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Abstract
Background: The problem of protein structure prediction consists of predicting the functional or
native structure of a protein given its linear sequence of amino acids. This problem has played a
prominent role in the fields of biomolecular physics and algorithm design for over 50 years.
Additionally, its importance increases continually as a result of an exponential growth over time in
the number of known protein sequences in contrast to a linear increase in the number of
determined structures. Our work focuses on the problem of searching an exponentially large space
of possible conformations as efficiently as possible, with the goal of finding a global optimum with
respect to a given energy function. This problem plays an important role in the analysis of systems
with complex search landscapes, and particularly in the context of ab initio protein structure
prediction.

Results: In this work, we introduce a novel approach for solving this conformation search problem
based on the use of a bin framework for adaptively storing and retrieving promising locally optimal
solutions. Our approach provides a rich and general framework within which a broad range of
adaptive or reactive search strategies can be realized. Here, we introduce adaptive mechanisms for
choosing which conformations should be stored, based on the set of conformations already stored
in memory, and for biasing choices when retrieving conformations from memory in order to
overcome search stagnation.

Conclusion: We show that our bin framework combined with a widely used optimization method,
Monte Carlo search, achieves significantly better performance than state-of-the-art generalized
ensemble methods for a well-known protein-like homopolymer model on the face-centered cubic
lattice.

Background
Considering the close connection between the function of
proteins and their three-dimensional (tertiary) structure,
there are many reasons for studying protein folding; these
include the desire to predict protein function based on
sequence data (via tertiary structure prediction), to better

understand a number of diseases that are directly caused
by protein misfolding, aggregation and fibrillogenesis
(some of which include Alzheimer's, Huntington's and
prion disease as well as cystic fibrosis [1]), and to design
proteins with desired structure and function. Since exper-
imental methods (X-ray crystallography and NMR) for
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protein structure determination are highly labour inten-
sive and require purification and, in the case of X-ray crys-
tallography, crystallization of proteins, computational
methods for predicting protein structure from sequence
are very attractive.

The ab initio protein folding problem is the problem of
predicting the tertiary structure (the native state) of a pro-
tein from its amino acid sequence by minimizing a given
energy function. Even for simple models that discretize
conformations on a lattice (grid), this optimization prob-
lem is P-hard [2,3]. Its difficulty stems from the fact
that the space of possible conformations is vast, and the
search landscapes induced by the given energy function
are very complex. One of the most prominent and success-
ful approaches for solving this and many other P-hard
optimization problems is known as stochastic local search
(SLS) [4]. Applied to protein folding problems, SLS meth-
ods attempt to find native states by iteratively performing
small conformational modifications guided by the given
energy function; randomized decisions are used to avoid
getting trapped in local minima of the given energy land-
scape. Monte Carlo algorithms, which are widely used in
protein structure prediction, are a prominent special case
of SLS methods.

The performance of stochastic local search algorithms is
critically dependent on the properties of the search land-
scape encountered, such as the number and distribution
of local minima, the overall landscape ruggedness (meas-
ured, for example, using auto-correlation or fitness-dis-
tance analysis), and the basin structure. Therefore, search
strategies that can extract important features of the land-
scape and adapt the search accordingly are among the
most effective tools for solving optimization problems
with complex search landscapes. As evident from an anal-
ysis of the literature describing search methods for ab initio
protein folding presented in the related work section, such
adaptive search strategies have not been widely studied for
this problem.

In this work, we introduce a novel adaptive SLS method
that is based on a system of bins for storing a diverse set
of conformations (candidate solutions) in memory. The
general idea behind our approach is to store promising
conformations encountered during the search for later use
in situations when search stagnation is detected. These
conformations are pooled into a number of bins accord-
ing to energy and diversity criteria. The storage and
retrieval mechanisms used in this context adaptively con-
trol the behaviour of a subsidiary local search procedure,
such as canonical Monte Carlo search, and are shown to
greatly improve its performance.

The remainder of this paper is structured as follows: First,
we provide background information and discuss related
work on protein folding problems and algorithms. Next,
we introduce the bin framework and describe a Monte
Carlo algorithm that utilizes this bin framework adap-
tively. We then compare the performance of our algo-
rithm with that of other prominent methods from the
literature, followed by a discussion of how the behavior
and performance of our algorithm is influenced by its
parameters. Finally, we explain how the bin framework
introduced in this work relates to other search methods
known from the literature, summarize our findings, draw
some general conclusions, and indicate directions for
future work. In the "Methods" section, we describe the
face-centered cubic (FCC) lattice model and β-sheet
energy potential used in our computational analysis and
provides details of the experimental protocols used in the
empirical analysis of our algorithm.

Related work
To address the ab initio protein folding problem, the fol-
lowing three issues need to be considered: (1) the model
used for the representation of protein structure (which
may have implications on prediction accuracy); (2) the
energy potential function (which ideally should be able to
discriminate between native and non-native conforma-
tions); and (3) the method used for searching through the
space of possible conformations (which should be able to
find optimal conformations as efficiently as possible). In
this section, we discuss the choice of protein representa-
tion and energy function made in this work; we also pro-
vide a brief overview of the best-performing search
methods for ab initio protein folding known from the lit-
erature.

To facilitate ab initio protein structure prediction by means
of more efficient methods for searching in the space of
protein conformations, various reduced models of pro-
tein structure have been introduced by biochemists and
physicists. These reduced models fall into two major
classes: lattice and off-lattice models. The primary reason
for choosing off-lattice models over lattice models is to
obtain better geometrical accuracy. Despite the biases
introduced by the lattice models, namely a somewhat
restricted ability to accurately represent secondary struc-
ture and backbone conformation, lattice models still
retain essential properties of the system [5-7] and offer a
number of computational advantages; these advantages
include fast energy computation, easiness of testing self-
avoidance and the ability to use pre-computed tables of
moves, all of which help to compute search steps effi-
ciently.

An important representative of lattice models is the Face-
Centered Cubic (FCC) lattice, which underlies the crystal-
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line structure of most metals. Even though in the context
of ab initio protein structure prediction, the simpler square
and cubic lattices are the most widely studied models in
the literature, the FCC lattice captures real protein confor-
mations with higher accuracy (coordinate Cα root mean
square deviation below 2 Å) [7] while still being represen-
tationally rather simple (it requires only 12 basis vectors).
It has also been shown that local packing of amino acids
in real proteins closely fits a distorted FCC lattice [8], and
that the FCC model allows a reasonable description of sec-
ondary structure elements; furthermore, it can represent
geometrically accurate hydrogen bonding [6]. As a result,
the FCC lattice is considered the best overall choice
among the simpler regular lattice models [6]. A detailed
description of the FCC lattice is provided in the "Meth-
ods" Section.

As an energy function to be used in conjunction with the
FCC lattice model we chose the β-sheet potential [9,10].
This choice was motivated by the fact that there are no
universally used energy functions for ab initio protein
structure prediction; at the same time, the β-sheet poten-
tial has been used relatively widely in the literature for the
empirical evaluation of the best-performing protein struc-
ture prediction methods discussed later in this section.
This enables us to compare our new approach against a
relatively wide range of other conformation search meth-
ods known from the literature. Furthermore, this β-sheet
potential exhibits characteristics of more complicated
energy functions used for off-lattice models [9,11] (partic-
ularly, cooperative all-or-none folding transition, charac-
teristic interplay between short- and long-interactions and
secondary structure propensity). Finally, the problem of
folding of β-sheet proteins is particularly important, since
the accuracy of protein structure prediction methods for
β-sheet proteins is the lowest among all structural classes
of proteins [12]. The β-sheet potential used in this work is
described in detail in the "Methods" Section.

There are a number of search methods applicable to the
protein folding problem that can be used in conjunction
with reduced complexity models and simplified poten-
tials to perform a broad search through low-resolution
structures. The most widely used methods include
Metropolis Monte Carlo (MC) search [13-17], Genetic
Algorithms [18-20] and Generalized Ensemble Methods
[21-23], which include the currently best-performing
algorithms for ab initio protein structure prediction. This
last class of algorithms is based on the observation that
canonical Monte Carlo methods sample conformations
according to Boltzmann probabilities. For typical distri-
butions of states (i.e., protein conformations) over energy
levels this means that very high and, more importantly,
very low energy conformations are rarely sampled. Gener-
alized Ensemble Monte Carlo Methods attempt to over-

come this problem by striving to perform a random walk
in energy space by computing the density of states, by
sampling expanded range of temperatures or by comput-
ing other physical quantities affecting transitions between
the states during search.

Currently, the best-performing Generalized Ensemble
Method for ab initio protein structure prediction is Replica
Exchange Monte Carlo search (REMC) [23], also known
as the multiple Markov Chain method or Parallel Temper-
ing [22]. In REMC, a number of non-interacting copies
(replicas) of the given protein sequence are folded inde-
pendently and at different temperature settings of the
underlying canonical Monte Carlo search. Every few steps,
pairs of replicas are exchanged (i.e., the temperature set-
tings of the MC search performed on them are swapped)
with a probability that depends on the energies of the
respective conformations (using Boltzmann weighting).
While other Generalized Ensemble Methods, such as Mul-
ticanonical (MUCA) Monte Carlo (or Entropy Sampling
Monte Carlo) search [9], maintain only one conformation
at any given time, the number of replicas required in
REMC increases as the square root of the number of
degrees of freedom (which in its turn increases linearly
with sequence length) [23].

Improvements of REMC introduced in the literature
include hybrid approaches between REMC (for the weight
factor determination) and MUCA, or Simulated Temper-
ing production runs [22-24]. The Parallel-Hat Tempering
(PHAT) Monte Carlo method utilizes an additional
weight factor based on the histogram of energies sampled
by each temperature replica [10] to achieve an exponen-
tial increase in the acceptance probabilities for high- and
low-energy conformations, which increases the efficiency
of the search process by allowing it to effectively overcome
higher energy barriers and to explore a wider range of con-
formations for each replica.

The following algorithms have been implemented and
empirically evaluated for the FCC lattice model with the
β-sheet energy function considered in this work: canoni-
cal Metropolis Monte Carlo search [9], MUCA [9], REMC
[9] and PHAT [10]. Of these, PHAT is the best-performing
conformation search method for the ab initio prediction of
protein structures on the FCC lattice using the β-sheet
potential.

Bin framework Monte Carlo search
The key idea behind our adaptive bin framework is to
improve the effectiveness of a given search process, such
as canonical Monte Carlo search, by making it adaptive
and augmenting it with a mechanism for storing and
retrieving promising conformations. This is achieved by
using a series of bins each of which holds a set of confor-
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mations within a certain energy range and an adaptive
strategy for restarting a given search process with a confor-
mation retrieved from these bins when the search stag-
nates. By varying the search strategy according to a priori
defined transition probabilities (which are dependent on
the search progress), this approach leads to an algorithm
that sacrifices an exact relationship with the canonical
ensemble for search efficiency. This method effectively
reduces the slow convergence, or quasi-ergodicity, in rug-
ged energy landscapes; it is therefore very useful when the
main interest is in finding global minima, rather than in
obtaining other physical properties from canonical
ensembles.

Conformations are added to the bins in a way that is
aimed at maintaining a diverse set of low-energy confor-
mations. To achieve this we define energy and diversity
thresholds for each bin, which are dynamically modified
during the search process (it may be noted that this adap-
tive strategy is closely related to the concept of reactive
search [25]).

With each bin i the following properties are associated:

• The capacity of the bin, capi, i.e., the maximal number of
conformations that can be stored in the bin at any given
time.

• The current number of conformations stored in the bin,
numi. These conformations themselves are stored in a list
that is sorted according to energy, to facilitate efficient
retrieval of low-energy conformations.

• The width of the bin's maximal energy range, ΔEi.

• The bin's energy threshold, . This is the highest

energy that a conformation can reach and still be placed
into bin i if the respective diversity threshold (described in
the following) is satisfied.

• The diversity threshold, which determines how different
a conformation has to be from other conformations
already stored at the same energy level in order for the
new conformation to be accepted into the bin. The pair-
wise diversity of conformations is measured using a dis-
tance measure that depends on the protein model under
consideration. Here, we use the normalized average Ham-
ming distance, HD, between the β-sheet energy sequence
of a newly considered conformation c and all β-sheet
energy sequences for the set C' of all conformations with
the same energy that are already in the bin, see Methods
Section for details.

Furthermore, the overall bin framework has the following
parameters:

• The total number of bins, numBins.

• The energy range of interest, ΔE. Together with the cur-

rent estimate of the ground state energy, , which is mod-
ified throughout the search to always represent the lowest

energy encountered so far, ΔE controls the energy interval
into which conformations must fall in order to be
accepted into any bin. This range represents the estimate
of the maximal barrier height that needs to be sur-
mounted to reach lower energy conformations.

• The temperature Tbin, which controls the retrieval of con-
formations from bins.

The general bin framework search mechanism is outlined
in Figure 1. Procedure initalizeBins is used to set all bin
parameters to their initial values. Bins are numbered 1 ...

Ei
+

Ê

High-level outline of the main body of the Bin Framework Search MethodFigure 1
High-level outline of the main body of the Bin Frame-
work Search Method. Outline of the main body of the Bin 
Framework Search Method.

procedure BinFramework(c, numBins, ΔE, Tbin)
input: initial conformation c,

number of bins numBins,
the range of energies of interest ΔE,
the temperature Tbin controlling the retrieval;

output: lowest energy conformation ĉ;

ĉ := c;
initializeBins;
while (termination condition not satisfied) do

c′ := subSearchStep(c);
if (c′ �= c) then

if (E(c′) < Ê) then
ĉ := c′;
Ê := E(c′);

end if
considerStoringInBin(c′,Ê,ΔE);

end if
if (stagnation detected) then

c := retrieveFromBin(Tbin,Ê);
else

c := c′;
end if

end while
return ĉ;

end BinFramework
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numBins, and for every bin i, ΔEi and  are always

assigned such that , i.e., the energy

intervals  for different bins never overlap.

Furthermore, the energy bounds are always assigned such

that , i.e., bin 1 always has the

highest energy interval, while bin numBins stores the low-
est energy conformations. Procedure subSearchStep per-
forms one step of a subsidiary search procedure (such as
canonical MC search) on a given conformation c and
returns the resulting conformation c'. This step involves a
single proposal of the move from the given move set and
its subsequent acceptance or rejection. The two proce-
dures considerStoringInBin and retrieveFromBin control the
storage of conformations in the bin system and the
retrieval of previously stored conformations. Note that
conformations will only be stored in a bin if they satisfy
the corresponding energy and diversity thresholds. Stor-
ing a conformation may lead to adjustments of the energy
thresholds for the corresponding bin or addition of a new
bin (this will be described later in detail for the BINMC
algorithm). Finally, a stagnation criterion is used to decide
when to retrieve a conformation from the bin system in
order to overcome search stagnation, and a termination
condition is used to determine when the search process
should terminate.

In the following, we will describe the specific instantiation
of this framework on which the remainder of our study is
focused: the BINMC algorithm.

In BINMC, for simplicity all bin capacities capi are set to
the same value, and this value is kept constant during the
search. The same holds for the energy ranges ΔEi. Finally,
for simplicity we also keep the number of bins, numBins,
constant during the run of the algorithm. This number is
determined by the interval of energies of interest and the
energy window width used:

numBins = LΔE/ΔEiO. (1)

At the beginning of the search process, the energy thresh-

old for each bin i is set to  := -(i - 1)·ΔEi. Initially, the

energy intervals of all bins form a partition of the interval

[0, numBins·ΔEi), note that this interval is larger than or

equal to the desired interval [0, ΔE); it is larger if ΔE does

not divide evenly by ΔEi.

It should be noted that 0 is the highest energy possible
under the model chosen in this work and all the energies
are integer values; in the general case energy thresholds
can be adjusted initially to store the highest energy confor-
mations under the protein model considered. The bin
energy bounds are adjusted during the search, as will be
explained later.

The diversity thresholds for the bins, HDi, are determined
based on the following formula:

HDi =  HDmin + (numBins - i)·(HDmax - HDmin)/
(numBins - 1),

(2)

where HDmin and HDmax are parameters of the algorithm
that determine the diversity threshold of the lowest and
highest energy bins, respectively. This choice is based on
the experimental observation that fewer protein confor-
mations exist for lower energies, and therefore, the set of
of conformations to be found at low energy levels can be
expected to be less diverse. (This is also consistent with the
prevalent view that the energy landscapes encountered in
ab initio protein structure prediction problems are fun-
neled [26].) Figure 2 depicts some of the properties of bins
and conformations in a bin and the overall relationship of

Ei
+

E E Ei i i
+

−
+

−< − +1 1 1Δ

[ , )E E Ei i i
+ + − Δ

E E Ei numBins
+ + +> > >2

Ei
+

Relationship between the bin framework and the energy landscapeFigure 2
Relationship between the bin framework and the 
energy landscape. An illustration of how conformations at 
a given state of the bin framework relate to the energy land-

scape of a given protein.  is the best solution quality found 
so far and serves as an estimate of the ground state energy, 
ΔE is the energy range of interest, and conformations within 

this range are binned. Each bin i has energy threshold , 

diversity threshold HDi, and energy window ΔEi.

Ê

Ei
+
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conformations stored in the framework to the energy
landscape.

BINMC uses a standard canonical Monte Carlo search
procedure running at a constant inverse temperature βMC
:= 1/(kB·TMC) (where kB denotes the Boltzmann constant),
that controls the probability with which worsening search
steps are accepted. Our canonical Monte Carlo procedure
for the FCC lattice is based on the same search neighbour-
hood (move set) as used by Gront et al. [9] and by Zhang
and Skolnick [10]. In each search step, either a double-
bond move or a chain-end move is attempted. A double-
bond move involves the modification of two successive
bond angles, whose position in the chain is chosen uni-
formly at random. Similarly, in a chain-end move, the
location of the first or the last residue is changed. For effi-
ciency and speed, double-bond moves are pre-computed
in a table, as done by Gront et al. [9] and by Zhang & Skol-
nick [10]. The search proceeds in phases, each of which
starts with two attempts at chain-end moves (one on each
end, in random order) followed by N/2 successive
attempts at double-bond moves (each chosen uniformly
at random, without repetition but allowing overlap with
previously chosen double-bond moves) any number of
which may be accepted. Procedure subSearchStep in Figure
1 performs a single step of this simple subsidiary search
process by attempting one move, starting from conforma-
tion c and resulting in conformation c' (which, if the pro-
posed move has not been accepted, is equal to c); the
attempted moves are chosen such that the previously
described phasing of chain-end and double-bond moves
is ensured.

After a new conformation has been accepted by the sub-
sidiary MC procedure, it is considered for placement into
a bin. If the new conformation c' has lower energy then
any other conformation encountered so far, i.e., if E(c')

< , it is always accepted into the bin framework and the

current estimate of the ground state, , is updated. If E(c')
falls outside the energy range currently represented by the
bin framework, before accepting the new conformation, a
new bin (or a number of bins if needed) is created and the
first bin storing conformations with high energies (or a
number of bins starting with the first one) is deleted as
follows: (here we only describe addition of a single bin,
addition of multiple bins is handled analogously): We
add a new bin numBins + 1 and delete all conformations
from bin 1 along with bin 1 itself. We also shift bin num-
bers by -1, such that bin 2 becomes bin 1 and bin numBins

+ 1 becomes bin numBins. The energy threshold 

for the newly added bin is set to

. The diversity thresholds are

not shifted with the bins, such that HDmax and HDmin

remain associated with the first and the last bin, respec-
tively.

If conformation E(c') falls within the energy interval of a
bin i that is not yet filled to capacity (i.e., numi < capi), and

c' satisfies the diversity criterion for that bin – i.e., the
Hamming distance between the conformation c' and
other conformations c" with the same energy E should be
larger or equal to HDi (see Methods Section for details) –

c' is added to that bin, and numi is incremented by one.

(Note that there is at most one such bin i, since bin energy
intervals never overlap.) Finally, if E(c') falls within the
energy interval of a bin i that is already filled to capacity
(i.e., numi = capi) and it satisfies the diversity criterion for

that bin, c' is added to the content of bin i and the highest

energy conformation is removed. At the same time,  is
set to the energy of the conformation that is currently the
highest in the bin; as a consequence, conformations with

energy above the updated  will not be accepted into bin
i in the future, and therefore, the energy ranges of bins i -
1 and i are now may no longer be adjacent.

The stagnation detection mechanism used in BINMC is
quite simple: the search is considered to be stagnated
when no improvement on the lowest energy has been
achieved for noImprRetrieve search steps, where noImprRe-
trieve is a parameter of the algorithm.

To retrieve a conformation from the bin system, BINMC
uses a two-phase procedure that first selects a bin and then
chooses one of the conformations stored in that bin. In
the first phase, the probability of selecting a bin i depends

on the difference between its upper energy threshold 
and the best energy reached so far, and is proportional to:

where βbin = 1/(kB·Tbin), kB denotes the Boltzmann con-
stant, and Tbin is BINMC's temperature parameter. In the
second phase, the probability of choosing a conformation
c from that bin is analogously proportional to:

In general, conformations could be chosen with or with-
out replacement; here we limited ourselves to choosing
conformation with replacement, since the same confor-
mation can yield a different fold each time it is picked.

Ê

Ê

EnumBins
+

E EnumBins numBins−
+

−− +1 1 1Δ

Ê

Ê

Ê

e bin iE E− −+β ( )

e bin E c E− ⋅ −β ( ( ) )
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As in the stochastic tunneling approach [27], to lessen
exponential decay of the probability function we used
Boltzmann-based modified weights proportional to

. This weighting preserves the location of all

minima, but maps the entire energy space from  to the
maximum energy 0 onto the interval [0, 1]. The dynamic
process following the Boltzmann distribution can there-
fore pass through energy barriers of an arbitrary height.

Overall, this retrieval procedure ensures that lower energy
conformations are selected with higher probability, which
is in accordance with the belief that the energy landscapes
of real proteins are funneled. The search is terminated
when the target energy level has been reached or when a
user-specified number of steps has been executed.

Results
In this section, we present empirical performance results
for BINMC as compared to the best-performing algo-
rithms known from the literature. MC, REMC and PHAT
have been tested by their original authors on the
homopolymers of length 32 and 64, but only results for
the homopolymer of length 64 have been published
[9,10]. (We contacted D. Gront [9] and Y. Zhang [10],
who commented that all of their algorithms were able to
reach quite easily what they believed to be the global min-
imum for the polymer of length 32. However, they could
not provide any information regarding the energy values
or conformations reached in these experiments.) For the

protein of length 64, Gront et al. believed the lowest
energy they had reached, -374, to correspond to a ground
state conformation; however, Zhang and Skolnick later
reported a conformation with energy -387 for this system
[10].

Analogous with the results of Gront et al. for MC and
REMC [9] and of Zhang and Skolnick for PHAT [10], in
Table 1 we provide results averaged over 10 independent
runs of each algorithm. It should be noted that several
details were not evident from the published descriptions
of these algorithms. From personal communication with
D. Gront, we learned that their MC procedure was run
with temperatures from 2.75 to 1.25 [ε0/kB]. Since we
could not determine the exact annealing schedule used in
their study, we chose a constant temperature of 1.25 for
our MC procedure. Therefore, the results for the MCSA
algorithm of Gront et al. may not be exactly comparable
with that of our implementation of pure MC. Since the
number of iterations performed within a given amount of
time varies significantly based on implementation details,
we used the average CPU times reported by Gront et al. [9]
and by Zhang and Skolnick [10] as the cut-off time for our
algorithms.

As seen from Table 1, our implementations of MC and
REMC show comparable performance to that of MCSA
and REMC by Gront et al. [9]. (As discussed in the table
caption, differences in execution environments were
taken into account.) However, our implementation of
PHAT did not reach the performance reported in the liter-

e E E− −β( )

Ê

Table 1: Performance differences among algorithms for the homopolymer of length 64. 

Method Temperature set Timecut-off Eavg ± sd Emin P – value

MCSA [9] annealed from 2.75 to 1.25 24 min (approx) -349.3 (± 2.1) -362
REMC [9] linear 1.25 to 2.75 28 min (approx) -368.2 (± 0.8) -373
PHAT [10] linear 1.25 to 2.75 1 hr 25 min (approx) -380.4 (± 1.9) -387

our MC 1.25 24 min -367.2 (± 1.7) -370

our MC 1.25 28 min -367.4 (± 2.7) -371 0.1367
our REMC linear 1.25 to 2.75 28 min -368.5 (± 2.1) -373 0.3425
our PHAT linear 1.3 to 2.75 28 min -367.5 (± 3.3) -372 0.1599
our BINMC TMC = 1.25, Tbin = 6.521 28 min -370.3 (± 4.3) -379

our MC 1.25 1 hr 25 min -368.2 (± 4.6) -374 0.0006*
our REMC linear 1.25 to 2.75 1 hr 25 min -369.4 (± 3.0) -376 0.0008*
our PHAT linear 1.3 to 2.75 1 hr 25 min -369.5 (± 3.2) -376 0.0023*
our BINMC TMC = 1.25, Tbin = 6.521 1 hr 25 min -375.7 (± 3.8) -383

Comparison of the energy levels reached for the homopolymer of length N = 64 by Monte Carlo Simulated Annealing (MCSA) [9], the Replica 
Exchange Monte Carlo (REMC) algorithm with a linear set of temperatures [9] and the Parallel-hat Tempering algorithm (PHAT) [10] with our 
implementation of Monte Carlo (MC), REMC and PHAT, as well as with our new Bin Framework Monte Carlo (BINMC) algorithm. The run-time 
reported for MCSA and REMC [9] has been conservatively adjusted to our 2.4 GHz reference machine (this was done by dividing the published run-
times, which have been obtained on a 500 MHz CPU, by a factor of 4.8). The same was done for the run-times for PHAT (which were originally 
obtained on a 750 MHz CPU and therefore conservatively divided by 3.2).
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ature [10]. Therefore, we contacted Y. Zhang to check
unpublished details of their algorithm, but unfortunately,
those details along with the precise information on the
best conformation reported in their paper (with energy -
387) were no longer available due to data loss. Our novel
BINMC algorithm performs better than MC and REMC,
and than our implementation of PHAT. We used the fol-
lowing set of parameters for the bin framework for the
homopolymer of length 64: ΔE = 30 [ε0], ΔEi = 5 [ε0], TMC
= 1.25 [ε0/kB], Tbin = 6.521 [ε0/kB], binCapacity = 100,
HDMAX = 0.8, HDMIN = 0.01, noImprRetrieve = 2 000 000
steps. These settings were determined in a series of exper-
iments in which we studied the influence of different
parameter settings; these will be further discussed in Dis-
cussion Section.

The lowest energy level for the homopolymer of length 64
reached by our BINMC algorithm is -391; this is lower
than the energy of any conformation previously reported
in the literature. Conformations with energy -391 were
found in 2 out of 10 runs, each with a 100 CPU hour cut-
off on our reference machine, after 47 and 55 CPU hours,
respectively. One of the two resulting conformations is
shown in Figure 3, the other is its exact mirror image. Con-
formations with energies of -389 and -388 (some of which
are shown in the supplementary material, see Additional
file 1), were found multiple times by BINMC within a
CPU time cut-off of 10 hours on our reference machines.

To extend our comparison of the re-implemented meth-
ods from the literature (MC, REMC and PHAT) with
BINMC, we tested these methods on instances of length
12, 24 and 32. Again, we performed 10 independent runs
of each algorithm on every problem instance, measuring

the mean as well as the standard deviation of the energy
levels reached after a run-time of 1 CPU hour. For BINMC
when applied to the homopolymers of length 12 and 24,
we used the following parameter settings: ΔE = 20 [ε0], ΔEi
= 5 [ε0], TMC = 1.25 [ε0/kB], Tbin = 4.344 [ε0/kB], binCapacity
= 100, HDMAX = 0.6, HDMIN = 0.01 and noImprRetrieve =
100 000 steps, whereas on the homopolymer of length
32, we set the parameters to: ΔE = 20 [ε0], ΔEi = 5 [ε0], TMC
= 1.25 [ε0/kB], Tbin = 4.344 [ε0/kB], binCapacity = 100,
HDMAX = 0.6, HDMIN = 0.01 and noImprRetrieve = 1 000
000 steps. (These parameter settings are discussed in Dis-
cussion Section and in the supplementary material, see
Additional file 1.)

As can be seen from our results presented in Table 2, all
methods find what appears to be the lowest energy (-39)
for the homopolymer of length 12 in less than 1 CPU sec-
ond on our reference machine. For the homopolymer of
length 24, we are starting to see differences among the
algorithms: BINMC slightly outperforms all other algo-
rithms in terms of CPU time required for reaching an
energy of -109, which we believe to be the global mini-
mum for this problem instance. MC is the next best
method in terms of performance, followed by PHAT and
REMC. The performance results for REMC and PHAT are
worse than for MC because this homopolymer is too short
for the additional time invested in exchanges between rep-
licas to be amortized. For the homopolymer of length 32,
BINMC outperforms the other algorithms by obtaining
lower average energy (and also finding lower energy
states, for example with energy -161, more often), fol-
lowed by PHAT, REMC and finally MC. We show mini-
mum energy conformations for the polymers of length 12,
24, and 32 in Figure 4. These solutions appear to be
unique in terms of short-range and long-range energy val-
ues, since all of the conformations found by any of the
algorithms we ran show the same short- vs long-range
energy interplay.

Additionally, to see to which extent the results reported in
Tables 1 and 2 could be further improved, we carried out
10 long independent runs for the homopolymers of
length 64 and 32, using a cut-off time of 10 CPU hours on
our reference machine. The results of this experiment are
shown in Table 3; clearly, BINMC outperforms our imple-
mentation of the state-of-the-art REMC and PHAT algo-
rithms as well as the canonical MC algorithm in terms of
the solution quality reached in these long runs, with
REMC ranking second, followed by PHAT and MC.

Next, we conducted a more thorough performance com-
parison of the algorithms based on run-time distributions
(RTDs) measured on the homopolymers of length 32 and
64. The goal of this analysis was to analyze the variability
between independent runs on the same problem instance,

The lowest energy conformation found by BINMC for the homopolymer of length 64Figure 3
The lowest energy conformation found by BINMC 
for the homopolymer of length 64. Part (a) shows the 
lowest energy conformation of homopolymer of length 64 
found by BINMC (total energy -391, short-range energy -
212, long-range energy -179). A detailed description of this 
conformation is given in the supplementary material, see 
Additional file 1. Part (b) shows same conformation as seen 
from above.

(a) (b)
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which is known to reflect the parallelization efficiency of
an algorithm and can also reveal detrimental stagnation
behavior [4]. In order to be able to perform 100 inde-
pendent runs of each algorithm on both sequences within
a reasonable overall computation time using our reference
machine, we used sub-optimal energy levels of -158 and -
370 for N = 32 and N = 64, respectively. The resulting

empirical RTDs are shown in Figure 5 in the form of the
respective cumulative distribution functions. For the
homopolymer of length 32, BINMC and MC outperform
REMC and PHAT in terms of the time required to reach
the sub-optimal solution quality of -158. For the
homopolymer of length 64 BINMC performs best in
terms of the time required to reach the sub-optimal solu-
tion quality of -370, followed by MC, REMC and PHAT.

As can be seen from the graphs in Figure 5, the RTDs of all
four algorithms closely resemble exponential distribu-
tions. (Note that the cumulative distribution functions of
all exponential distributions have exactly the same shape
when shown in a semi-log plot.) This indicates that for
reaching the energy levels considered here, none of the
algorithms stagnates and all of them can be parallelized
efficiently by concurrently executing independent runs
[4].

It may come as a surprise that MC performs better than
REMC and PHAT. However, it is important to note that
the RTDs reported in Figure 5 are for sub-optimal qualities
only. Since MC at a low temperature is "greedier" and
does not run multiple chains at different temperatures nor
attempts exchanges between them, it gets to sub-optimal
energies faster. After reaching them, however, it stagnates;
this is reflected in the observation that solution quality
does not improve when running MC for a long time (10
CPU hours or more on our 2.4 GHz reference machine)
for the homopolymers of length 32 and 64, as shown in

Examples of the lowest energy conformations for the homopolymers of length 12, 24, and 32Figure 4
Examples of the lowest energy conformations for the 
homopolymers of length 12, 24, and 32. The lowest 
energy conformations of the FCC homopolymers of length 
12, 24, and 32 amino acids (the last of these is shown from 
the side and above) found by the algorithms we tested; the 
corresponding energies are: -39 for N = 12 (short-range 
energy = -28, long-range energy = -11), -109 for N = 24 
(short-range energy = -68, long-range energy = -41) and -161 
for N = 32 (short-range energy = -112, long-range energy = -
49). These conformations are specified in detail in the supple-
mentary material, see Additional file 1.

Table 2: Performance differences among algorithms for the homopolymers of length 12, 24, 32. 

Method Length Eavg± sd Emin CPU Timeavg Timemed Timeq75 Timeq25 p – value

MC 12 -39 (± 0) -39 < 1 sec < 1 sec < 1 sec < 1 sec
REMC 12 -39 (± 0) -39 < 1 sec < 1 sec < 1 sec < 1 sec
PHAT 12 -39 (± 0) -39 < 1 sec < 1 sec < 1 sec < 1 sec
BINMC 12 -39 (± 0) -39 < 1 sec < 1 sec < 1 sec < 1 sec

MC 24 -109 (± 0) -109 5.0 min (± 4.1 min) 5.5 min 7.2 min 1.5 min 0.1230
REMC 24 -109 (± 0) -109 18.3 min (± 18.0 min) 16.3 min 19.4 min 4.3 min 0.0015*
PHAT 24 -109 (± 0) -109 8.7 min (± 8.2 min) 6.6 min 11.7 min 2.9 min 0.0039*
BINMC 24 -109 (± 0) -109 1.7 min (± 1.2 min) 1.8 min 2.7 min 0.5 min

Method Length Eavg± sd Lowest E CPU Timeavg Emed E q75 E q25 p – value

MC 32 -158.1 (± 0.9) -161 4.3 min (± 8.4 min) -158 -158 -158 0.0155*
REMC 32 -158.2 (± 0.7) -161 4.5 min (± 8.6 min) -158 -158 -158 0.0185*
PHAT 32 -158.3 (± 0.9) -161 5.8 min (± 8.0 min) -158 -158 -158 0.0214*
BINMC 32 -158.9 (± 0.6) -161 23.0 min (± 20.1 min) -159 -159 -158

Comparison of the average energy level obtained and the average time required for the homopolymers of lengths N = 12, 24, 32 for the re-
implemented MC, REMC, PHAT, and BINMC. The time cut-off used was 1 CPU hour on our 2.4 GHz reference machine, and all statistics were 
calculated from 10 independent runs. The temperature sets used for our implementations of MC, REMC and are the same as in Table 1. The p-
values reported in the last column were determined using the Mann-Whitney U test to test the null hypothesis that the mean run-time (for N = 24) 
and the mean energies reached by the respective algorithm vs BINMC (within the same CPU cut-off time for N = 32), respectively, are identical [4]; 
p-values marked with an asterisk (*) correspond to cases in which the null hypothesis is rejected at a standard significance level of 0.05, and 
therefore indicate statistically significant performance differences.
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Table 3. We also investigated the scaling behaviour of
REMC and BINMC with homopolymer length. We meas-
ured the median run-time to reach the global minimum
over 20 runs for sequences of length 12, 24, and 32 amino
acids (the sequence of length 64 was not used, since only
BINMC reaches the lowest known energy). The resulting
sets of three data points for each algorithm were each fit-
ted with a line in a semi-logarithmic plot (which corre-
sponds to fitting an exponential function to the original
data in a way that counteracts over-fitting for large
instance sizes). Based on this analysis, the median run-
time required for finding (purportedly optimal) confor-

mations appears to scale as 100.34·N-5.2 for REMC and as
100.28·N-4.7 for BINMC.

Finally, we inspected the distribution of energies sampled
by each method for the long homopolymer of length 64,
based on approximately 5 × 109 conformations each. As
seen in Figure 6, REMC and PHAT show typical energy dis-
tributions for each replica, as reported by Zhang and Skol-
nick [10]; as expected, in the case of PHAT, the
probabilities of encountering low and high energies are
elevated. Interesting differences are observed when exam-
ining the distribution of energies visited by MC and

Distribution of run-times for all algorithms required to reach sub-optimal conformations for homopolymers of length 32 and 64Figure 5
Distribution of run-times for all algorithms required to reach sub-optimal conformations for homopolymers of 
length 32 and 64. Distribution of run-times required by MC, REMC, PHAT and BINMC to reach sub-optimal conformations 
with energy -158 for the homopolymer of length 32 (part a) -370 for the homopolymer of length 64 (part b), based on 100 
independent runs on our reference machine, each of which reached the target energy value. We fitted the run-time distribu-
tion (RTD) of BINMC for the homopolymer of length 64 with exponential distribution, to illustrate that the respective RTD is 
approximately exponential. (The same holds for all other RTDs shown in these plots.)
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Table 3: Performance differences among algorithms for the homopolymers of length 64 and 32 in long runs. 

Method Temperature set Length Eavg± sd Emed E q75 E q25 Emin p – value

our MC 1.25 32 -158.7 (± 1.9) -159 -159 -158 -161 0.0271*
our REMC linear 1.25 to 2.75 32 -159.6 (± 1.3) -160 -161 -158 -161 0.5471
our PHAT linear 1.3 to 2.75 32 -158.9 (± 1.4) -159 -159 -158 -161 0.0638
our BINMC TMC = 1.25, Tbin = 6.521 32 -160.1 (± 0.9) -161 -161 -159 -161

our MC 1.25 64 -372.2 (± 2.3) -372 -373 -371 -377 0.0005*
our REMC linear 1.25 to 2.75 64 -376.1 (± 3.5) -376 -378 -373 -382 0.0521
our PHAT linear 1.3 to 2.75 64 -374.1 (± 3.8) -374 -377 -371 -383 0.0120*
our BINMC TMC = 1.25, Tbin = 6.521 64 -379.5 (± 3.3) -381 -382 -376 -389

Comparison of the energy levels reached for the homopolymers of length 64 and 32 by our implementations of MC, REMC (with the linear set of 
temperatures), PHAT, and the new BINMC algorithm in 10 independent runs of 10 CPU hours each on our 2.4 GHz reference machine. The p-
values reported in the last column were determined using the Mann-Whitney U test to test the null hypothesis that the mean energies reached by 
the respective algorithm and BINMC (within the same CPU cut-off time) are identical [4]; p-values marked with an asterisk (*) correspond to cases 
in which the null hypothesis is rejected at a standard significance level of 0.05, and therefore indicate statistically significant performance differences.
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BINMC (see Figure 7): While our new algorithm samples
energies according to the Boltzmann probability density
function, the distributions are shifted towards lower
energy values, reflecting the fact that BINMC tends to
reach lower-energy conformations more efficiently.

Discussion
Similar to the Model-based Search (MBS) method [28]
introduced for off-lattice fragment insertion as used in the

ROSETTA [15] algorithm, our bin framework stores prom-
ising candidate solutions for future reuse. However,
unlike MBS, we developed and tested an adaptive diversi-
fication mechanism that varies based on the energy level
considered and takes into account how different a confor-
mation is from other conformations with the same
energy. Additionally, the energy level of interest, which
determines the highest energy conformations stored in
the bin framework are allowed to have, and individual
Hamming distance criteria used for each bin, are adapted
according to the current estimate of the ground state
energy. MBS does not have a mechanism comparable to
our diversity criteria between stored conformations. In
MBS, a number of elite conformations are stored, whose
quality is measured using a score determined from their
energies and the radius of the local minimum represented
by them. (This radius is estimated from the distance to
their nearest neighbours using root mean square devia-
tion.) Another important distinction between BINMC and
MBS is that in BINMC, the model (a pool of stored con-
formations) is updated during the search and influences
the choice of a new candidate solution every noImprRe-
trieve steps, when search stagnation is detected. On the
other hand, in MBS for the discrete off-lattice model with
structural fragment insertion as described by Brunette and
Brock [28], the choice of a new candidate solution is influ-
enced at every step by the pool of conformations stored.
Thus, MBS exploration of the search space is only depend-
ent on the conformations stored [28]. Therefore, regions
that are pruned based on the model are eliminated and
not explored any further. In contrast, the bin framework

Example of distributions of energies visited by BINMCFigure 7
Example of distributions of energies visited by 
BINMC. Distributions of energies visited by MC and our 
new BINMC algorithm for the homopolymer of length 64. 
The time cut-off used was 28 CPU min on our 2.4 GHz ref-
erence machine.
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Example of distributions of energies visited by different replicas in REMC and PHATFigure 6
Example of distributions of energies visited by different replicas in REMC and PHAT. Distributions of energies vis-
ited by different replicas in a representative run of REMC (a) and of PHAT (b) for the homopolymer of length 64. The time cut-
off used was 28 CPU min on our 2.4 GHz reference machine.
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provides only a subsidiary mechanism for generating can-
didate solutions when search stagnation is detected, and
does not completely eliminate unexplored regions of the
search space. This is achieved by running a non-model-
based search (canonical MC) for a sufficiently long time
to allow it to explore other regions of the search space.

The bin framework sorts conformations into bins repre-
senting different energy levels to make sure that the model
contains as many energy levels of interest as possible
while still reducing the search space. This aspect of the
search is conceptually related to histogram-based sam-
pling and search methods such as Multicannonical algo-
rithm (MUCA) [24] and Energy Landscape Paving (ELP)
method [21]. It should be noted, however, that our bin
framework is a non-parametric model of the search space
that consists of a diverse set of promising candidate con-
formations stored in the bins. MUCA, on the other hand,
and to some degree ELP, are based on a parametric model
of sampling all energy levels with the same probability
without emphasis on low energies. In addition, our bin
framework uses Hamming distance criteria that are based
on the energy level of each bin to ensure that the respec-
tive sets of conformations stored are diverse and capture
the overall funnel-like structure of the landscape.

Up to this point, we have focused on comparing BINMC
with existing algorithms. We now turn our attention to
the question how the performance of the BINMC algo-
rithm depends on its parameters and the algorithm com-
ponents controlled by them, and to the determination of
good settings for these parameters. We conducted this
investigation for the homopolymer of length 32, since
reaching its best known energy level of -161 is challeng-
ing, but not too computationally expensive to preclude
performing multiple successful runs for a large number of
parameter settings. For each parameter configuration, we
conducted 20 independent runs on our reference machine
and recorded the time required in each of these to reach
an energy of -161; from these runs, we then determined
the average CPU time required to reach this target energy.
To study the influence of the different parameters on algo-
rithm performance, we varied one (or, in the case of
closely related parameters, two) of them at a time, while
keeping all other parameter values fixed. Unless indicated
otherwise, the parameters kept fixed in these experiments
were set to the following values: ΔE = 20 [ε0], ΔEi = 5 [ε0],
TMC = 1.25 [ε0/kB], Tbin = 4.344 [ε0/kB], binCapacity = 100,
HDMAX = 0.6, HDMIN = 0.1, noImprRetrieve = 100 000 steps.

Here, we summarize the results of this study; details are
provided in the supplementary material, see Additional
file 1. The impact of the parameters on the performance of
BINMC can be ranked as follows (in decreasing order):

1. the number of non-improving steps (over the best
energy) that are performed before reaching into a bin and
replacing the current conformation in the Monte Carlo
run, noImprRetrieve (the optimal value seems to be around
1 000 000 steps which allows the underlying MC search to
explore the current region of the landscape);

2. the ratio between the width of the energy of interest
considered for binning, ΔE, and the bin temperature, Tbin
(the ratio that results in at least 0.01 probability of
retrieval of the highest energy conformations works well);

3. the diversity criteria used during binning high- and low-
energy conformations (the Hamming distance limits),
values of HDmin = 0.01 and HDmax = 0.06 guarantee that we
are selective enough when storing promising conforma-
tions at low and high energy levels correspondingly and
result in the best performance;

4. the width of the energy window considered by each bin
(ΔEi = 5 seem to provide optimal discretization of the
search space); and

5. the capacity of bins, capi (storing 100 conformations in
each bin seems to work best, this provides required diver-
sification during the search).

Furthermore, we made the following observations regard-
ing parameter settings of our algorithm for the longer
homopolymer of length 64:

1. a higher value of noImprRetrieve should be used (2 000
000 was found to work well), which indicates that longer
search times are required to effectively explore the neigh-
bourhood of the current conformation before reaching
into the bin framework and replacing it with another
promising conformation;

2. ΔE should be increased, which is consistent with the
common belief that the barrier heights for longer
homopolymers are higher, and Tbin should be adjusted
such that the ratio ΔE/Tbin remains the same as for length
32;

3. ΔEi should be increased to Ei = 10, which suggests that a
coarser search space discretization may be beneficial for
longer homopolymers; note that the combination of
increases in ΔE and ΔEi results in only a slight increase in
the total number of bins, numBins;

4. the same values for HDmin, HDmax and capi can be used
as in the case of length 32.

Finally, our empirical results presented in Additional file
1 show that the BINMC algorithm performs substantially
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better than the simple restart strategy and than the pure
Monte Carlo on which it is based. We also determined
that all components of our algorithm are important for its
efficiency, see Additional file 1. For example, the average
time required for finding purportedly optimal conforma-
tions increases significantly (at least threefold for the
homopolymer of length 32) when increasing noImprRe-
trieve until bin framework retrieval is performed very
infrequently, when decreasing ΔE or capi or when increas-
ing the diversity thresholds HDmin and HDmax, resulting in
very few conformations being stored, or when reducing
the number of bins (by varying ΔEi for fixed ΔE).

Conclusion
The bin framework introduced in this work is a general
approach that can be used to augment existing conforma-
tion search methods in order to increase their ability to
focus on promising regions of the search phase (intensifi-
cation) and to effectively overcome stagnation in regions
of sub-optimal conformations (diversification). As shown
by our computational experiments, even very simple
instantiations of the general bin framework can result in
highly effective search algorithms.

In particular, our novel Bin Framework Monte Carlo algo-
rithm (a combination of the bin framework and a simple
Monte Carlo search procedure) surpasses Replica
Exchange Monte Carlo search and its heuristic variant,
Parallel-hat Tempering, in its ability to find (purportedly)
minimum energy conformations for β-sheet homopoly-
mers on the FCC lattice. Furthermore, using our new algo-
rithm we have improved the best known solution for the
homopolymer of length 64 from -387 to -391.

In future work, we plan to consider more advanced adap-
tive bin framework strategies that control search diversifi-
cation and intensification reactively during the search,
based on observed features of the search landscape. Addi-
tionally, we are planning to generalize our bin framework
to work on partial as well as complete conformations,
producing an efficient generalized framework that com-
bines two distinct search strategies. Finally, we would like
to extend our bin framework to address other models of
protein structure, such as the FCC model with a more
complex energy function or other discrete and continuous
off-lattice models.

Given the results for β-sheet homopolymers on the FCC
lattice achieved in this work, we believe that further inves-
tigation of our adaptive bin framework and its application
to other protein structure prediction problems holds
much promise.

Methods
In this section, we provide a detailed description of the
FCC lattice model, β-sheet energy potential, and experi-
mental analysis performed to compare our approach to
the existing methods from the literature.

Face-Centered Cubic lattice model
In the FCC model, the polypeptide is restricted to a face-
centered cubic lattice [11] that has 12 base set vectors:

vbase = {e1, e2, ..., e12}, (3)

where e1 = (1, 1, 0), e2 = (1, -1, 0), e3 = (1, 0, 1),
e4 = (1, 0, -1), e5 = (0, 1, 1), e6 = (0, 1, -1), e7 = (0, -1, 1),
e8 = (0, -1, -1), e9 = (-1, 0, 1), e10 = (-1, 0, -1),
e11 = (-1, 1, 0), e12 = (-1, -1, 0).

A protein chain of N residues is described by N - 1 vectors,
where vector vi connects residues i and (i + 1). The 12 base
vectors allow for the following valence angles between
each pair of vectors: 60°, 90°, 120°, and 180° [9].

Beta sheet energy potential used with the FCC lattice
To model β-sheet proteins and the stiffness of the polymer
chain, the following definition of an extended, β -type
chain conformation was defined by Gront et al. [9]: three
vectors are in an extended state if

1. the angles between vectors vi-1 and vi and between vi and
vi+1 are greater than 90 degrees;

2. the dot product vi-1·vi+1 is larger than 0, which means
that the angle between vectors vi-1 and vi+1 is less than 90
degrees.

The energy potential for this model is composed of two
terms: the short-range potential Ui-1, i, i+1 that depends on
the three consecutive vectors in the chain (vi-1, vi, vi+1) and
mimics conformational propensity to form an extended
set of β-strands:

and the long-range potential Vi, j for two non-bonded
chain residues, defined as:

where ri, j is the lattice distance between residues i and j.
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For a chain of length N, the total energy is defined as:

where δij is the Kronecker delta (δij = 1 when i = j, and 0
otherwise) and the values of the force field parameters are
defined as εA := 1.0 [ε0] and εB := 4.0 [ε0] (with ε0 := 1.0
representing one unit of interaction energy) to model a
semi-flexible polymer [9].

Hamming distance criteria for the FCC lattice
For the FCC β-sheet energy potential the normalized aver-
age Hamming distance, HD, between the β-sheet energy
sequence of a newly considered conformation c and all β-
sheet energy sequences for the set C' of all conformations
with the same energy that are already in the bin is calcu-
lated as follows.

where , Ui(x) denotes the Ui-1, i, i+1 value for

conformation x, and εB = 4.0 [ε0] represents the energy

contribution of each β-residue [9]. The inner sum ranges
from i = 2 to i = N - 2, since the first residue and the two

last residues can never be in the extended β-state.

Empirical analysis
BINMC has been implemented in C++ and compiled
using gcc (version 3.3.3) for the Linux operating system.
The same holds for our implementations of three pub-
lished algorithms for the same protein models: simple
Monte Carlo (MC), Replica Exchange Monte Carlo
(REMC) and Parallel-hat (PHAT) Monte Carlo search
[9,10]; we had to re-implement these because the respec-
tive codes could not be obtained from the authors. All
experiments were performed on PCs with 2.4 GHz Pen-
tium IV CPUs, 256 Kb cache, and 1 Mb RAM, running
Redhat Linux (our reference machine). Their run-time was
measured in terms of the CPU time required to reach (or
exceed) a specified energy level.

For our performance analysis we used the FCC β-
homopolymers of length 12, 24, 36, and 64. The algo-
rithms were evaluated based on a number of independent
runs on each homopolymer. In most experiments, each
run was terminated after a fixed CPU time limit (cut-off
time) had been reached. From the distribution of energy
levels over 10 independent runs, we determined the aver-
age energy, median energy, 25- and 75-percentiles as well
as the lowest energy reached. To further evaluate the per-
formance of our BINMC algorithm and the methods
known from the literature, we followed the methodology

of Hoos and Stützle [29] and analyzed run-time distribu-
tions (RTDs) of the algorithms, i.e., the (empirical) prob-
ability distributions over the run-time required to reach
the lowest known (or, in some cases, certain sub-optimal)
energy level for the respective homopolymer based on
100 independent runs.
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