approach has been to identify physiological properties of neurons that may 

reveal their utility in a neural decoder; this approach is not incompatible with other 

techniques aimed at improving decoding performance. Indeed, other approaches including 

linear dimensionality reduction and statistical model selection could be used in conjunction 

with waveform information to identify neurons within the narrow spiking neural population 

that are most relevant for decoding. More generally, we emphasize that neural decoding 

algorithms may be improved by using the underlying biological properties of neural signals 

to inform the design of these algorithms.
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Figure 1. 
Quantifying spike waveform width. For each sorted unit, we computed its spike waveform 

width. Here, waveform width is defined as the difference in time between the peak and 

trough of the average waveform. Exemplary narrow (blue) and wide (red) waveforms 

(averaged over spikes) are shown as well as the time from trough to peak (top). The 

distribution of all recorded waveforms from dataset rs050225 (bottom). Color indicates 

either narrow or wide waveform width.
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Figure 2. 
Bimodal distribution of spike waveform widths. A Gaussian mixture model was used to 

partition neurons from each dataset into narrow and wide spiking categories based on 

waveform width. To verify that each waveform distribution was indeed bimodal, we 

systematically varied the number of Gaussians in the mixture model and computed the AIC 

to perform model selection. For each dataset, we found that a mixture model containing two 

components best described the data.

Best et al. Page 14

J Neural Eng. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Decoding performance using narrow and wide spiking neural ensembles. We used a standard 

20-tap causal Wiener filter to decode kinematic and kinetic quantities from neural data while 

two animals performed an instructed-delay, center-out task. We repeatedly (100 times) drew 

random samples of either narrow or wide spiking neurons, trained a decoding model, and 

then tested its performance on a separate set of data. We found that narrow spiking neural 

ensembles significantly outperformed wide spiking neural ensembles in a variety of 

coordinate frames (see text for summary statistics). Each column indicates a different 

dataset. Individual points correspond to each of the 100 random samples, while the solid 

lines indicate the upper 75th percentile of decoding performance.
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Figure 4. 
The number of taps does not explain the difference in decoding performance. (A) We fit a 

linear decoding model containing 20 narrow or wide spiking neurons and systematically 

varied the number of filter taps. We observed that narrow spiking neurons could predict x 
and y velocities (left and right columns, respectively) better than wide spiking populations 

irrespective of the number of taps. Data shown are from one dataset, rj040114. Solid line 

indicates average performance across iterations of the bootstrap. Shaded area indicates ± 2 

standard errors of the mean. Note that overfitting occurs when using many taps. (B) To 

ensure that any performance gains were not due to overfitting, we repeated the previous 

analysis using ridge regression [26]. We observed that decoding performance no longer 

declined with many taps suggesting that overfitting had been ameliorated by regularization, 

and that narrow spiking neurons still outperformed wide spiking neurons. (C) We measured 

the performance gain, defined as the difference in R2 values between narrow and wide for all 

datasets and found that the number of filter taps did not explain the disparity in decoding 

performance. Note that x velocity performance gains were slightly larger in the 

unregularized data from rj040114 suggesting that at least some of the improvement in 

performance at large numbers of taps may have been due to wide spiking neurons being 

more overfit than narrow spiking neurons. Nevertheless, in every case, narrow spiking 

neurons still significantly outperformed wide spiking neurons.
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Figure 5. 
Response properties of narrow and wide spiking neural ensembles. The firing rate, firing 

variance, and waveform SNR for every neuron from each dataset was estimated (see 

Methods for details) and then compared based on waveform width category. Generally, 

narrow spiking units had significantly higher firing rates and waveform SNRs (all datasets 

except mk080828). Blue and red bars indicate median values for each dataset. For the 

center-out datasets, we estimated each neuron's tuning strength, and preferred direction. 

Again, tuning strength was significantly higher for narrow spiking neurons.
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Figure 6. 
Narrow spiking neurons outperform wide spiking populations even after controlling for 

differences in response properties. We repeatedly drew random samples of narrow and wide 

spiking neurons (ensemble size of 30 for rj040114, 20 for rj040207 and rs050225, and 10 for 

rs051013) while controlling for either firing rate, firing variance, tuning strength, preferred 

direction, or waveform SNR using a matching procedure (see Methods for details). Narrow 

spiking neurons outperformed wide spiking neurons even after controlling for differences in 

response properties.
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Figure 7. 
Underlying differences in response properties do not explain the difference in decoding 

performance. Here we show histograms of the difference in decoding performance (of x and 

y velocity) between narrow and wide spiking populations. The average difference is 

indicated by a vertical dashed line, while 0 is indicated by the solid vertical line. In almost 

every instance (except two indicated by stars), narrow spiking units outperformed wide 

spiking units even after controlling for one response property.
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Figure 8. 
Decoding muscle activity using narrow and wide neural ensembles We used a standard 20-

tap causal Wiener filter to decode muscle activity from neural data while an animal 

performed an isometric wrist flexion task. We repeatedly (100 times) drew random samples 

of either narrow or wide spiking neurons, trained a decoding model, and then tested its 

performance on a separate set of data. We found that narrow spiking neural ensembles 

outperformed wide spiking neural ensembles across all muscles.
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