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Abstract

Knowledge about how science works, trust in scientists, and the perceived utility of science

currently appear to be eroding in these times in which “alternative facts” or personal experi-

ences and opinions are used as arguments. Yet, in many situations, it would be beneficial

for the individual and all of society if scientific findings were considered in decision-making.

For this to happen, people have to trust in scientists and perceive science as useful. Still, in

university contexts, it might not be desirable to report negative beliefs about science. In addi-

tion, science-utility and science-trust associations may differ from explicit beliefs because

associations were learned through the co-occurrence of stimuli rather than being based on

propositional reasoning. We developed two IATs to measure science-utility and science-

trust associations in university students and tested the psychometric properties and predic-

tive potential of these measures. In a study of 261 university students, the IATs were found

to have good psychometric properties and small correlations with their corresponding self-

report scales. Science-utility and science-trust associations predicted knowledge about how

science works over and above self-reported beliefs. The results suggest that indirect mea-

sures are useful for assessing beliefs about science and can be used to predict outcome

measures.

Introduction

On the one hand, the COVID-19 pandemic appears to have made many people value science

(again) [at least in Germany: 1], but on the other hand, the divide between those who put their

trust in science and consider it useful for decision-making and those who do not has appeared

to increase. Scientific findings are easy to find these days, but the same is true for less trustwor-

thy information, misinformation, and disinformation [2]. Adequately understanding the vari-

ous documents that are available necessitates more than reading comprehension [3, 4],

especially with regard to considering the source of information [5, 6] and selecting trustworthy

sources. A growing number of people seem to rely on personal beliefs and experiences instead

of scientifically established knowledge [7], a trend that is considered characteristic of our
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current post-truth era [2]. The skeptical attitude toward science has been rising in recent years

[e.g., 8]. However, now, the COVID-19 pandemic shows vividly that positive beliefs about sci-

ence are an asset that we should strive for. For example, people who are informed about scien-

tific findings and trust in these findings are more likely to comply with the rules that have been

set forth to contain the pandemic [9]. The present paper aims to assess science-utility and sci-

ence-trust associations as well as explicit beliefs about science and test their predictive potential.

In order to do so, we relied on two lines of research and combined them. Research on the

public’s understanding of science [10] has often focused on trust in science, whereas research

on teacher education has used the concept of the perceived utility of science [11–13]. In the

present paper, we assumed that these two beliefs are both important for laypeople’s consider-

ations of scientific findings: Trust in science is necessary for laypeople to be able to consider

scientific information valid [14, 15]. And even if scientific information is considered valid but

not useful, people will probably not base their decisions on it [13, 16, 17]. Thus, both trust in

science and the perceived utility of science seem to be beliefs that merit further attention.

It has been argued that a lack of positive beliefs about science is related to a lack of knowl-

edge about science [e.g., 10, 18]. To date, studies addressing this relationship have focused on

knowledge about basic scientific facts and have largely neglected other aspects of scientific lit-

eracy [19], such as knowledge about scientific methods, even though knowledge about meth-

ods may be very important for helping people understand and comply with evidence-based

suggestions regarding everyday decisions [see 9, 20]. Positive beliefs about science in turn

might help students develop knowledge about scientific methods by motivating them to

acquire knowledge and by making the best use of their learning opportunities [see 21].

By contrast, mistrust in science is widespread, and interestingly, it is not restricted to popu-

lations with little education. Even university students do not consistently prefer information

sources with (scientific) expertise over sources who are reporting on their own personal expe-

riences [13, 22]. For example, Salmeron and colleagues [22] had university, primary, and sec-

ondary school students rate on a 4-point Likert scale whether or not a fictitious user of a social

question-and-answer forum should follow the advice provided in the forum. Forum contribu-

tions varied with regard to expertise (expert vs. pseudonym) and source of information (exter-

nal source vs. personal experiences). On average, participants recommended following the

advice, regardless of expertise, source of information, or the educational level of the partici-

pants. Kiemer and Kollar [13] asked student teachers to work on a case and provided them

with both scientific and non-scientific sources. They found that student teachers more often

selected non-scientific than scientific sources.

However, the occurrence of negative beliefs about science is especially problematic in uni-

versity students because these students will typically have an increased impact on society as a

whole in their later professional lives: They will be more likely than others to occupy leading

positions, and they may be perceived as paragons of scientific judgment. This makes university

students an especially relevant population when studying beliefs about science.

Simply asking university students about their beliefs about science would provide only part

of the picture. Direct measures, such as self-reports, tap into propositional reasoning, that is

they are assumed to elicit deliberate validation of beliefs [e.g., 23]. Other measures (often

referred to as indirect or implicit measures [see 24]) offer a different approach as they tap into

associations between concepts [e.g., 23]. Thus, science-utility and science-trust associations

should capture different learning experiences than self-report measures. Consequently, indi-

rect measures often offer predictive power over and above their direct counterpart [25, 26]. In

addition, self-reports might be affected by social desirability and self-deception [27, 28], which

might be issues when university students are asked about their beliefs about science [see 29,

but see 30 for a different view].
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With the objectives of assessing beliefs about science while avoiding issues of social desirabil-

ity and taking advantage of the different processes that indirect measures draw on in compari-

son with direct measures, with the present project, we aimed to develop and test two indirect

measures of associations. As outlined above, we focused on two aspects of beliefs about science:

whether scientific findings and scientists are considered trustworthy (trust in science) and

whether scientific findings are considered useful for decision-making (perceived utility of sci-

ence). Specifically, the aim of the present study was twofold. First, we aimed to assess two newly

developed indirect measures with regard to their psychometric properties and their relations to

corresponding direct measures. Second, we examined whether university students’ science-util-

ity and science-trust associations as well as their explicit beliefs about science are related to their

knowledge about how science works. Thus, our work extends prior research in several ways:

We used methodological knowledge instead of factual knowledge about science, and we devel-

oped measures of science-utility and science-trust associations, which stem from two thus-far

unconnected lines of research that we combined for the present study.

Measuring beliefs, attitudes, and associations

Attitudes can be defined as a tendency to evaluate an object with some degree of favor or disfa-

vor [31, 32]. Attitudes can be inferred from cognitive, affective, and behavioral responses [31].

Cognitive responses are often conceptualized as beliefs, that is, associations between an object

and various attributes [31]. Thus, whereas attitudes are considered the association between an

object and a valence [33] (i.e., positivity or negativity), beliefs encompass associations of the

object with other dimensions, such as utility or trustworthiness. In the following, we use the

term “evaluation” to refer to both attitudes and beliefs.

Both attitudes and beliefs have been measured directly with self-report questionnaires but

also with more indirect procedures [e.g., 34–36]. Explicitly asking people to report their evalu-

ations has advantages, for example, high face validity and ease of administration, but it also

comes with disadvantages. Among the latter are a high susceptibility to social desirability, the

inaccessibility of the constructs that are asked about, and (self-)deception [29]. Yet, there is evi-

dence that social desirability might not be a major problem [30]. For example, Axt [30] ana-

lyzed measures of racial attitudes that varied in their degree of directness. That is, he compared

an implicit association test (IAT) of racial attitudes with self-report measures of explicit atti-

tudes that differed in the extent to which racial attitudes were addressed directly. He argued

that there was a trade-off between reducing social desirability issues and measuring construct-

irrelevant aspects. In this analysis, the most direct measure of explicit attitudes was best at pre-

dicting IAT results, and it maximized the differences between participants of different races.

Thus, the extent to which social desirability biases direct measures may be debatable.

Several procedures have been developed for indirectly measuring attitudes and beliefs [e.g.,

37]. The basic idea behind these procedures is that they do not ask for explicit evaluations but

instead use reaction times to measure associations with the object in question. The best known

and most valid indirect measure is the implicit association test [IAT; e.g., 36, 38]. For this test,

participants categorize two lists of words: a list of words from the evaluative dimension and a

list of words referring to the object of interest. The words are displayed on the computer screen,

and categorization is carried out by pressing one of two letters on the keyboard. The response

time is measured. Participants are supposed to do the categorization as fast as possible while still

giving “correct” answers. In several blocks of trials, both lists are practiced before combinations

are tested. An algorithm based on the difference in mean reaction times is used as an indicator

of the association between the categories [see 38 for how issues such as false responses and long

latencies are dealt with]. Even though the IAT score has been criticized for containing aspects
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that are not process-specific, such as speed-accuracy trade-offs, it clearly captures valid and con-

struct-specific processes [39, 40] and has been shown to have predictive validity [e.g., 41, 42].

IATs have been used to measure both attitudes and beliefs by combining the target words with

either evaluative terms (e.g., good/bad) or another category (e.g., female/male).

Direct and indirect measures of evaluations are typically only weakly to moderately corre-

lated [43, 44] as they capture different facets of a construct. It has also been shown that implicit

evaluations can predict outcomes over and above direct measures [25, 26]. For sensitive topics,

such as stereotypes or racism, the predictive validity of indirect measures is higher than that of

direct measures [25]. Some theories on implicit and explicit evaluations explain these findings

by referring to two different psychological processes [e.g., 45, but see 24 for a critical discus-

sion]. Indirectly measuring evaluations should tap into implicit evaluations, whereas direct

measuring should tap into explicit evaluations. For example, in their associative-propositional

evaluation (APE) model, Gawronski and Bodenhausen [e.g., 23, 46, 47] assume that implicit

evaluations are based on the automatic activation of associations, whereas explicit evaluations

draw on these activated associations but are shaped by propositional reasoning about the atti-

tude object. Associative processes are “driven by principles of feature matching and spatiotem-

poral contiguity” [48], that is, the co-occurrence of stimuli is important for learning the

association. Propositional processes, by contrast, are guided by principles of cognitive consis-

tency; that is, they are based on propositional information that is considered valid [48]. This

encompasses explicit information but also observations from which propositional inferences

are drawn [48]. The two types of processes are not independent from each other but can influ-

ence each other. Yet, they do not necessarily lead to the same result, which explains the dissoci-

ation between implicit and explicit evaluations [43].

With regard to the development of university students’ attitudes toward and beliefs about sci-

ence, explicit evaluations might primarily be driven by what students hear in their lectures about

science. By contrast, implicit evaluations might be driven by what they experience at the univer-

sity, for example, the atmosphere surrounding science, what they observe, or how they feel when

learning about science. Thus, implicit and explicit evaluations are susceptible to different kinds of

informational input. For example, Dasgupta and Asgari [49] showed that contextual messages—

which consisted of biographical information about famous female leaders in their Study 1 and the

proportion of female professors in a real-life college situation in their Study 2—do not impact

explicit gender stereotypes about leadership but do impact implicit gender stereotypes. However,

research on gender stereotypes in science, technology, engineering, and mathematics (STEM)

revealed that female STEM role models can impact girls’ explicit beliefs about math [50].

With regard to attitudes toward and beliefs about science, there has not been much research

on indirect measures. Denessen et al. [51] measured explicit attitudes and beliefs about teach-

ing science rather broadly, including motivation scales, and related these evaluations to an

IAT that combined pictograms with a positive or negative valence with pictograms on science

and technology. They found no significant relationships between explicit evaluations and

implicit associations in a sample of nearly 140 Dutch primary school teachers.

However, there has been some research on implicit gender stereotypes with regard to

STEM, that is, on implicit associations between STEM and gender. Nosek and colleagues

showed that science is more often implicitly associated with males than with females [52]. This

implicit stereotype predicted sex differences in the science and math achievement of 8th grad-

ers. Related work showed implicit associations between male and math [e.g., 53–55], which

were also related to self-efficacy, achievement, and enrollment preferences [e.g., 56]. Moreover,

as early as primary school, girls have already appeared to develop a negative attitude toward

math [e.g., 57]. A more recent study showed that gender stereotypes have weakened within the

last decade, and a more neutral view of gender with regard to science is emerging [58].
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Beliefs about science

There has been a great deal of research on “attitudes” toward science, but a great variety of

constructs have been subsumed under this umbrella term [59], most of them being actual

beliefs about science. In the present study, we targeted trust in science and the perceived utility

of science. In doing so, we utilized two different literatures. Research on the public’s under-

standing of science [10] often analyzes trust in science. By contrast, the perceived utility of sci-

ence has been a focus of research on teacher education [11–13] and is often based on

expectancy-value approaches [16, 17].

From both theoretical and practical points of view, it is worthwhile to combine these two

approaches. We argue that when people encounter information about a scientific finding, both

their perceived utility of science and their trust in science may be relevant to whether or not

they consider this scientific information in their decisions. First, information has to be judged

as valid in order to be considered [see epistemic validation: 60]. Given that in many cases, lay-

people cannot decide whether some specific piece of information is valid or not (what to

believe), they have to rely on the trustworthiness of the source of this information (who to

believe) [14, 15]. In the case of scientific findings, they have to trust science and scientists. Sec-

ond, information—even information that is considered valid—will only be taken into account

for decisions and actions if this specific information or this kind of information is considered

useful for the question at hand [13, 16, 17]. We thus assume that both trust in science and the

perceived utility of science are related to how people respond to science and thus should be vis-

ible in the knowledge they have acquired about how science works. We elaborate on these

thoughts below.

Trust in science. When confronted with multiple documents on a topic, as is the case

when one searches the Internet, for example, readers can come across consistent and comple-

mentary information but also conflicting information [61]. In order to solve such a conflict,

readers have to either decide what is true [62]. Or if they do not have sufficient knowledge

about the question at hand, as is most often the case when people are considering scientific

information, they must rely on the trustworthiness of the information, that is, they have to

decide who to trust [14, 15]. Consequently, for further reading, readers prefer sources that

they consider trustworthy [e.g., 63–66]. Characteristics that determine the perceived trustwor-

thiness of a source are, to name just a few, expertise, integrity, benevolence [67], and readiness

to admit mistakes/guilt-proneness [68, 69].

Trust in science can be defined as the assumption that scientists will provide true or valid

knowledge [70]. As such, it is a concept that includes trust in both science as an institution and

the respective people who do science, that is, the scientists. Since non-experts have only limited

opportunities to understand how scientific knowledge is generated, trust in science can be

considered a necessary condition for using scientific information as a basis for decision-mak-

ing [15, 71].

Trust in science has been assessed directly in several public surveys in Europe and the US

[e.g., the Swedish VA Barometer: 8, for an overview, see 70, or the German Wissenschaftsba-

rometer: 72]. In recent years, explicit trust in science has been declining [8]. This decline may

have been due to reports on the instrumentalization of science or on science’s dependence on

external funding [73], as well as the crisis surrounding the difficulties in replicating research

[e.g., 74–76] or the falsification of data [77]. Nevertheless, a German representative study sug-

gested that explicit trust in science has begun to increase again during the COVID-19 pan-

demic [1].

In public surveys, explicit trust in science is usually measured with one item, for example,

“How much do you put your trust in science and research?” [72]. To acquire more reliable
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data, a psychometrically tested scale for measuring the explicit trust of university students was

developed [78]. In that study, explicit trust in science was found to be positively related to the

number of years a student had spent in college and to the number of college-level science

courses a student had taken. To our knowledge, there is no indirect measure of science-trust

association.

Perceived utility of science. Utility value is an important precondition for decision-mak-

ing and actual behavior [see 17, 32, 79]. As a component of the expectancy-value framework of

achievement motivation [e.g., 16, 17], utility value has been shown to be related to achieve-

ment-related behavior and achievement, for example, in reading [80], in college-level psychol-

ogy [81] and mathematics [82] courses, and in low-stakes tests [83].

The perceived utility of science for society as a whole or for specific parts of it, such as the

economy or health, has been addressed in several studies [e.g., 84, 85]. For example, people

who report a higher utility of science for the economy also consider nanotechnology especially

beneficial [86]. Yet, the perceived utility of science for individual decision-making (henceforth:

utility of science) has been researched only infrequently. It has been studied primarily in the

context of teacher education [11–13] where it refers to the value that is ascribed to science and

scientific evidence for informing decisions that concern teaching. Still, teachers do not neces-

sarily rely on evidence-based approaches but often use personal theories or experiences as a

benchmark [12, 87, 88, see also 89]. The relevance of perceived utility is underscored by find-

ings such as that the perceived utility of science is associated with teacher-education students’

motivation to study theory-based coursework as opposed to practical coursework [87], with

the quality of their evidence-based reasoning [11], and with their selection of scientific infor-

mation sources [13]. Moreover, the perceived utility of science has been found to be associated

with teachers’ use of research-based information [90, 91].

Perceived utility of science has been assessed only directly, by means of questionnaires such

as the one used in the present study (see S1 Appendix). To our knowledge, there is no indirect

measure of science-utility association.

Beliefs about science and knowledge about how science works

In the context of the public’s understanding of science, it has been suggested that a lack of posi-

tive attitudes toward science and positive beliefs about science are related to a lack of knowl-

edge [e.g., 10, 18]. Likewise, it has been found that more positive beliefs about science are

related to better knowledge about science [e.g., 78, 85, 92]. More positive beliefs can lead to

more knowledge, for example, because people more often choose situations in which they can

learn about science [see 21] or because they benefit more from learning opportunities than

their peers with less positive beliefs about science.

Whereas most prior research has conceptualized knowledge as knowledge about scientific

facts or content knowledge, this is only one component of scientific literacy. Other aspects are

knowledge about how science works or methodological knowledge and knowledge about the

impact of science on society [19, 93, 94, see also 95]. In the context of decision-making in one’s

professional, personal, or societal life, it is not only prior content knowledge (i.e., scientific

facts about the topic) but also knowledge about how science works that seems to be important

in situations in which a person has no or not enough prior content knowledge [see 96]—

which is probably the case for most socio-scientific issues.

Whereas the relation between beliefs about science and knowledge about scientific facts has

been examined quite a bit, there is very little research on the relation between beliefs about sci-

ence and knowledge about how it works [92]—even though it is plausible that beliefs shape peo-

ple’s motivation to acquire knowledge in a given area. In the few existing studies, it was found
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that laypeople’s knowledge about how science works was related to their level of education [92],

their science-friendly beliefs [92], their perception of the uncertainty of scientific evidence [92],

and their perception of the benefits of nanotechnology [86]. To the best of our knowledge, there

are no studies on the relation between science-utility and science-trust associations and knowl-

edge about science with respect to scientific facts or methodological knowledge.

The present study

The aim of the present study was to analyze two newly developed indirect measures of science-

utility and science-trust associations and to relate them to knowledge about how science works

by predicting knowledge from these indirect measures in addition to direct ones.

Specifically, we posed the following research questions and hypotheses:

1. What are the science-utility and science-trust associations as well as explicit beliefs about

science in a sample of university students? As an exploratory analysis, we also investigated

whether there are gender differences in these measures. On the basis of Nadelson et al. [78],

who found a mean trust in science of 3.53 on a 5-point Likert scale, we expected a mean

trust in science slightly above the scale midpoint. Due to gender stereotypes and related

self-stereotyping, we expected gender differences in favor of men that would be more pro-

nounced in the direct measures because these are affected by biases and distortions more

often than indirect measures are [e.g., 97]—in our case, conformity with gender stereotypes

[e.g., 98].

2. What are the psychometric properties of the science-utility and science-trust measures? We

aimed to test the internal consistencies of the indirect measures and the relationships

between the indirect measures with the corresponding direct measures. On the basis of

prior research [e.g., 43, 44, 90], we expected moderately positive relationships between the

indirect and direct measures.

3. How do science-utility and science-trust associations as well as explicit beliefs about science

relate to knowledge about how science works? Do science-utility and science-trust associa-

tions incrementally predict knowledge about how science works beyond the corresponding

explicit beliefs? On the basis of prior research on other beliefs and their ability to incremen-

tally predict outcome variables [e.g., 42], we expected a small to medium-sized incremental

effect.

Method

The research was approved by the local ethics committee of the University of Bamberg. The

participants provided written informed consent. No minors were involved.

Sample

A total of 261 German university students took part in the study. They were 18 to 68 years old

(M = 22.47, Median = 21, SD = 4.71, 78.2% female). (In Germany, it is not unusual for senior

citizens to study at the university. The 68-year-old person’s data were checked with regard to

whether outliers were present. This was not the case, and thus, we did not exclude the person’s

data). The participants were mainly enrolled in psychology (28.4%), teacher education

(18.4%), educational science (15.7%), communication sciences (11.1%), or other social sci-

ences (14.9%), which explains the large proportion of women in the sample (see also the S1

Appendix). 66 participants were in a Master’s program, 141 in a Bachelor’s program, and 48 in
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a teacher education program, most of which are not part of the bachelor/master system but

end in a state examination. The study took place from October to November 2019.

We planned to have a sample size of 260 because a power analysis [with GPower 3.1: 99]

showed that this sample size would be large enough to detect a small to medium-sized effect

(correlation of r = .20) with a power of 95%. The participants were recruited via their university

courses, university e-mail lists, as well as posters and flyers on campus. They received 10€ for

about one hour of testing time. The present study was approved by the local ethics committee.

Design

We used a correlational design. All participants worked on measures of explicit beliefs about

science and science-utility and science-trust associations (predictors) before completing the

test of knowledge about how science works (criterion). To control for potential order effects,

the order of direct and indirect measures was balanced across participants.

Procedure

Participants were tested individually on a computer in a room at the university. After being

welcomed by the experimenter, they were placed at the computer and asked to work on the

study independently. The experimenter remained in the room but was out of the participants’

line of sight.

After providing written informed consent, the participants completed the measures on

beliefs, the order of which was balanced across participants. Then, epistemic beliefs and knowl-

edge about how science works were assessed. Due to unsatisfactory psychometric characteris-

tics of the epistemic beliefs scales—more precisely, unsatisfactory fit indices in a confirmatory

factor analysis—they were not included in the analyses used in the present study. Finally, par-

ticipants were asked for demographics. In addition, they took a pretest for another study.

When they had finished, the experimenter thanked the participants, and they received their

monetary compensation. A list of all measured variables is available in the S1 Appendix.

Material and instruments

Self-report: Utility of science and utility of personal experiences. The direct measure of

utility of science was a questionnaire consisting of two scales with four items each to measure

the perceived utility of science and the perceived utility of personal experiences for one’s own

decisions, which we had already used in another as yet unpublished study. The questionnaire

is based on two scales by Kiemer and Kollar [11, 13], which were designed to measure teacher

education students’ perceived utility of empirical educational science and their personal expe-

riences for their teaching decisions. The items were rephrased to refer to science in general

and to individual decisions, for example, in the health context. A sample item from the utility

of science scale is “Scientific knowledge is useful for individual decisions.” A sample item from

the utility of personal experiences scale is “Individual decisions should mainly be based on

one’s own experiences or those of others.” The items were answered on a 5-point Likert scale.

A confirmatory factor analysis (CFA) showed an acceptable fit (χ2 = 48.64, df = 19, p< .001;

RMSEA = .08; CFI = .94; SRMR = .07). The internal consistencies of the scales were calculated

as ω total in the R package psych [100]. McDonald’s ω is a measure of internal consistency,

which is similar to Cronbach’s α but accounts for many problems with the latter [101]. In the

present study, the internal consistencies of the scales were acceptable with McDonald’s ω val-

ues of .79 for the utility of science and .76 for the utility of personal experiences.

Self-report: Trust in science. The direct measure that we used to assess explicit trust in sci-

ence was a German translation of the questionnaire on trust in science by Nadelson and
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colleagues [78]. It used a 5-point Likert scale. All items that had been translated from the original

scale had been pretested, and on the basis of the pretest results (i.e., factor loadings< |.4|), we

included only Items 5, 7, 9, 10, 11, 12, 14, and 15 from the original questionnaire. A sample item

is “We can trust scientists to share their discoveries even when they don’t like their findings” [78].

As in our previous study, the short scale had a good internal consistency (McDonald’s ω = .82),

and when we allowed two items with almost identical wordings (10 and 11) to correlate, the fit of

the CFA was good (χ2 = 37.70, df = 19, p = .007, RMSEA = .06, CFI = .96, SRMR = .04).

Science-utility and science-trust associations. As indirect measures of science-utility

and science-trust associations, two implicit association tests (IATs) were developed. For both

IATs, the classical IAT design was used to contrast science with opinion. The evaluation

dimension was different for the two IATs in order to mirror the association of science with

either utility or trustworthiness. For the IAT on utility, words had to be classified into useful

versus useless. For the IAT on trust with the evaluation dimension trustworthiness, words had

to be classified into trustworthy versus untrustworthy. All the words used in the IATs are pre-

sented in Table 1.

For both IATs, a score was computed with the improved scoring algorithm [38]. In this

score, 0 indicates that science has a balanced association with utility and inutility or trustwor-

thiness and untrustworthiness. Positive values indicate a stronger association of science with

utility or trustworthiness, whereas negative values indicate a stronger association of science

with inutility or untrustworthiness. The IATs were implemented with the Inquisit software by

Millisecond. Following the recommended procedure [38], error trials were handled by requir-

ing participants to correct their responses, and trials with latencies> 10,000 ms were excluded.

Greenwald et al. [38] also recommended that participants for whom more than 10% of their

trials had a latency of less than 300 ms should be excluded, but this did not apply to any of the

participants in the present study.

Knowledge about how science works. Knowledge about how science works was assessed

with a scenario-based test, which was based on the test by Retzbach and colleagues [92] and

had been used in our previous study. The test included 9 scenarios that scientists may find

themselves in. The gender of the scenario scientist was alternated across scenarios. The topics

of the scenarios were research design, probability, double-blind procedure, kinds of studies

(meta-analysis), significance, falsification principle, peer review, operationalization, and gener-

alizability. As such, the test covered methodological questions about the natural or social sci-

ences, which are the disciplines that are most relevant for socio-scientific issues. It was

explicitly not the aim of the test to assess methodological knowledge from all possible scientific

disciplines or specialized knowledge, such as knowledge about specific methods of analysis

(e.g., ANOVAs or t tests), but to cover methodological knowledge that is part of a general

knowledge base and relevant for socio-scientific issues. Nevertheless, students from the natural

or social sciences might have an advantage on this test because they may have encountered

these topics in their studies. For each scenario, the participant was asked to choose the correct

option from four alternatives. The number of correctly solved scenarios was summed up,

resulting in a maximum score of 9. The original German items and their English translations

can be found in the S1 Appendix.

Data availability and analysis

The data that support the findings of this study have been deposited in the Open Science

Framework with the URL https://doi.org/10.17605/OSF.IO/Z6AXP.

The data were analyzed with Mplus 8.6 [102], R 4.0.4 [103], and the package psych, version

2.0.12 [100].
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Results

Table 2 presents descriptive statistics for the variables that were included in the study. The

zero-order correlations of the manifest variables can be found in Table 3.

Science-utility and science-trust associations as well as explicit beliefs about

science in the sample and gender differences

In order to analyze science-utility and science-trust associations as well as explicit beliefs of the

sample (RQ 1), a t test was calculated in R on the manifest d values of the two IATs to test

them against 0, and on the mean scores of the self-report scales to test them against the scale

midpoint of 3. As can be seen in Table 2, there were slightly positive associations of science

with utility (M = 0.15) and trustworthiness (M = 0.16). Both were significantly different from

Table 1. Words used in the IATs.

IAT Category German original English translation

both science Experiment experiment

Forschung research

Statistik statistics

Labor lab

Versuchsanordnung experimental arrangement

opinion Ansichtssache matter of opinion

Meinung opinion

Empfinden sensation

Überzeugung conviction

Eindruck impression

utility useful Nützlich useful

brauchbar usable

wertvoll valuable

sinnvoll meaningful

nutzbringend beneficial

useless unnütz unncessary

überflüssig needless

zwecklos futile

nutzlos useless

sinnlos meaningless

trustworthiness trustworthy vertrauenswürdig trustworthy

glaubwürdig credible

ehrlich honest

aufrichtig sincere

verlässlich reliable

zuverlässig authentic

unverfälscht unbiased

untrustworthy zweifelhaft dubious

unglaubwürdig implausible

unehrlich unfrank

unredlich dishonest

fragwürdig questionable

verlogen false

fadenscheinig specious

https://doi.org/10.1371/journal.pone.0260586.t001
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zero (utility: t = 5.50, df = 260; p< .001; trustworthiness: t = 5.67, df = 260; p< .001). Regard-

ing explicit beliefs, the means for utility of science (M = 3.74) and trust in science (M = 3.46)

were also slightly above the scale midpoint of 3. Both were significantly different from 3 (utility

of science: t = 17.55, df = 260; p< .001; trust in science: t = 12.53, df = 260; p< .001).

The differences in science-utility and science-trust associations as well as explicit beliefs

about science by gender are also presented in Table 2. Gender differences were analyzed by

means of t tests in R. There was a significant gender difference such that men had more posi-

tive explicit beliefs about science than women. For science-utility and science-trust associa-

tions, there were no significant gender differences. In order to analyze whether gender effects

differ between direct and indirect measures, the correlation of gender and explicit utility was

compared to the correlation of gender and the science-utility association. The same was done

for gender and its correlation with explicit trust and the science-trust association. A Steiger

test for dependent correlations showed in both cases that the gender effects in beliefs did not

differ significantly across the mode of measurement (utility: t = -1.53, p = .128, trust: t = -0.97,

p = .335).

Psychometric properties of indirect measures: Internal consistencies and

the relationship between science-utility and science-trust associations and

explicit beliefs about science

In order to calculate the internal consistencies of the IATs, the critical IAT trials were divided

into four quarters, and D scores were built for each of these quarters, following the procedure

Table 2. Descriptive statistics for the scales and gender differences.

Scale

range

Range Internal

consistency

M (SD) M (SD) Women

(n = 204)

M (SD) Men

(n = 56)

t df p

Explicit: utility of science 1–5 1.75–5 .79 a 3.74 (0.68) 3.66 (0.68) 4.04 (0.59) -4.16 99.65 < .001

Explicit: utility of personal

experiences

1–5 2–5 .76 a 3.93 (0.61) 3.93 (0.61) 3.91 (0.63) 0.25 86.29 .807

Explicit: trust in science 1–5 1–4.88 .82 a 3.46 (0.6) 3.40 (0.56) 3.69 (0.69) -2.85 75.52 .006

IAT utility of science -2–2 -1–1.25 .86 0.15 (0.43) 0.12 (0.44) 0.24 (0.39) -1.94 96.95 .055

IAT trust in science -2–2 -1.13–1.33 .90 0.16 (0.46) 0.13 (0.45) 0.27 (0.49) -1.84 83.10 .070

Knowledge about how science

works

0–9 0–9 -- 5.47 (1.82) 5.41 (1.81) 5.71 (1.87) -1.08 85.37 .282

Note. a McDonald’s ω.

https://doi.org/10.1371/journal.pone.0260586.t002

Table 3. Zero-order correlations of the manifest variables.

(2) (3) (4) (5) (6)

(1) explicit: utility of science .17�� -.01 .17�� .14� .18��

(2) explicit: trust in science .11 .07 .10 .09

(3) explicit: utility of personal experiences -.00 .02 -.01

(4) IAT utility of science .54��� .15�

(5) IAT trust in science .23���

(6) knowledge about how science works

Note. � p< .05,

�� p < .01,

��� p< .001.

https://doi.org/10.1371/journal.pone.0260586.t003
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outlined by Buttrick and colleagues [104]. The internal consistencies were calculated on the

basis of these four D scores. The internal consistencies were very good for the IAT on the util-

ity of science (ω = .86) and for the IAT on the trustworthiness of science (ω = .90). These values

are in the upper tail of the typical range for the IAT [26, 105].

In order to assess the relationships between the indirect and direct measures, two confirma-

tory factor analyses were calculated in Mplus, one for the measures of trust and one for the

measures of utility. For the IATs, the four D scores were used as indicators of each latent vari-

able. Regarding the relationships between science-utility and science-trust associations and

their corresponding explicit beliefs, there was a moderately positive correlation for utility of

science but not for trust in science. In the model including the science-utility association and

explicit utility of science (χ2 = 11. 26, df = 19, p = .915, RMSEA = .00, CFI = 1.00, SRMR = .02),

there was a latent correlation between the two measures of .23 (p = .002). With regard to the

model on the science-trust association and explicit trust in science (χ2 = 67.80, df = 52, p =

.070, RMSEA = .03, CFI = .98, SRMR = .04), the latent correlation of .12 (p = .109) was not sig-

nificantly different from zero. Again, these findings dovetail with previous evidence [37, 43].

Relationship of knowledge about how science works with beliefs and

associations

To analyze the relationship between knowledge and beliefs (RQ 3), several structural equa-

tional models were calculated in Mplus (see Table 4). Knowledge was included as a manifest

variable, whereas beliefs and associations were modeled as latent variables. Beliefs and associa-

tions were allowed to correlate in all models. In contrast to manifest regression analyses, struc-

tural equational models can account for measurement error [104].

First, only the direct measure of utility of science was entered (Model 1). Then, only the sci-

ence-utility association was tested as a predictor (Model 2). In a third model, both explicit util-

ity of science and the science-utility association were included. In this model, the science-

utility association was able to predict knowledge about how science works (β = .14, p = .034)

beyond the contribution of explicit utility of science (β = .17, p = .014).

Table 4. Standardized coefficients for beliefs and associations predicting knowledge about how science works in Models 1–9.

Knowledge about how science works

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Predictor Standardized coefficients

Explicit: utility of science .21�� .17� .20�� .16�

IAT utility of science .18�� .14� .05 .03

Explicit: trust in science .09 .07 .05 .04

IAT trust in science .23��� .22��� .20� .18

Goodness of fit

χ2 2.92 4.31 12.59 47.53 5.65 79.73 87.84 25.34 195.11

df 5 5 25 26 5 62 62 25 179

p .713 .506 .981 .006 .342 .064 .017 .443 .194

RMSEA .00 .00 .00 .06 .02 .03 .04 .01 .02

CFI 1.00 1.00 1.00 .95 1.00 .98 .96 1.00 .99

SRMR .01 .02 .02 .04 .02 .04 .05 .02 .04

Note. � p< .05,

�� p < .01,

��� p< .001. All predictors in a model were allowed to correlate.

https://doi.org/10.1371/journal.pone.0260586.t004
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In an analogous way, three models were calculated for trust in science (Models 4–6). The

science-trust association predicted knowledge (β = .22, p = .000) beyond the contribution of

explicit trust in science (β = .07, p = .329) in Model 6. However, explicit trust in science did

not significantly predict knowledge about how science works even as a single predictor in

Model 4 (β = .09, p = .179).

In a third series of models (7–9), both utility and trust were included. In Model 7, which

included explicit utility and trust, only explicit utility of science significantly predicted knowl-

edge about how science works (β = .20, p = .006). This was also true when all four measures

(explicit utility, explicit trust, science-utility association, science-trust association) were

included (β = .16, p = .031).

Discussion

The present study had two main aims. First, we aimed to analyze two newly developed indirect

measures of associations, that is, an IAT for the perceived utility of science and an IAT for

trust in science, concerning their psychometric properties, including their relationships with

corresponding direct measures. Second, we aimed to test how science-utility and science-trust

associations as well as explicit beliefs about science relate to knowledge about how science

works and whether science-utility and science-trust associations incrementally predict knowl-

edge. We found very good internal consistencies for the two IATs of .86 for the utility of sci-

ence and .90 for the trustworthiness of science, and small correlations between the indirect

and the corresponding direct measures. The science-utility association predicted knowledge

over and above explicit utility. Whereas explicit trust did not significantly predict knowledge,

the science-trust association did. The results are discussed more in-depth in the following.

For science-utility and science-trust associations as well as for both explicit belief measures,

we found that the mean score in our sample was slightly and significantly above the scale mid-

point. Since the study was not representative, this provides insight only into the present sam-

ple. As participation in the study was voluntary and the study had been advertised as a study

on beliefs about science, only students with relatively favorable beliefs about science may have

decided to participate. Also, students studying disciplines different from the ones represented

in our study may have different beliefs about science. Nevertheless, the present findings are

well-aligned with Nadelson et al. [78], who found a mean trust in science of 3.53. In our study,

the mean for explicit trust in science was 3.46. Whereas we found gender differences in explicit

beliefs about science, no such differences were found in science-utility and science-trust asso-

ciations. Male students in our study reported higher perceived utility of science and more trust

in science than female students did. Descriptively, men also had higher values than women in

science-utility and science-trust associations; however, this difference was not significant. The

present sample was not composed of equal proportions of men and women, and thus, the find-

ing should be interpreted with caution. Moreover, results on gender might be biased by stu-

dents’ enrollment in different study programs that differ in how they approach the teaching of

scientific methods. Thus, male and female students might have had different experiences with

science due to a different exposure to science and scientific methods. Bearing in mind these

limitations, this finding is in line with many prior studies that found more positive explicit atti-

tudes toward and beliefs about science in men [see 59, 106] and with the only study on implicit

associations with science that we are aware of [51], but is called into question by findings on

implicit gender stereotypes regarding science [e.g., 52].

The newly developed IATs on the utility of science and trust in science showed good psy-

chometric properties. The internal consistencies were very high and reached the upper tail of

the usual range of internal consistencies in IATs [26, 105]. Regarding the relationships between
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the IATs and their corresponding direct measures, we found a correlation of .23 for utility of

science. This value is perfectly in line with the correlation a meta-analysis found between IAT

measures and their direct counterparts [rho = .24: 43]. Conversely, the correlation between

explicit trust in science and the science-trust association was only .12 and was nonsignificant.

Such low correlations have also been observed in previous studies [44, 107]. In the present

study, one reason for this finding could be that the alignment between the direct and indirect

measures was not perfect. We used the IAT to assess the association between trustworthiness

and science. On the self-report questionnaire [a short version of 78], trust in science encom-

passed both trust in science as a field and trust in the people who do science, that is, the scien-

tists. The latter items focused on the belief that scientists are trustworthy when they write up

their reports. Even though these differences sound subtle, it may be interesting to follow up on

such a distinction.

Another explanation is based on the assumption that associations and explicit beliefs are

based on different psychological processes and different learning experiences [e.g., 23, 46, 47].

Whereas the learning of explicit beliefs requires the learner to evaluate propositional informa-

tion as valid, the learning of associations is supposed to take place through the co-occurrence

of stimuli. The science-trust association may have a stronger emotional component than the

science-utility association, which may have a stronger cognitive component. Thus, the learning

of the science-utility association may be more closely connected to the learning of the explicit

utility of science, whereas the dissociation may be greater for trust in science. However, the

cognitive versus emotional charges of these beliefs are speculations that require further empiri-

cal examination.

As expected, we found that the indirect measures relate to knowledge about how science

works. In fact, the science-utility association predicted knowledge over and above the corre-

sponding direct measure. And whereas explicit trust did not predict knowledge, the science-

trust association did. This finding is notable in several ways. First, in contrast to earlier studies,

we did not measure content knowledge, but rather, methodological knowledge. Our measure

was focused on methodology and principles in natural and social sciences as these disciplines

mainly contribute to decision-making in socio-scientific issues, that is, in areas where laypeo-

ple have little content knowledge but have to make important everyday decisions—as has been

the case during the COVID-19 pandemic. This choice proved reasonable, as this type of

knowledge was related to science-utility and science-trust associations as well as explicit utility

of science in the present study.

Second, it is interesting that knowledge about how science works was not significantly

related to explicit trust in science in our study. As discussed above, the trust in science scale

conceptualizes trust in science as trust in the principles of science and in the people doing sci-

ence. It may be the case that knowledge about how science works is not related to trust in sci-

entists but is instead related to trust in the principles of science. The indirect measure of trust

in our study addressed trust in the principles of science, and it was related to knowledge. How-

ever, this explanation has to be tested in further studies. Finally, the findings provide evidence

for the validity and usefulness of the newly developed indirect measures of science-utility and

science-trust associations.

In the present study, two lines of research were combined, findings on trust in science and

on the utility of science. The basic idea is that both (a) trust in science and scientists and (b)

the perceived utility of science are necessary for laypeople to consider scientific findings in

their decision-making, for example, in the COVID-19 pandemic. The present study offers a

first step in the direction of a joint framework of these two beliefs. With regard to knowledge

about how science works as a predicted outcome, it seems that both trust and utility indepen-

dently predict knowledge but do not do so incrementally. Yet, since knowledge is related to
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both trust and utility, the direction of effects could also be the opposite, such that knowledge

influences beliefs about science. Moreover, the relation could be reciprocal. In addition, fur-

ther studies are necessary to determine whether beliefs about science influence actual deci-

sion-making.

Obviously, the present study has its limitations. One limitation is the small proportion of

men in the sample, which limits the interpretation of the gender effects we found. Moreover,

the present sample is not representative, which limits the generalizability of the positive atti-

tudes toward science that we found in the sample. However, these aspects do not necessarily

constrain the interpretation of the relation between science-utility and science-trust associa-

tions as well as explicit beliefs about science and knowledge about how science works. The

cross-sectional nature of the study does not allow us to draw conclusions about the direction

of the relationship between associations and beliefs, and knowledge. Both directions seem

plausible. Better knowledge about how science works could foster positive beliefs about and

associations with science [10, 18, 78, 85, 92], but more positive beliefs about and associations

with science might also direct students’ attention to opportunities to learn about how science

works, either because students will pay more attention to the information they encounter or

because they will enter into more situations in which they can learn about how science works

[see 21]. As in other domains [e.g., reading self-concept and reading comprehension: 108], it

also seems plausible that there could be a reciprocal relationship between attitudes and knowl-

edge. To address this question, longitudinal or experimental studies are necessary. Moreover,

it is also possible that a third variable, for example, scientific education or exposure to science,

influences both knowledge about how science works and beliefs about and associations with

science, so that there might not be a direct relationship between the two variables.

Despite these limitations, the present study suggests that science-utility and science-trust

associations are constructs that should be considered in future studies. Indirectly measured

associations have been shown to be less susceptible to biases and faking than self-reports are

[109], draw on different psychological processes than explicit beliefs do [e.g., 23, 46, 47], and

as shown in our study, often have incremental validity over explicit beliefs in predicting out-

comes [41]. In the present study, the outcome in question was knowledge about how science

works. In the future, studies dealing with the question of how people evaluate and consider sci-

entific information when confronted with either single or multiple documents of varying char-

acteristics [63, 110], be it with regard to the COVID-19 pandemic or other topics, might

benefit from including not only direct measures of beliefs about science but also science-utility

and science-trust associations. Moreover, they might benefit from the simultaneous consider-

ation of trust and utility, since these two beliefs might be intertwined in predicting decisions

for which scientific findings could be relevant. From an educational perspective, the present

results can contribute to the assessment of indirectly measured associations in addition to

explicit beliefs about science. We hope that considering both types of measures will help stu-

dents more effectively reflect on their beliefs so that they will eventually develop positive sci-

ence identities [111] and identify with scientific virtues, attitudes, and beliefs.
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