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Hypoglycemia and exercise both induce the release of b-endorphin,
which plays an important role in the modulation of the autonomic
response during subsequent events. Because opioid receptor
(OR) blockade during antecedent hypoglycemia has been
shown to prevent hypoglycemia-associated autonomic failure,
we hypothesized that OR blockade during exercise would pre-
vent exercise-associated autonomic failure (EAAF). We studied 8
healthy subjects on 2 consecutive days, each of whom partici-
pated in three different studies in random order. The protocol on
day 1 involved one of the following: 1) two 90-min hyperinsulinemic-
euglycemic clamps plus naloxone infusion (control); 2) two 90-min
hyperinsulinemic-euglycemic clamps with exercise at 60% VO2max,
plus naloxone infusion (N+); or 3) same protocol as in the N+
group, but with saline infusion only (N2). On day 2, all were studied
with stepped hyperinsulinemic-hypoglycemic clamps, using hor-
mone concentrations and glucose turnover as indicators of hypo-
glycemia counterregulation. Compared with control, N2 studies
resulted in significantly blunted epinephrine and norepinephrine
responses to subsequent hypoglycemia. Conversely, the N+ group
exhibited unimpaired hypoglycemia counterregulation, charac-
terized by appropriate increases in epinephrine, norepinephrine,
and endogenous glucose production. Thus, OR blockade with
naloxone during antecedent exercise prevents the develop-
ment of acute EAAF by improving the catecholamine responses
and by restoring endogenous glucose production. Diabetes
61:1609–1615, 2012

M
aintenance of near-normal glycemia repre-
sents a major goal in the clinical management
of type 1 diabetes (1) because the role of
glucose control has been well established in

reducing the complications associated with diabetes (2).
However, iatrogenic hypoglycemia, resulting from imper-
fect insulin use, is a major barrier to achieving glycemic
control in people with type 1 diabetes (3). Glucagon and
sympathoadrenomedullary responses serve to counter-
regulate hypoglycemia under normal circumstances (4),
but defects in hormonal counterregulation in patients with
type 1 diabetes(5) predispose them to frequent hypogly-
cemic events in the setting of exogenous insulin therapy
(3,4). Repeated episodes of hypoglycemia lead to further
deterioration in the hypoglycemic counterregulatory re-
sponse, which results in a syndrome termed hypoglycemia-
associated autonomic failure (HAAF) (5,6). HAAF is
manifested biochemically by blunted glucagon and

sympathoadrenomedullary hormonal responses to hypogly-
cemia and clinically presents as hypoglycemia unawareness
and impaired recovery from hypoglycemic events (6).

The regulation of glucose during and after exercise in
people with type 1 diabetes is subject to similar counter-
regulatory mechanisms and inadvertent insulin excess (7).
As a result, hypoglycemia frequently occurs during and
after exercise in these patients (8,9), which is a major
impediment to physical activity in this group. Experiments
using antecedent exercise have shown attenuation of the
counterregulatory response during subsequent hypoglyce-
mia in normal and type 1 diabetic subjects (10,11), thereby
resulting in exercise-associated autonomic failure (EAAF).
The similarities between HAAF and EAAF suggest that they
may share a common pathophysiology.

The mechanisms underlying HAAF and EAAF have not
been yet definitively worked out. Thus far, cortisol, brain
glycogen stores, and endogenous opioids have been im-
plicated, at least in part (6,12,13). We have demonstrated
that blockade of endogenous opioid receptors with nalox-
one during antecedent hypoglycemia in nondiabetic adults
prevents development of HAAF during subsequent hy-
poglycemia (12), suggesting a mechanistic role for endo-
genous opioids. Because hypoglycemia and exercise
both induce the release of endogenous opioids (14,15), in-
cluding b-endorphin, we hypothesized that opioid receptor
blockade during antecedent exercise would also prevent
EAAF.

RESEARCH DESIGN AND METHODS

We studied 8 healthy volunteers (5 men, 3 women, age 28 6 5.3 years, BMI
25.2 6 5.7 kg/m2, HbA1c 5.4 6 0.5%). The inclusion criteria required that the
subjects had no history of hypoglycemia and did not exercise for 2 weeks
before the study. Each subject participated in three different sets of studies, in
random order, separated by at least 5 weeks between studies. All studies were
performed after an overnight fast. Each set of studies consisted of 2 consec-
utive days. Day 1 in each set consisted of two 90-min hyperinsulinemic-
euglycemic clamps, with plasma glucose maintained at 5 mmol/L. During the
clamp phases, each subject was assigned to one of the following study con-
ditions: 1) 90 min of exercise on a stationary ergonomic bicycle performed at
60% of VO2max, with naloxone infusion (N+); 2) 90 min of exercise on a sta-
tionary ergonomic bicycle performed at 60% of VO2max, with normal saline
infusion replacing the naloxone (N2); or 3) 90 min of rest with naloxone in-
fusion (control). The insulin clamp and the glucose infusion were necessary to
maintain similar plasma glucose and insulin concentrations in all studies, en-
abling us to selectively assess the effects of the naloxone infusion during an-
tecedent exercise on subsequent hypoglycemia counterregulation. Day 2 was
identical in all studies and included a hyperinsulinemic stepped hypoglycemic
clamp, with quantification of hormonal responses and glucose kinetics.

At least 2 weeks before the initial study, all subjects were admitted to the
Clinical Research Center to determine their VO2 max. Incremental exercise was
performed on a stationary cycle ergometer, and expired gases were collected
and analyzed using computerized open-circuit indirect calorimetry (Sensor-
Medics VMax-29, Yorba Linda, CA), as previously described (16,17). VO2 max

averaged 37 6 4.2 mL/kg/min.
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Day 1. At 0800 h on the study day, two indwelling cannulae were inserted in all
subjects. One was placed in an antecubital vein for infusions, and the second
was placed in a retrograde fashion in a distal hand vein of the contralateral
forearm for blood sampling. To obtain arterialized venous blood samples, this
hand was maintained at 65°C in a thermoregulated sleeve. At t 230 min,
a constant insulin infusion (Humulin Regular; Eli Lilly, Indianapolis, IN) was
initiated at a rate of 1 mU/kg/min, and a variable infusion of 20% dextrose was
administered to maintain the plasma glucose concentration at euglycemia
throughout the study. Blood samples were collected at 5-min intervals for
measurements of plasma glucose. At t = 0 subjects were assigned to 90 min of
1) exercise with naloxone (N+) (Narcan; Du Pont Pharmaceuticals, Wilmington,
DE), administered as a primed continuous infusion at 0.4 mg/kg/min; 2) ex-
ercise without naloxone (N2); or 3) rest with naloxone (control), adminis-
tered as a primed continuous infusion at 0.4 mg/kg/min, depending on which
protocol the subject was randomized to on the study day.

At the completion of the 90-min clamp, the insulin and naloxone infusions
were discontinued, and the plasma glucose was maintained at euglycemia with
the infusion of dextrose, as needed, for 90 min. During this time, the subjects
also received a snack containing 15 g of carbohydrate. At t = 180 min, the
experimental conditions were resumed, with subjects assigned to the same
conditions as during the first 90 min. At the completion of the second clamp,
a meal was provided, glucose was stabilized, intravenous cannulae were re-
moved, and the subjects were discharged. In all the groups, blood samples
were obtained for the determinations of serum b-endorphin.

Day 2. At 0800 h, the subjects had two indwelling cannulae inserted. At
t = 2120 min, a primed-continuous infusion of high-performance liquid
chromatography–purified [3-3H] glucose was initiated with a bolus of 21.6 mCi,
followed by a continuous infusion of 0.15 mCi/min for the entire study period.
The specific activity of infused dextrose was kept equivalent to plasma glu-
cose–specific activity by the addition of [3-3H] glucose to the infusate, as
previously described by Finegood et al. (18). At t = 0 min, a primed continuous
infusion of insulin was initiated at a rate of 1.0 mU/kg/min for the first 10 min
and thereafter was continued at 0.5 mU/kg/min throughout the study. At
t = 10 min, a variable infusion of 20% dextrose was also begun to maintain the
plasma glucose concentration at 90 mg/dL for 50 min. At t = 50 min, and every 50
min thereafter, the plasma glucose concentration was decreased by decrements
of 10 mg/dL for 50 min each by reducing the dextrose infusion rate accordingly.
Plasma glucose was clamped at the desired range according to plasma glucose
measured at 5-min intervals with targets of 5.0, 4.4, 3.9, and 3.3 mmol/L. Blood
samples were obtained for the determinations of plasma insulin, C-peptide, glu-
cagon, epinephrine, norepinephrine, and cortisol, as well as for glucose turnover.

Plasma glucose was measured with a Beckman glucose analyzer (Beckman
Coulter, Fullerton, CA), using the glucose oxidase method. Plasma [3-3H]
glucose radioactivity was measured in duplicate on the supernatants of barium
hydroxide–zinc sulfate precipitates of plasma samples, after evaporation to
dryness to eliminate tritiated water (19). The methods for measurement of
plasma insulin, C-peptide, glucagon, cortisol, and their intra- and interassay
variations have been previously reported (20). Plasma b-endorphin was

FIG. 1. Plasma glucose concentrations (day 2) at each glucose step (A) and glucose infusion rates (day 2) at each glucose step (B) in the N2, N+,
and control studies. *P < 0.01 for N2 vs. N+ and control.
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measured using an enzyme-linked immunosorbent assay (MD Bioproducts, St.
Paul, MN). Plasma epinephrine and norepinephrine levels were determined
using radioimmunoassay (IBL-America, Minneapolis, MN).
Statistical analysis. The data are presented as the mean 6 SEM. Steele’s
equation was used for calculation of glucose turnover, as described (21).
Values for endogenous glucose production (EGP) and glucose uptake,
obtained at 10-min intervals, were averaged over the final 30 min of each
glucose step. Statistical analyses were performed using repeated-measures
ANOVA for multiple comparisons and the paired Student t test for compar-
isons between two means (same subject) before and after an intervention
(naloxone infusion). A value of P , 0.05 was considered significant.

RESULTS

Day 1. Plasma b-endorphin levels at baseline (t = 0) were
5.7 6 1.3, 7.26 1.8, and 5.2 6 0.9 pg/mL in the N2, N+ and
control studies, respectively. At the end of the studies (t =
270 min), plasma b-endorphin concentrations increased
significantly in the N2 and N+ studies (41.7 6 5.1 and
36.2 6 4.6 pg/mL, respectively; P , 0.001 compared with
baseline for both sets of studies), but remained unchanged
in the control studies (9.7 6 1.2 pg/mL, P = NS compared
with baseline).
Day 2. Plasma glucose concentrations during the hyper-
insulinemic stepped hypoglycemic clamps on day 2 are
shown in Fig. 1A. All study protocols (N2, N+, and control)

achieved the target plasma glucose levels, with no signifi-
cant differences among the studies.

Glucose infusion rates are depicted in Fig. 1B. During
the first (5.0 mmol/L), second (4.4 mmol/L), and third (3.9
mmol/L) target glucose steps, average glucose infusion
rates (mg/kg/min) were comparable in the N2 (2.1 6 0.2),
N+ (2.1 6 0.2), and control (1.9 6 0.1) studies (P = NS).
However, during the 3.3-mmol/L glucose step, the mean
rate of glucose infusion (in mg/kg/min) was 1.06 0.1 in the
N2, 0.5 6 0.1 in N+, and 0.3 6 0.1 in control studies (P ,
0.01 for N2 vs. the N+ and control studies).

Plasma insulin concentrations were similar in all studies
at baseline, averaging (in pmol/L) 42.4 6 4.2 in the N2,
57.64 6 3.5 in the N+, and 47.9 6 3.5 in the control studies
(P = NS). Similarly, there was no significant difference in
plasma insulin concentration during all clamps, averaging
357.7 6 25 in the N2, 366 6 23.6 in the N+, and 367.4 6
29.9 in the control studies (P = NS; Fig. 2A). Plasma
C-peptide concentrations were comparable in all sets of
studies at baseline (averaging 0.46 6 0.1 nmol/L) and
during the hypoglycemic nadir (averaging 0.04 6 0.01
nmol/L; Fig. 2B).

Plasma epinephrine concentrations were similar in
all studies during the 5.0 and 4.4 mmol/L glucose steps

FIG. 2. Concentrations of plasma insulin (A) and plasma C-peptide (B) are shown on day 2 in the N2, N+, and control studies.
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(306.3 6 60.6, 365.2 6 46.4, and 284.4 6 46.4 pmol/L in the
N2, N+, and control studies, respectively; P = NS). Further
reduction in plasma glucose to 3.3 mmol/L was associated
with increments in plasma epinephrine in all studies;
however, a significantly lower plasma epinephrine con-
centration (in pmol/L) was demonstrated in the N2 studies
(2,538.4 6 256.6) compared with the N+ (3,832.2 6 480.4)
and control studies (4,192.5 6 502.2; P , 0.01, Fig. 3A).

Plasma norepinephrine concentrations were equivalent
during the 5.0 and 4.4 mmol/L glucose steps in all studies
(Fig. 3B). However, during the 3.3 mmol/L glucose step,
plasma norepinephrine (in pmol/L) increased only slightly
in the N2 studies (1,672.8 6 443.3 pmol/L) compared with
the N+ (3,322 6 461.1) and control studies (2,873 6 366,
P , 0.05 for N2 vs. N+ and control).

Plasma glucagon and cortisol concentrations were
equivalent in all studies at baseline and increased similarly
with hypoglycemia in the N2, N+ and control studies (Fig.
3C and 3D).

Mean baseline EGP was similar in all studies (2.2 6 0.2,
2.1 6 0.2, and 2.1 6 0.2 mg/kg/min, in the N2, N+, and
control studies, respectively; P = NS). With the initiation of
insulin infusion, EGP was equally suppressed by ;65% in
all studies. During the 3.3 mmol/L glucose step, EGP re-
covered by 53% in the N2 studies and by 92% and 85% in
the N+ and control studies, respectively (P , 0.01 vs. N2;
Fig. 4).

DISCUSSION

We provide data that antecedent vigorous exercise can
induce EAAF during subsequent hypoglycemia in healthy
adults and that concomitant blockade of opioid receptors
with naloxone during exercise prevents the development
of EAAF by averting the decrements in epinephrine and
norepinephrine responses and restoring the EGP to nearly
normal levels. The normalization of EGP during the hypo-
glycemic phase was also associated with a lower glucose
infusion rate required to maintain plasma glucose levels at
goal, further supporting our findings of improved glucose
counterregulation and recovery from hypoglycemia when
opioid receptor blockade coincided with antecedent ex-
ercise. Thus, our findings suggest that endogenous opioids,
including b-endorphin, may play a significant role in the
pathogenesis of EAAF.

Several studies in healthy subjects also have shown
blunting of the hypoglycemic counterregulatory response
after antecedent exercise (22,23). In addition, experimen-
tal evidence suggests that opioid receptor blockade with
naloxone administration during exercise results in the rise
of epinephrine and norepinephrine in nondiabetic indi-
viduals (24,25). However, to the best of our knowledge, we
are the first to demonstrate that naloxone administration
during antecedent vigorous exercise prevents the attenu-
ation of the catecholamine response during subsequent
hypoglycemia, thus abrogating the development of EAAF.

FIG. 3. Concentrations of plasma epinephrine (A), norepinephrine (B), glucagon (C), and cortisol (D) are shown on day 2 at each glucose step in
the N2, N+, and control studies. *P < 0.05 for N2 vs. N+ and control.
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Because catecholamine blunting is also known to occur
during hypoglycemia after exercise in type 1 diabetic sub-
jects (10,11), opioid receptor blockade may have a potential
role in the prevention of EAAF in this group.

That we did not observe a decrement in glucagon levels
during hypoglycemia that followed the exercise period is
not necessarily surprising given the findings of other in-
vestigators. Hypoglycemia-induced secretion of glucagon
was the same in antecedent exercise groups compared with
control subjects in a number of studies of healthy subjects
(23,26). However, a decline in glucagon levels during hypo-
glycemia was observed in nondiabetic people with repeatedly
induced hypoglycemia (12). Although the explanation for
these discrepant findings is not obvious, there are physi-
ologic differences between hypoglycemia and exercise
that may provide some clues. Exercise does not reliably
induce a rise in peripheral circulating glucagon levels (in
contrast to hepatic portal levels), which is typically always
observed during acute hypoglycemia in healthy people
(27); thus, the lack of effect on glucagon during antecedent
exercise may have an influence on its levels during sub-
sequent hypoglycemia. Hence, a different mechanism is
likely to be involved in the attenuation of the glucagon
response, as opposed to the catecholamine response, as
they relate to HAAF and EAAF.

Evidence is accumulating for the role of endogenous
opioids, including b-endorphin, in exercise and the path-
ogenesis of EAAF. The level of b-endorphin rises in re-
sponse to exercise (14,28), as it is presumably released from
the proopiomelanocortin neurons of the pituitary (29) and
the adrenal medulla (30,31). The stimuli for b-endorphin
release during exercise may be anaerobic metabolism (14),
exercise intensity and duration (14), or catecholamine stim-
ulation of the adrenergic receptors (31). Finally, b-endorphin
has been implicated in the analgesic response and hormonal
regulation of glucose metabolism under normal exercise
conditions (14).

b-Endorphin may manifest its effect on glucose regula-
tion during subsequent hypoglycemia and EAAF via actions
on the opioid receptors in the central nervous system (CNS)
and periphery. In the CNS, opioids bind to d-, k-, and

m-receptors in areas of the thalamus and hypothalamus
responsible for glucose sensing, including the ventromedial
hypothalamus, arcuate nucleus, and dorsal medial thalamus
(32–37). Administration of exogenous b-endorphin into the
rat brain was associated with the suppression of hypotha-
lamic responses to hypoglycemia (38). In addition, repeated
induction of hypoglycemia in rats, which is associated with
b-endorphin release (12,15), resulted in the suppression
of transcription of hypothalamic genes that regulate the
transition from glycolysis to fatty acid oxidation (39). This
transition may be an important mechanism used to maintain
adequate glucose levels during hypoglycemia and contribute
to recovery from hypoglycemia. The effect on the suppres-
sion of gene transcription is reversed with naloxone admin-
istration during antecedent hypoglycemia (39), thereby
implying that endogenous opioids are the mediators of
this effect.

Peripherally, b-endorphin may exert its influence on hy-
poglycemia counterregulation via actions at the adrenal
medulla. Animal data suggest that b-endorphin released by
the adrenals may induce glucose utilization via upregulation
of the GLUT 4 gene expression and suppress hepatic glu-
coneogenesis via downregulation of PEPCK gene expression
(40,41). Peripheral administration of exogenous b-endorphin
induced a similar response in rats (42). If analogous events
occur in humans, they would be expected to prevent re-
covery from hypoglycemia and result in HAAF and EAAF.

The release of adrenal b-endorphin during exercise is
likely mediated via a1-adrenoreceptor stimulation by
catecholamines, as suggested by phenylephrine-induced
secretion of b-endorphin and a decline in b-endorphin levels
after the administration of a-adrenergic antagonists in rats
(31,41). Intra-adrenal opioid secretion subsequently sup-
presses catecholamine release from the adrenals (43,44)
by stabilizing the actin filaments of the chromaffin cells
(43), thus implying the existence of a negative-feedback
mechanism between adrenal b-endorphin and catechol-
amine release. This negative-feedback mechanism may
generally serve to protect the organism from deleterious
cardiovascular effects associated with chronic exposure to
elevated catecholamine levels, as may occur with repetitive

FIG. 4. EGP on day 2 averaged for the final 30 min of each glucose step in the N2, N+, and control studies. *P < 0.01 for N2 vs. N+ and control.
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stresses or exercise. The suppression of the adrenal stress
response may serve a beneficial role under chronic stress
conditions but may also be responsible for the disabling
symptoms of EAAF in patients with type 1 diabetes.

Naloxone is an opioid receptor antagonist characterized
by high affinity to the m-opioid peptide receptors in the
brain. In vitro, naloxone reverses opioid effects on the
adrenal glands (44), thereby suggesting that peripheral
opioids may have a pathogenic role in HAAF and EAAF.
These findings are further supported by human studies, in
which pretreatment with an adrenergic antagonist during
antecedent hypoglycemia prevented the attenuation of
the catecholamine response during subsequent hypoglyce-
mia (45). The mechanism responsible for preserving the
hypoglycemia-induced catecholamine release in the setting
of adrenergic blockade during antecedent hypoglycemia
likely results from inhibition of a1-adrenergic stimulation
of intra-adrenal b-endorphin release, as evidenced by the
presence of an opioid antagonist or the m-receptor knock-
out preventing the glucose-lowering effect of adrenergic
stimulation (40,41). Although most of this evidence is
obtained in models of HAAF, given the significant patho-
physiologic similarities between HAAF and EAAF and
the shared induction of b-endorphin release in response
to hypoglycemia and exercise, we speculate that these
mechanisms may be applicable to EAAF as well.

In conclusion, we have shown that opioid receptor
blockade with naloxone during antecedent exercise can
prevent the onset of EAAF during subsequent hypoglyce-
mia in healthy subjects. Although the response to opioid
blockade during exercise cannot be predicted in patients
with type 1 diabetes, because this group has been reported
to have a decreased exercise-induced release of b-endorphin
(46), the effect of opioid receptor blockade on EAAF ought
to be evaluated in type 1 diabetes because EAAF remains
a significant risk for this population.
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