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Abstract

Functional connectivity (FC) disruption is a remarkable characteristic of schizophrenia.

However, heterogeneous patterns reported across sites severely hindered its clinical

generalization. Based on qualified nodal-based FC of 340 schizophrenia patients (SZ) and

348 normal controls (NC) acquired from seven different scanners, this study compared

four commonly used site-effect correction methods in removing the site-related hetero-

geneities, and then tried to cluster the abnormal FCs into several replicable and indepen-

dent disrupted subnets across sites, related them to clinical symptoms, and evaluated

their potentials in schizophrenia classification. Among the four site-related heterogeneity

correction methods, ComBat harmonization (F1 score: 0.806 ± 0.145) achieved the over-

all best balance between sensitivity and false discovery rate in unraveling the aberrant

FCs of schizophrenia in the local and public data sets. Hierarchical clustering analysis

identified three replicable FC disruption subnets across the local and public data sets:

hypo-connectivity within sensory areas (Net1), hypo-connectivity within thalamus, stria-

tum, and ventral attention network (Net2), and hyper-connectivity between thalamus

and sensory processing system (Net3). Notably, the derived composite FC within Net1

was negatively correlated with hostility and disorientation in the public validation set

(p < .05). Finally, the three subnet-specific composite FCs (Best area under the receiver

operating characteristic curve [AUC] = 0.728) can robustly and meaningfully discriminate

the SZ from NC with comparable performance with the full identified FCs features (best

AUC = 0.765) in the out-of-sample public data set (Z = �1.583, p = .114). In conclusion,

ComBat harmonization was most robust in detecting aberrant connectivity for schizo-

phrenia. Besides, the three subnet-specific composite FC measures might be replicable

neuroimaging markers for schizophrenia.
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1 | INTRODUCTION

Schizophrenia is a debilitating neuropsychiatric disorder characterized

by a series of positive and negative symptoms and cognitive impair-

ment (Gustavsson et al., 2011; Whiteford et al., 2013). As a noninva-

sive neuroimaging modality, functional magnetic resonance imaging

(fMRI) allows detecting the coupling of spontaneous neural activity

between brain areas termed functional connectivity (FC). Many fMRI

studies have corroborated that schizophrenia suffered severe FC dis-

turbance across widely distributed brain areas (van den Heuvel

et al., 2010; Y. M. Wang et al., 2020).

Nevertheless, the reported impaired FC patterns in schizophrenia

were inconsistent across existing studies (Karbasforoushan &

Woodward, 2012; Sheffield & Barch, 2016). Both hyper-connectivity

and hypo-connectivity of the prefrontal cortex (Yoon et al., 2013;

Zhou et al., 2015), default mode network (DMN) (F. M. Fan

et al., 2013; Whitfield-Gabrieli et al., 2009), striatum (A. Li et al., 2020;

Quidé et al., 2013; Salvador et al., 2007), and thalamus (Ferri

et al., 2018; Gong et al., 2019) were reported in schizophrenia. The

reported FC heterogeneity may arise from biological sampling variabil-

ity and systematic bias (Yamashita et al., 2019; Yu et al., 2018), for

example, patients variability in illness course, disease status, and medi-

cation (Anhøj et al., 2018; T. Li et al., 2017; Sharma et al., 2018), and

sites variability in acquisition scanners, parameters, and operators

(Noble et al., 2017). The heterogeneous patterns reported across sites

severely hindered the generalization of FC as a potential biomarker

for schizophrenia diagnosis and treatment evaluation.

Recently, several strategies have been proposed to remove the

systematic heterogeneities in neuroimaging studies across sites

(Dewey et al., 2019; Garcia-Dias et al., 2020; Huynh et al., 2019; Joo

et al., 2021; S. Li et al., 2019; Pinto et al., 2020; Pomponio

et al., 2020). Among these methods, meta-analysis is a traditional and

effective tool that systematically ensembles the summary statistics

from several selected studies (or sites) to develop a single consensus

statistical inference with greater power (Dennis et al., 2018; Schmaal

et al., 2017; van Erp et al., 2018). In contrast, mixed-effect mega-

analysis (ME-Mega) ensembles multisite individual raw data into a sin-

gle statistical model by considering sites as random nuisance covari-

ates, demonstrating potentials in increasing power and reducing site

heterogeneities (Favre et al., 2019; Radua et al., 2020). Moreover,

ComBat harmonization (ComBat), a popular batch adjustment method

originally developed for genomics data (Johnson et al., 2007), has

recently been used in neuroimage studies to boost statistical power

and replication by adjusting site effect (Radua et al., 2020; Yu

et al., 2018; Zavaliangos-Petropulu et al., 2019). To our knowledge,

most of the previous studies focused on comparing performance

between different correction methods in removing multisite biases of

healthy humans (Fortin et al., 2017; Fortin et al., 2018). Therefore, it is

interesting and crucial to know which correction method is most

effective in eliminating the site-related heterogeneity in detecting

schizophrenia aberrant brain functional and structural damage.

Although one pioneer study showed that ComBat could increase sta-

tistical power compared to other site-related heterogeneity correction

methods in one schizophrenia structural magnetic resonance imaging

(MRI) study (Radua et al., 2020), it is unknown which methods would

be more effective in characterizing the aberrant FCs for schizophrenia

while controlling for site effects.

With the advances in machine learning (ML) techniques, substan-

tial progress has been made in discovering connectivity biomarkers

for schizophrenia individual diagnosis (Du et al., 2018; A. Li

et al., 2020; Yoshihara et al., 2020). However, most prior FC-based

classification models were trained on small, single-site participants,

thus having poor generalization caused by heterogeneities between

sites (Arbabshirani et al., 2013; Cao et al., 2020; Du et al., 2018;

Gheiratmand et al., 2017; Jo et al., 2020; Rashid et al., 2016). More-

over, although a few studies have sought to detect the FC biomarkers

by pooling data from multiple sites (Cai et al., 2020; Cheng

et al., 2015), they did not try to remove the between-site FC bias that

may discount the classification performance. One of the exceptions is

that a recent study tried to minimize the effects caused by sites and

other nuisance variables using a data-driven L1-norm regularized

sparse canonical correlation analysis (CCA; Yoshihara et al., 2020).

Another challenge for schizophrenia diagnosis based on neuroimaging

biomarkers is the balance between model complexity and interpret-

ability: on the one hand, fewer intelligible neuroimaging biomarkers

are preferred for psychiatrists' comprehension; on the other hand,

most of the state-of-art ML models are “black boxes,” which contain

hundreds to millions of parameters that severely hinder the model

interpretability (Santana et al., 2020). To disentangle the “black boxes”
issue of ML, a few methods have recently been proposed to help

interpret the ML predictions while preserving the performance

(S. M. Lundberg et al., 2020; Lundberg & Lee, 2017; Ribeiro

et al., 2016; Štrumbelj & Kononenko, 2014; Xie et al., 2022). Early

studies have indicated the aberrant connectivities of schizophrenia

may be network-specific, which usually involves the somatosensory

network (SMN) (S. Li et al., 2019; Sharma et al., 2018; Yu et al., 2017;

Zhang et al., 2019), DMN (F. M. Fan et al., 2013; Whitfield-Gabrieli

et al., 2009), striatum, and thalamus (Anticevic et al., 2014; D. Dong

et al., 2018; Karcher et al., 2019; A. Li et al., 2020). Herein, we

attempted to categorize the abnormal connectivities into several inde-

pendent subnets using an unsupervised clustering; moreover, we tried

to apply the subnet-specific composite FC measures in ML to discrim-

inate schizophrenia from the normal controls (NC). Simplifying a large

amount of disrupted FC features into several independent composite

measures may reconcile classification validity and interpretability for

schizophrenia.

This study aimed to unravel the replicable and independent

subnet-specific FC measures for schizophrenia. We first compared

the robustness of four commonly used site-related heterogeneities

correction methods on the local discovery set and public validation

set separately, including random-effects meta-analysis (Meta_r), fixed-

effects meta-analysis (Meta_f), ME-Mega, and ComBat. Then, based

on early reports of network-specific involvement in schizophrenia

(Giraldo-Chica & Woodward, 2017; Karbasforoushan & Woodward,

2012; A. Li et al., 2020; Zhou et al., 2015), we tried to cluster these

abnormal FCs into several replicable and independent subnets based
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on the statistics of the best correction model (ComBat) and related

the subnet-specific composite FCs to clinical symptoms. Finally, we

hypothesized that ML using the subnet-specific composite FC mea-

sures could discriminate the schizophrenia patients (SZ) from NC with

comparable performance compared to that using the fully identified

FC features.

2 | MATERIALS AND METHODS

2.1 | Participants and data sets

Six data sets with 369 SZ and 355 NC were enrolled in this study,

including three locally obtained data sets and three publicly available

data sets (Supplementary Table 1). The three local data sets collected

from Tianjin Medical University General Hospital, including the Local1,

Local2, and Local3, were used as discovery set to identify the abnor-

mal FCs, to cluster these FCs into several independent subnets, and

to train the classification model. Their acquisition was approved by

the Ethics Committee of Tianjin Medical University General Hospital,

and written informed consent was obtained from each participant.

Structured Clinical Interview for the Diagnostic and Statistical Manual

of Mental Disorders IV was used to diagnose schizophrenia and con-

firm the absence of psychiatric illnesses in NC. The exclusion criteria

included: (1) age lower than 18 years old; (2) left handedness; (3) any

MRI contraindications; and (4) histories of neurological disorders,

severe systemic illnesses, or substance abuse. In addition, the Positive

and Negative Syndrome Scale (PANSS) was obtained for each subject.

The publicly available data sets were obtained from SchizConnect

(http://schizconnect.org/) (L. Wang et al., 2016), including the Brain-

GluSchi (Bustillo et al., 2017), COBRE (Aine et al., 2017), and

NMorphCH (Alpert et al., 2016), which were used as validation set to

test the reproducibility of the identified aberrant FC subnets and their

composite FC measures, to evaluate the connectivity-symptom asso-

ciations, and to test the classification performance. For the

NMorphCH data set, we only comprised the baseline data, and it was

further separated into NMorphCH1 and NMorphCH2 subsets due to

different scanning parameters (Supplementary Table 2). The detailed

information of the public data sets is available on the SchizConnect

website (http://schizconnect.org/).

FMRI data were obtained on six distinct 3.0-Tesla scanners using

gradient-echo echo-planar imaging sequences. Besides, high-

resolution T1-weighted structural MRI images were also included for

spatial normalization. The detailed acquisition parameters are summa-

rized in Supplementary Table 2. After a series of quality control steps,

340 SZ and 348 NC were finally included in the formal analyses

(Supplementary Method).

2.2 | Image preprocessing and FC calculation

The fMRI data were preprocessed using the following pipeline

described in Supplementary Method: slice timing, realign, spatial

normalization using segmentation + DARTEL method nuisance cov-

ariates regression, and band-pass filtering (0.01–0.1).

Brainnetome atlas was used to parcellate the cerebral cortex and

subcortical nuclei into 246 regions (L. Fan et al., 2016). GRETNA soft-

ware version 2.0.0 (https://www.nitrc.org/projects/gretna/) was then

employed to extract the mean blood oxygen level-dependent time

series of these cortical regions and to calculate a Fisher-Z transformed

Pearson correlation coefficient (also termed FC) between each pair of

regions, obtaining 30,135 unique connectivity features (246 � 246

connectivity matrix).

2.3 | Intergroup FC comparisons using different
site-related heterogeneity correction methods

A linear regression model was first applied to the FC for each site to

remove the age and sex effects separately. We chose the site-specific

covariates regression because: (1) we assumed that the effects of age

and sex varied across sites and (2) to make covariates controlling com-

parable across different correction methods (ComBat, ME-Mega,

Meta_f, and Meta_r).

Then, four site-related heterogeneity correction methods (includ-

ing ComBat, ME-Mega, Meta_f, and Meta_r) were employed to

remove site effects while comparing FC differences between the SZ

and NC.

2.3.1 | Raw statistics without correction

We referred to intergroup FC comparisons without adjusting for site

effects as “Raw” statistics. A general linear model (GLM) was per-

formed with each FC as the dependent variable and group (SZ or NC)

as the independent variable. The model can be written as:

ynv ¼ av þXnβv þεv ð1Þ

where ynv is the vth FC of the nth individuals from all sites, av is the

intercept estimate of the vth FC, Xn is the group identifier (1 = SZ,

0 =NC) of the nth individuals, βv is the estimate of the coefficient

(effects) of the vth FC, and ε is the error term.

2.3.2 | ComBat and statistics

ComBat is a popular batch adjustment method originally developed

for genomics data and has recently been applied to harmonize neuro-

imaging data across sites (Fortin et al., 2017; Fortin et al., 2018; Radua

et al., 2020). ComBat uses Bayesian regression to discover and correct

systematic differences among multivariate data collected from diverse

batches (or sites in this study). This tool can simultaneously remove

additive bias (mean difference) and multiplicative bias (variance distri-

bution difference) among sites while preserving the biological varia-

tion of interest. The model is formulated as (Radua et al., 2020):
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yinv ¼ αv þXinβv þ γiv þδivεinv ð2Þ

where yinv is the vth FC of the nth individual in the ith site, aν is the

overall mean of the vth FC, Xin are the covariates of interest of the

nth individual in the ith site (e.g., age and gender). Because we

removed the site-related age and gender effects in advance, Xin is

empty in this study. βv is the effect of the covariates of interest of the

vth FC. Additionally, γiv and δiv indicate the addition and multiplication

effects of ith site for the vth FC.

As described in Johnson et al. (2007), the ComBat estimates γiv

and δiv of the site effect parameters using conditional posterior

means. The final ComBat-harmonized FC values are defined as:

yCombat
inv ¼ yinv �av �Xinβv � γiv

δiv
þav þXinβv ð3Þ

Finally, these ComBat-harmonized FC data underwent group

comparison using the same GLM model as described in Equation (1).

2.3.3 | ME-Mega statistics

ME-Mega has been used in many recent studies to account for site

effects in large-scale studies (Radua et al., 2020). The idea of ME-

Mega is to estimate an overall effect by merging the raw individual

participant data from all sites into one linear mixed model with the

sites as a random effect to control the average effect of each site.

In our study, the ME-Mega controlled the inter-site variation by

considering the “sites” as additional random intercepts within the

GLM and simultaneously estimated the intergroup differences in

FC between the SZ and NC, which can be expressed as the

following.

yinv ¼ αv þXinβv þ γiv þεv ð4Þ

in which yinv represents the vth FC of the nth individuals from site i,

αv is the intercept estimate of vth FC, Xin is the group identifier

(1 = SZ, 0 =NC) of the nth individuals from site i, βv is the estimate

of the coefficient (effects) of the group differences of vth FC, γiv is

the random intercepts for site i of vth FC, and εv is the error term.

2.3.4 | Fixed-effects meta-analyses (Meta_f)

We conducted the fixed-effects meta-analyses in two steps. In the

first step, we estimated the intergroup difference between SZ and NC

for each site using the GLM as described in Equation (1).

In the second step, the effects (βi) of each FC of all sites were

then pooled into one meta-effect (bβ) by weighing the within-site vari-

ance of each site (wi) (Radua & Mataix-Cols, 2012), where the weights

wi are calculated as the inverse of the within-site variance (vi) of βi

(Borenstein et al., 2010):

wi ¼ 1
vi

ð5Þ

Then, the meta-effect (bβ) was pooled with Equation (6):

bβ¼
Ps

i¼1wiβi
Ps

i¼1wi
ð6Þ

And the standard error (SE) of the meta-effect (bβ) is estimated as

Equation (7):

SE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Ps

i¼1wi

s

ð7Þ

Finally, a Z-statistics was introduced to estimate the significance of

the pooled effects by Equation (8):

Z¼
bβ

SE
ð8Þ

2.3.5 | Random-effects meta-analyses (Meta_r)

The steps of random-effects meta-analyses were similar to those of

fixed-effects ones, except that the weights (wi) for the site i is deter-

mined by both within-site variance (vi) and between-site variance (τ2)

with Equation (9) (Borenstein et al., 2010):

wi ¼ 1
viþ τ2

ð9Þ

The pooled effect, SE, and statistical Z value for each comparison

are estimated using the same algorithms described in Equa-

tions (6)–(8).

It should be noted that all these site-effect correction methods

and intergroup FC comparisons were carried out in the local discovery

set and public validation set separately.

Moreover, because the GLM models return a t-statistic for each

comparison, while meta-analyses return a z-statistic, to make compari-

sons between different models feasible, we converted the t-values for

Raw, ComBat, and ME-Mega into z-statistics. This step was realized

using MatLab's “tcdf” and “norminf” functions.

2.4 | Performance evaluation of different site-
effect correction methods

We evaluated the sensitivity and false discovery rate (FDR) of each

site-effect correction method in detecting abnormal FCs

(p = .05/30135, Bonferroni corrected) and compared the perfor-

mance among different methods in the local discovery set and public

validation set separately. Because there is no golden standard to
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determine which FC is “truly” disrupted in schizophrenia, we defined

the “true” disrupted FC at four levels based on their repeatability

among different site-effect correction methods to make performance

comparisons available. For the first level, the “true” disrupted FCs

refer to those that survived at least one of the four site-effect correc-

tion methods. Similarly, for the second, third, and fourth levels, the

“true” disrupted FCs refer to those who survived at least two, three,

and four site-effect correction methods, respectively. As indicated, a

higher “golden standard” level results in more reliable while more con-

servative statistics. It should be noted that although the present

multi-level defined “true” aberrant FCs sound more reliable than

those only based on one preassigned correction method, the “true”
aberrant FCs defined in the present study can only be understood as

“replicable” across correction methods. However, there has still been

no ideal solution to this issue. Ultimately, we calculated the FDR, sen-

sitivity, and F1 score at four “golden standard” levels for each site-

effect correction method with the following equations:

FDR¼ FP
TPþFP

ð10Þ

Sensitivity¼ TP
TPþFN

ð11Þ

F1¼2� 1�FDRð Þ:Sensitivity
1�FDRð ÞþSensitivity

ð12Þ

where TP, FP, and FN denote true positive, false positive, and false

negative, respectively. Here, the FDR refers to the ratio of false dis-

covered abnormal connectivity to all discovered abnormal connectiv-

ity for a certain method. The sensitivity represents the discovered

true abnormal connectivity relative to all true abnormal connectivity

defined by the “golden standard.” The F1 score combines the preci-

sion (1-FDR) and sensitivity and is an objective integrated measure for

model performance.

2.5 | Aberrant FC patterns clustering

We further explored whether the aberrant FCs of schizophrenia could

be clustered into several independent subnets. A hierarchical cluster-

ing model was trained based on the edge-wise z-statistic matrix of

intergroup differences estimated by the best statistical model

(ComBat) in the local discovery set. Detailed steps were as follows:

(1) On the original 246 � 246 z-statistic matrix, we selected the top N

most impacted ROIs by iteratively removing the minimally affected

ROI with the smallest sum of absolute z-statistic between this ROI

and the remaining. This iterative strategy removed ROIs that contrib-

uted less to the connectivity disruption and preserved the top N most

impacted ROIs. (2) Then, a hierarchical clustering method was applied

on the z-statistic matrix of the top N impacted ROIs (N � N) to sepa-

rate them into independent clusters with similar FC disruption pat-

terns within each cluster while different between them. Specifically, a

similarity matrix was calculated based on the z-statistic matrix using

the Euclidean distance; then, a “farthest distance” method was used

to iteratively link pairs of ROIs in closest proximity, forming progres-

sively larger clusters in a hierarchical tree. (3) An automatic grid

searching procedure was applied on the clustering model to determine

both the optimal cluster numbers and ROI numbers (N) based on

Calinski–Harabasz criterion. Specifically, we defined the grid with the

ROI numbers with N from 10 to 100 (10 intervals) and cluster num-

bers from 2 to 10. We iteratively calculated the Calinski–Harabasz

index for each parameter combination. Finally, the results suggested

top 40 ROIs and 2 clusters were the best hyperparameters for hierar-

chical clustering (best Calinski–Harabasz score = 203.866)

(Supplementary Figure 1).

2.6 | Evaluation of aberrant FC patterns across
data sets and sites

Hierarchical clustering separated the top 40 severely damaged brain

regions into two clusters. Cluster1 mainly contained brain regions

within the SMN and visual network (VN), and cluster2 comprised

regions within the striatum, thalamus, and ventral attention network

(VAN). The two clusters further separate the aberrant FCs into three

independent subnets: Net1 was constituted by FCs between regions

within cluster1. Net2 was constituted by FCs between regions within

cluster2. Net3 was constituted by FCs between cluster1 and cluster2

regions.

We further explored whether these three abnormal FC patterns

were replicable across data sets and sites. The subnet-specific com-

posite FC measure FCNetð Þ was calculated for each subject in the local

discovery set and public validation sets, respectively, by the following

equation:

FCNet ¼
Pk

1FCi�abs zið Þ
k

ð13Þ

in which k represents the number of links in this subnet, FCi repre-

sents the ith connectivity value after ComBat harmonization i� 1 k½ �ð Þ,
and zi represents the z-statistic of intergroup differences revealed by

the ComBat statistical model in the local discovery set.

Finally, a GLM was used to test the intergroup differences in

subnet-specific composite FC measures in the local discovery and

public validation set, respectively (p < .05, Bonferroni correction).

In addition, to test the validity of clustering, we compared the sta-

tistical power of subnet-specific composite FC with and without clus-

tering. The composite FC without clustering was calculated based on

two strategies: (1) we only focused on the top 40 most involved brain

regions used for hierarchical clustering, and the composite FC of the

ComBat harmonized 40 � 40 FC matrix was calculated by weighting

the absolute z-scores obtained from local discovery set and (2) we

combined all the ComBat harmonized 246�246 FC matrix into one

composite FC by weighting the absolute z-scores obtained from local

discovery set. And GLM was used to test the intergroup differences in

composite FC without clustering (p < .05, Bonferroni correction).
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Finally, to test if the ComBat-corrected FCs can improve the sta-

tistical power compared with the uncorrected ones, the subnet-

specific composite FC without site-effect correction were also

extracted and compared between groups using GLM (p < .05, Bonfer-

roni correction).

2.7 | Association between the subnet-specific FCs
and clinical symptoms

A CCA was introduced to test the association between the subnet-

specific composite FC measures and the 30 symptom domains of

PANSS (both with and without ComBat adjustment) (Wilk's lambda

test, p < .05). Furthermore, the relationships between the subnet-

specific composite FC measures and illness duration and chlor-

promazine (CPZ) equivalent dose (Gardner et al., 2010) (mg eq/day)

were assessed by Spearman correlation (p < .05). Because subnet-

specific composite FC measures were derived from the weights

(absolute z-statistics) of local discovery set, to avoid double dip-

ping, we carried the FC-symptom association in only the public

validation set.

2.8 | Schizophrenia classification

Six commonly used ML models were applied to evaluate the classifica-

tion performances under two different feature selection conditions:

the three subnet-specific composite FC measures and all connectivity

features. These models were carried out using Scikit-learn version

0.20.1 (https://scikit-learn.org/stable/) from python (version 3.7.1

https://www.python.org/). The models were trained on the local dis-

covery set. The hyperparameters of each model were automatically

determined by a grid searching procedure, and a tenfold cross-

validation method was used to tune the optimized hyperparameters

and construct the predictive model. After model training, we evalu-

ated the prediction performance of each model based on different

features in the public validation set. Finally, the area under the

receiver operating characteristic curve (AUC) was calculated, and

DeLong's test was used to compare the performance between two

different feature selection conditions (p < .05).

3 | RESULTS

3.1 | Demographics and clinical characteristics

The demographic and clinical characteristics of the subjects are sum-

marized in Supplementary Table 1. There were no significant differ-

ences in either sex or age between the SZ and NC in each site

(p > .05). In addition, there showed no statistical difference in mean

FD between the SZ (0.18 ± 0.11) and NC (0.17 ± 0.10) (t = �1.02,

p = .31), indicating head motion could not contribute to the potential

FC differences between the two groups.

3.2 | Robustness of different site-effect correction
methods in detecting schizophrenia aberrant FCs

Among the four site-effect correction methods, ME-Mega discovered

the highest number of aberrant FCs (280), followed by Meta_f (271),

ComBat (224), and Meta_r (128) when summing the results of the

local and public data sets (p < .05/30135, Bonferroni correction). Raw

statistics also identified 267 aberrant FCs. (Figure 1a, Supplementary

Table 3).

For the local discovery set, we found that Meta_r achieved the

overall best control for FDR (0.113 ± 0.121), followed by ComBat

(0.191 ± 0.276), Meta_f (0.235 ± 0.286), and ME-Mega (0.317

± 0.282) (Figure 1b, left panel). ME-Mega owed the overall best sensi-

tivity among the four site-effect correction methods (0.964 ± 0.036),

followed by Meta_f (0.921 ± 0.095), ComBat (0.848 ± 0.134), and

poorest for Meta_r (0.526 ± 0.277) (Figure 1c, left panel). When con-

sidering the balanced performance as revealed by F1 score, Meta_f

owed the overall best performance (0.787 ± 0.201), followed by Com-

Bat (0.776 ± 0.165), ME-Mega (0.756 ± 0.222), and Meta_r (0.602

± 0.136) (Figure 1d, left panel).

For the public validation sets, we found that Meta_r also achieved

the overall best control for FDR (0.152 ± 0.157), followed by ComBat

(0.167 ± 0.263), ME-Mega (0.218 ± 0.250), and Meta_f (0.261

± 0.267) (Figure 1b, middle panel). Meta_f owed the overall best sensi-

tivity among the four site-effect correction methods (0.967 ± 0.040),

followed by ComBat (0.890 ± 0.116), ME-Mega (0.878 ± 0.095), and

Meta_r (0.600 ± 0.233) (Figure 1c, middle panel). Finally, ComBat had

the overall best F1 score (0.819 ± 0.164), followed by Meta_f (0.801

± 0.198), ME-Mega (0.787 ± 0.150), and Meta_r (0.657 ± 0.079)

(Figure 1d, middle panel).

When summarizing the results of the local and public sets, we

found Meta_r also achieved the overall best control for FDR (0.125

± 0.131), followed by ComBat (0.171 ± 0.252), Meta_f (0.237

± 0.263), and ME-Mega (0.272 ± 0.254) (Figure 1b, right panel).

Meta_f owed the overall best sensitivity among the four site-effect

correction methods (0.939 ± 0.072), followed by ME-Mega (0.925

± 0.061), ComBat (0.868 ± 0.127), and Meta_r (0.586 ± 0.242)

(Figure 1c, right panel). Finally, ComBat had the overall best F1 score

(0.806 ± 0.145), followed by Meta_f (0.803 ± 0.179), ME-Mega

(0.776 ± 0.173), and Meta_r (0.656 ± 0.099). Uncorrected raw data

had the lowest F1 score (0.627 ± 0.109) (Figure 1d, right panel).

In summary, among the four site-effect correction methods, Com-

Bat had the overall best performance in considering the balance

between FDR and sensitivity. Thus, we chose the ComBat correction

for further analysis.

3.3 | Schizophrenia replicable aberrant FC patterns
across data sets and sites

Among the top 40 most severely damaged brain regions, both hyper-

and hypo-FCs were identified in multiple systems in both the local dis-

covery set (Figure 2a) and public validation set (Supplementary
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Figure 2), including regions in the VAN, VN, SMN, striatum, and thalamus

(Supplementary Table 4). Hierarchical clustering recognized the top

40 severely damaged brain regions into two independent clusters. Clus-

ter1 mainly contained brain regions within the SMN and VN, and clus-

ter2 comprised nodes within the striatum, thalamus, and VAN. The two

clusters further separate the aberrant FCs into three independent sub-

nets: Net1 was constituted by FCs between regions within cluster1 and

demonstrated hypo-connectivities. Net2 was constituted by FCs

between regions within cluster2 and also demonstrated hypo-connectivi-

ties. Net3 was formed by FCs between cluster1 and cluster2 regions and

generally showed hyper-connectivities (Figure 2b, left panel). The three

independent abnormal FC patterns can also be replicated in the public

validation set (Figure 2b, right panel).

Moreover, GLM found abnormally lower composite FC for Net1

and Net2 (FCNet1, FCNet2), while abnormally higher composite FC for

Net3 (FCNet3) in both the local and public sets (p < .05, Bonferroni cor-

rection) (Figure 2c). We also tested if these subnet-specific FCs

(FCNet1, FCNet2, FCNet3) were replicable in each site. Forest plots

showed that all three subnet-specific FCs could be stably replicated in

each site of the local discovery set. Furthermore, in the public valida-

tion set, all sites had the same effect direction as the discovery

statistic, and 5/12 statistics can pass the statistical significance, indi-

cating relatively high repeatability in the public sites for these subnet-

specific FC measures (Figure 2d).

Furthermore, the composite FCs without clustering derived either

from all 246 ROIs or top 40 ROIs demonstrated weak or no statistical dif-

ferences between the SZ and NC in both the discovery and validation

data sets (Supplementary Table 5), indicating that the subnet-specific

composite FCs derived from clustering is robust in representing the aber-

rant FC patterns of schizophrenia. Finally, for both the local discovery and

public validation sets, the statistical significances (absolute T or p values)

of the three subnet-specific FC measures after ComBat were higher than

those without harmonization, further supporting that ComBat harmoniza-

tion can improve the statistical power (Supplementary Table 6).

3.4 | Association of schizophrenia subnet-specific
FCs with clinical variables

In the public validation sets, there was a significant positive correla-

tion between the first canonical variable of the subnet-specific FC

measures and that of ComBat-corrected PANSS 30 items (r = .590,
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p = .048) (Figure 3a). Furthermore, the FCNet1 contributed dominantly

to the first canonical variable (Figure 3b). Besides, the positive symp-

tom hostility and the general symptom disorientation mainly contrib-

uted to the first canonical variable of PANSS (Figure 3c). Post hoc

Spearman correlation analysis further identified a negative correlation

between FCNet1 and the two PANSS symptom scores: hostility and

disorientation (p < .05) (Figure 3d). There was no association between

the three subnet-specific FCs and CPZ equivalent dose and illness

duration (p > .05) (Supplementary Figure 5).

It should be noted that 17 out of 30 PANSS items had significant

inter-site differences before harmonization (p < .05/30, Bonferroni

correction, Supplementary Figure 3a), and these heterogeneities were

diminished after ComBat (p > .05, Supplementary Figure 3b), suggest-

ing harmonization of PANSS scores can also reduce inter-site hetero-

geneities. Furthermore, the correlation between the composite FC

measure of Net1 and ComBat-adjusted symptoms was slightly stron-

ger than the unadjusted PANSS items (Supplementary Figure 4).

3.5 | Performance of subnet-specific FCs in
schizophrenia classification

The public validation set was used to test the out-of-sample perfor-

mance of each predictive model. Among the six ML classifiers,

XGBoost achieved the best classification performance using the

three subnet-specific composite FC measures as the features

(AUC = 0.728), while the SVM classifier achieved the best perfor-

mance based on the full-connectivities features (AUC = 0.765).

DeLong's test did not find any statistical differences between the

two AUCs (Z = �1.583, p-value = .114) (Figure 4b). In addition,

there were no statistical differences in AUCs between the two dif-

ferent feature selection strategies in any ML classifier (p > .05),

except that the AUC of the SVM using the three subnet-specific

FCs was slightly lower than that using the full-connectivities fea-

tures (Z = �2.536, p-value = .011) (Figure 4a, Supplementary

Table 7).

0.50
0.22

- 0.87

Loading
forsubnet-specific

FC

(a)

(b)

0.55 0.54 0.41 0.37 0.35 0.32 0.31 0.29 0.28 0.2 0.16 0.140.19 0.18 0.17 0.17 0.14 0.13 0.090.11 0.08 0.07 0.05 0.03 0.01 0.01 0 -0.03 -0.06

BrainGluSchi
COBRE

Loading for PANSS

0.2

0.8

0.6

0.4

1 2 3 4

0.2

0.8

0.6

0.4

0

-2

N
et

1
FC

N
et

1
FC

Ha_Disorientation

Ha_Hostility

(c)

(d)

R =0.590 P=0.0482

-5 -4 -3 -2 -1 0

1 2 3 4 5

R =-0.24, p=0.0068

R =-0.31, p=0.00036

-4

0.14

F IGURE 3 Correlation between schizophrenia subnet-specific functional connectivity (FC) measures and clinical symptoms in public data
sets. (a) The correlation between the first canonical variable of the subnet-specific composite FCs and that of 30 PANSS items, and the canonical
loadings for (b) the three subnet-specific composite FC measures and (c) the 30 PANSS items. Colors represent the canonical loading coefficients.
(d) Scatterplots of the Spearman correlation between the composite FC measure of Net1 and two representative symptoms. PANSS, Positive and
Negative Syndrome Scale

164 DU ET AL.



4 | DISCUSSION

This study depicted that ComBat was most robust in removing the

measurement heterogeneity across sites in unraveling the aberrant

FCs in schizophrenia. Besides, three replicable disrupted subnets were

discovered in schizophrenia across different data sets and sites. Fur-

thermore, FC within sensory areas was negatively correlated with the

positive symptom “hostility” and general symptom “disorientation.”
Finally, ML using three subnet-specific composite FC measures could

powerfully discriminate schizophrenia from NC with comparable per-

formance to all identified FC features. Therefore, we speculated that

the identified three subnet-specific composite FC measures derived

from replicable aberrant FC patterns could be considered generaliz-

able neuroimaging biomarkers for schizophrenia.

Prior studies have demonstrated that data set heterogeneities

between sites can introduce severe systematic bias in neuroimaging

quantification (Chen et al., 2014; Clark et al., 2006; Fortin et al., 2017;

Fortin et al., 2018; Garcia-Dias et al., 2020). The popular solutions for

inter-site variability included meta-analysis (Dennis et al., 2018;

Schmaal et al., 2017; van Erp et al., 2018), ME-Mega (Group

et al., 2021; Haukvik et al., 2020; Koshiyama et al., 2020; Radua

et al., 2020). In addition, with the excellent performance of ComBat in

removing the batch effects on genomic data (Johnson et al., 2007),

this method was recently applied to harmonize neuroimaging data and

demonstrated great potential (Fortin et al., 2017; Fortin et al., 2018;

Ingalhalikar et al., 2021; Yu et al., 2018). However, little attention has

been paid to which site-effect correction methods were more robust

in discovering the aberrant FC of schizophrenia. The present study

demonstrated that ComBat is more robust than ME-Mega, fixed-

effect meta-analysis, and random-effect meta-analysis in detecting

aberrant FC for schizophrenia while controlling the false positive rate.

Consistent with previous studies, ME-Mega's higher FDR may be

attributed to its assumption that the error terms follow the same dis-

tribution across sites, which is rarely the case as sites usually have dif-

ferent error variances (Radua et al., 2020). Besides, although random-

effect meta-analysis had the lowest FDR, its sensitivity was lower

than half of any other site-effect correction methods, suggesting too

conservative to unravel the aberrant connectivity in schizophrenia,

supported by a recent comparative study on different image-based

meta-analysis approaches (Maumet & Nichols, 2018). Finally, although
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the sensitivity of ComBat harmonization was relatively lower than the

fixed-effect meta-analysis and ME-Mega, it is the second best in con-

trolling the false discoveries (only lower than the random-effect meta-

analysis). In considering the balance between false discovery control-

ling and sensitivity, ComBat had the overall best performance among

the four site-effect correction methods.

Based on the unraveled stable aberrant FCs of schizophrenia

revealed by ComBat, we further depicted three independent replica-

ble aberrant FC patterns in schizophrenia across different sites based

on hierarchical clustering. First, we found hyper-connectivity between

the thalamus and sensory processing areas (SMN and VN). Many stud-

ies stably replicated the hyper-connectivity between the thalamus

and SMN (Anticevic et al., 2014; Baran et al., 2019; Ferri et al., 2018;

Gong et al., 2019; Woodward & Heckers, 2016). The hyper-

connectivity of the thalamus-VN in schizophrenia could also be vali-

dated by early reports (Dong et al., 2019; Yamamoto et al., 2018). Sec-

ond, the hypo-connectivity within the sensory areas built up the

second stable pattern for schizophrenia, which was also supported by

recent studies (S. Li et al., 2019; Sharma et al., 2018; Yu et al., 2017;

Zhang et al., 2019). We further observed that the hypo-connectivity

within sensory areas was negatively correlated with positive symptom

hostility and general symptom disorientation, respectively. The corre-

lation between FC of sensory areas and disorientation was in line with

an early study that related the abnormal FC with working memory

(Kang et al., 2011). The third remark pattern was the hypo-

connectivity among the thalamus, striatum, and VAN, which was vali-

dated by many prior studies (Anticevic et al., 2014; D. Dong

et al., 2018; Karcher et al., 2019; A. Li et al., 2020). The striatum and

thalamus are key regulation targets of the dopaminergic system, and

dopaminergic hyperfunction of these regions has been widely

acknowledged as the pathophysiology of schizophrenia (Weinstein

et al., 2017). Striatum-VAN dysconnectivity in schizophrenia was also

indicated to be regulated by dopamine system dysfunction (Solé-

Padullés et al., 2016). Thus, we speculated that this thalamic-striatal-

VAN dysconnectivity pattern might be considered an indicator of sub-

cortical dopaminergic dysregulation.

Recent advances in ML techniques substantially promote the

neuroimaging biomarkers for schizophrenia classification with

reported accuracies from 51.65 to 96% (Arbabshirani et al., 2013; Cao

et al., 2020; Du et al., 2018; Gheiratmand et al., 2017). However,

model generalization and result interpretation are still two big obsta-

cles for clinical practice. The first obstacle is mainly caused by hetero-

geneities across sites (Arbabshirani et al., 2013; Cao et al., 2020; Du

et al., 2018; Gheiratmand et al., 2017; Jo et al., 2020; Rashid

et al., 2016), while the second is mainly determined by model com-

plexity (Santana et al., 2020). Based on the aberrant FC patterns pre-

sent above, we argued that most FC features within the same subnets

are redundant for schizophrenia classification. Consistently, we found

that ML using only the three ensembled subnet-specific FCs could

achieve a powerful classification performance comparable to thou-

sands of all identified FCs. In summary, the three replicable aberrant

subnets portrayed the major connectivity dysfunction of

schizophrenia, and their derived subnet-specific FC measures could

be considered generalizable and interpretable biomarkers for

schizophrenia.

One of the major limitations of this study is that most SZ patients

enrolled in the present study were chronic and underwent medication.

Although we did not find any association between the aberrant FCs

and disease duration and CPZ equivalent dose, it remains possible that

the cumulative medication effects or disease course contribute to the

aberrant FC patterns, which should be validated in first-episode, drug-

naïve patients. Second, there is no golden standard to determine

which FC is “truly” disrupted in schizophrenia since then. Thus,

although the present multi-methods defined “true” aberrant FCs

sound more reliable than those only based on one preassigned correc-

tion method, the “true” aberrant FCs should be verified in the future.

Finally, although site-effect correction methods such as ComBat could

remove systematic bias (such as rater and scanner effects), but might

also remove important biological information (such as disease duration

and symptoms). Thus, the balance between removing systematic bias

and preserving biological information should be considered with

caution.

5 | CONCLUSIONS

In summary, this study suggests that ComBat harmonization was most

robust in detecting aberrant connectivity while controlling for the

false discoveries for schizophrenia. Besides, the identified three

subnet-specific composite FC measures might be considered replica-

ble neuroimaging markers for schizophrenia.
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