
ARTICLE

CRISPRoff enables spatio-temporal control of
CRISPR editing
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Following introduction of CRISPR-Cas9 components into a cell, genome editing occurs

unabated until degradation of its component nucleic acids and proteins by cellular processes.

This uncontrolled reaction can lead to unintended consequences including off-target editing

and chromosomal translocations. To address this, we develop a method for light-induced

degradation of sgRNA termed CRISPRoff. Here we show that light-induced inactivation of

ribonucleoprotein attenuates genome editing within cells and allows for titratable levels of

editing efficiency and spatial patterning via selective illumination.
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CRISPR-Cas9 technology has rapidly revolutionized the
genome editing field1. However, once introduced into a
cell the CRISPR ribonucleoproteins (RNPs) are

uncontrollable, capable of forming double strand breaks (DSBs)
at locations where the sgRNA binds within the genome2. Previous
attempts to control CRISPR systems inside the cell have
approached this problem on a variety of levels, from controlled
expression of integrated Cas93,4 and sgRNA5, sgRNAs that are
modulated in response to ligand binding6, split Cas9 that
dimerizes upon illumination with blue light7, to anti-CRISPR
proteins8,9, a viral defense against the CRISPR immune system.
However, each of these strategies requires an additional physical
component of the CRISPR system beyond a typical RNP to be
introduced into the cell. These additional engineering steps can
also produce challenges to the production of purification of
protein Streptococcus pyogenes Cas9 (SpCas9).

To address these challenges, we develop the CRISPRoff system,
a synthetic sgRNA that fragments in response to light, preventing
formation of new DSBs (Fig. 1a). Here we show that CRISPRoff is
effective across multiple genomic targets in multiple cell lines and
demonstrate two key uses of this platform; the ability to maximize
on:off targeting editing events and the ability to spatially pattern
cells in vitro.

Results
CRISPRoff sgRNA synthesis and cleavage. CRISPRoff sgRNAs
are chemically synthesized using solid phase synthesis10,11 and
incorporate photocleavable residues containing a o-nitrobenzyl
groups (Supplementary Fig. 1a) at defined positions. This o-
nitrobenzyl group undergoes cleavage in response to UV light
(Supplementary Fig. 1b), leaving a single phosphate group on the
RNA fragment12. To develop a universal system, we tested a
variety of sgRNA molecules, in which nucleotides at various
positions13 along the backbone have been replaced with photo-
cleavable residues. (Supplementary Fig. 1c) Upon exposure to
broad-spectrum light (80 mW cm−2, Supplementary Fig. 1d),
sgRNAs demonstrated fragmentation when analyzed on a frag-
ment analyzer (Supplementary Fig. 1e). However, RNP complexes
formed with some of these sgRNAs failed to initiate editing when
delivered into cells (Supplementary Fig. 1f), potentially due to
steric hindrance with Cas9 protein14. We identified two repla-
cement sites that allowed sgRNAs to retain efficiency (positions
57 and 74, where position 1 is the 5′ end of the sgRNA, Sup-
plementary Fig. 1c, g) and used these sites to create dual-breakage
sgRNAs (DBsgRNA). DBsgRNAs were created as a fail-safe
mechanism as cleavage at either site removes editing activity and
increases the probability that at least one site is cleaved upon
illumination. We found that these guides underwent fragmenta-
tion when irradiated with UV light as analyzed by electrospray
ionization (ESI) mass spectrometry (Fig. 1b). Molecular weight of
observed fragments corresponded closely to split sgRNAs at
position 57 (fragments of 18 kDa and 14 kDa), sgRNAs split at
position 74 (fragments of 8 kDa and 24 kDa), and split at both
positions (fragments of 18 kDa, 8 kDa, and 5 kDa). DBsgRNAs
also maintained in vitro editing activity comparable to standard
sgRNAs when untreated and intact (Fig. 1c). This was determined
by amplifying DNA containing the DNMT1 target sequence
(Supplementary Table 1) and mixing with RNPs. We investigated
sgRNA activity by assessing target DNA cleavage with a fragment
analyzer. Importantly, when DBsgRNAs were synthesized as
fragments and mixed with SpCas9, they did not exhibit any
cleavage activity when assessed by the same assay (Fig. 1c).

We next demonstrated that DBsgRNAs are cleaved within cells
upon illumination. Two hours following transfection of RNPs
formed with standard sgRNAs or DBsgRNAs, cells were split into

two populations, one being illuminated, and one kept in the dark
to form paired experimental replicates. Both populations were
allowed to recover for an additional 2 h, after which RNA was
harvested. Using digital droplet PCR (ddPCR), we found that
DBsgRNAs exposed to light exhibit a significant decrease in
abundance in full-length DBsgRNA when compared to the paired
population kept in the dark (Fig. 1d and Supplementary Table 3).
This change was not observed using standard sgRNAs.

CRISPRoff modulates genome editing events in human cells.
After determining DBsgRNAs can be effectively cleaved, we next
tested the ability of CRISPRoff to modulate genome editing
events within human cells. Due to the presence of potentially
damaging UVA and UVB wavelengths present within our light
source (Supplementary Fig. 1d), we first demonstrated that using
a 345 nm long-pass filter did not significantly affect the viability
of transfected HEK293 or U2OS cells (Supplementary Fig. 2a)
and was used in all subsequent experiments.

Four hours following delivery of RNPs formed with DBsgRNAs
targeting DNMT1 into HEK293 cells, samples were illuminated
for up to 60 s (Supplementary Fig. 2b) and allowed to recover for
an additional 44 h. After harvesting the genomic DNA of these
cells and analyzing amplified genomic target regions using
Inference of CRISPR Edits (ICE)15 we found that the degree of
editing was significantly reduced in light-exposed samples
(Fig. 1e). As a control, we also transfected HEK293s with
standard sgRNAs and illuminated samples following the same
protocol. Editing in illuminated sgRNA RNP populations was not
significantly different than paired populations left in the dark.
The similarity in overall editing efficiency following illumination
of standard sgRNA RNPs suggests that DBsgRNAs were
effectively cleaved within cells and no longer functional.

We further observed that illumination four hours post
transfection retained a small portion of editing events, pre-
sumably from DSBs formed prior to external stimulus, including
those that had not been repaired16. We reasoned that editing
levels within populations may be titratable by modulating when
the post-transfection timepoint at which samples are irradiated.
To test this, we transfected HEK293s with DBsgRNA targeting
DNMT1 and illuminated a distinct cell sample, one time each,
every two hours for two days. After 48 h, genomic DNA was
isolated from all samples and analyzed for insertion/deletion
mutations (indels). In alignment with our prediction, we were
able to fine tune the level of gene editing within a population
using DBsgRNAs (Fig. 1f).

CRISPRoff is effective across cell lines and gene targets. To test
the universal effectiveness of the CRISPRoff system, we created a
panel of standard sgRNAs and DBsgRNAs targeting a variety of
chromosomes and local genomic contexts (Supplementary
Table 1). Across all targets, all but two (CAMK1_sg2 and
STK3_sg2) intact DBsgRNAs formed DSBs at a similar frequency
as standard sgRNAs (p < 0.05, multiple independent t-test with
FDR correction) (Fig. 2a–c) and generated a similar indel profile
(Supplementary Fig. 2c). The majority of DBsgRNAs also showed
a decrease in editing efficiency when illuminated four hours post
transfection compared to cells from the same transfection that
remained in the dark (Fig. 2a–c). Importantly, irradiation did not
decrease editing efficiency of standard sgRNAs suggesting
incorporation of photocleavable linkers was wholly responsible
for the decrease in efficiency (Fig. 2a–c, right). We also observed
that some targets were inactivated to a lesser degree than others,
and hypothesized that the decrease in efficiency could be based on
the individual editing kinetics at each site17.
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To test this hypothesis, we identified one sgRNA, FANCF, that
does not appear to be inactivated. To confirm that editing at this
site can be controlled using CRISPRoff, we ran a high-resolution
test of genome editing events where cells transfected with either
standard or DBsgRNA RNPs were illuminated 15 min post
transfection and harvested 15, 30, 60, 90, 120 min as well as
longer time points at 4 and 24 h post transfection. In line with our

hypothesis, illumination of DBsgRNAs 15 min post transfection
completely ablated editing at this site (Supplementary Fig. 2d).
Interestingly, at four hours post transfection we observed that
nearly 50% of alleles in the standard sgRNA transfection had
already experienced a DSB that was repaired through NHEJ,
confirming our hypothesis that the editing kinetics at this site is
very fast.
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Fig. 1 Characterization of CRISPRoff sgRNAs. a Schematic diagram of CRIPSRoff dual-breakage (DB) sgRNAs. Nucleotides at positions 57 and 74 are
replaced with residues that are cleaved in response to light. In the dark DBsgRNAs (blue) perform like standard sgRNAs (black). Upon exposure to light,
the DBsgRNAs fragment (green) and are no longer functional. b Electrospray ionization (ESI) analysis of sgRNAs. Left: DBsgRNA before exposure to light.
Product is full-length DBsgRNA. Right: DBsgRNA after exposure to light. Amount of full-length DBsgRNA is significantly reduced and observed products
match predicted weights based on cleavage locations. c DNA fragment analysis showing in vitro cleavage of DNA induced by RNPs formed with sgRNA or
DBsgRNAs. When synthesized as individual parts (lane 2), DBsgRNAs are unable to support substrate cutting. Similarly, after exposure to light DBsgRNAs
fail to support target cleavage (lane 6). In all cases, RNPs formed with standard sgRNAs are able to cleave substrate (lane 3, 5). d Amount of sgRNA in cells
analyzed by ddPCR with or without light exposure. Level of standard sgRNAs did not decrease in response to light. In contrast, DBsgRNAs were
significantly depleted from cells following irradiation. Mock transfections did not detect sgRNA in either condition, indicating primers were specific to the
target. (n= 3 experimental replicates, data is presented as mean ±1 SD, ****p= 0.0003, Student’s two-tailed t-test with Bonferroni correction). e CRISPRoff
editing in HEK293 cells at the DNMT1 locus, DBsgRNAs formed indels at rates similar to standard sgRNAs in dark conditions. When exposed to light,
DBsgRNAs were no longer able to induce indels (n= 2 paired experimental replicates, data is presented as mean). f Editing time course of DBsgRNAs
targeting DNMT1. Distinct cell samples were exposed to light once each, with 2-h intervals between samples and all cells were harvested at 48 h for genetic
analysis (n= 2 technical replicates). CRISPRoff allowed for titratable levels of genome editing within populations. Source data are provided as a Source
data file.
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CRISPRoff can optimize on:off-target editing events. Within
our panel, we included an sgRNA known to be cytotoxic due to
having an off-target site in an essential gene. Interestingly, when
DBsgRNAs of this guide was used in conjunction with irradiation,
a greater proportion of cells survived (Supplementary Fig. 2e),
potentially due to an increase in the ratio of on:off-target events,
while maintaining editing efficiency. With this in mind, we cre-
ated sgRNAs that had significant levels of off-target editing at one
or two sites within the genome (Supplementary Table 4). Based
on previous studies, editing at off-target sites may be slower than
editing at the on-target sites18,19, and depend on RNP con-
centration within the cell20,21. We rationalized that we may be
able to maximize the ratio between on:off-target editing (Sup-
plementary Fig. 3a) by illuminating DBsgRNAs at an optimal
time point post transfection. We transfected independent pools of
cells with 7 unique sgRNAs and exposed the pools to light at 4, 8,
16, 24, or 48 h post transfection. We also harvested genomic DNA
from each of these pools at the indicated time point to form a
longitudinal editing curve. Following illumination, the degree of
editing at many off-target sites plateaued, demonstrating that
inactivating DBsgRNAs slowed down off-target editing (Supple-
mentary Fig. 3b). By illuminating DBsgRNAs at discrete times

post transfection we found we were able to modulate and max-
imize the on:off-target cutting ratios (Fig. 3a).

CRISPRoff enables precise spatial patterning. One of the major
advantages of using optical as opposed to chemical stimulus is the
ability to obtain precise spatial control. This ability enables
researchers to study complicated signaling effects such as paracrine
vs juxtracrine signaling within a single well or better understand the
role of specific genes during differentiation or organoid formation.
Further uses in vivo could also help understand the effects of gene
knockout in a developing embryo at a 2- or 4-cell state by laser
illumination22. As a proof-of-concept, we obtained a GFP-
expressing cell line23 and designed sgRNAs to create GFP knock-
out phenotypes. We used a standard inverted fluorescent micro-
scope which could illuminate a single well at a time. This fluorescent
microscope setup contained a 385 nm LED commonly used for
illumination, and that is right on the edge of the reactivity of the PC
linker in DBsgRNAs (Supplementary Fig. 1b). Using this setup, our
DBsgRNA protocol continued to modulate indel formation in
human cells (Fig. 3b). As a final study, we created a thin-film mask
with transparent patterns with a precision of 8 µm (Fig. 3c). By
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selectively masking the bottom of the well, we created distinct spatial
patterns by knocking out GFP in defined regions. (Fig. 3d).

Discussion
Taken together, CRISPRoff allows for tight control of editing
from both a spatial and temporal perspective, expanding the

toolbox of optogenetic gene editing24–26. We have successfully
demonstrated this technology in multiple human cell lines across
multiple genomic loci and expect this technology to be turn-key
ready with any CRIPSR-based application currently using syn-
thetic or to replace in vitro transcribed sgRNAs. While, at the
moment, CRISPRoff is limited in in vivo applications, due to the
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low penetrance of UV light through tissues, we are excited by the
possibility of further chemistries extending the range of photo-
cleavable molecules such as with two-photon cleavage
systems27,28. Further, because CRISPRoff makes modifications to
the backbone of the sgRNA, it can be compatible with other
technologies, such as sgRNA modifications to activate gene
editing25, or Cas9 modifications to enhance on-target
specificity29,30. We anticipate that the CRISPRoff system will be
a valuable tool for both in vitro and in vivo control of CRISPR
technologies.

Methods
RNA synthesis. RNA oligonucleotides were synthesized on Synthego solid-phase
synthesis platform, using CPG solid support containing a universal linker. 5-
Benzylthio-1H-tetrazole (BTT, 0.25M solution in acetonitrile) was used for cou-
pling, (3-((Dimethylamino-methylidene)amino)-3H-1,2,4-dithiazole-3-thione
(DDTT, 0.1 M solution in pyridine) was used for thiolation, dichloroacetic acid
(DCA, 3% solution in toluene) for used for detritylation. After synthesis, oligo-
nucleotides were subject to series of deprotection steps, followed by purification by
solid phase extraction (SPE). Purified oligonucleotides were analyzed by ESI-MS.
All materials for RNA synthesis were obtained from either ChemGenes or Thermo
Fisher Scientific. CRISPRoff sgRNAs were made with PC Linker phosphoramidite,
which was obtained from Glen Research (10–4920).

Cell culture. Human embryonic kidney cells (HEK293) and Hep3B were main-
tained between passage 5–20 in Advanced Modified Eagles Medium (Life Tech-
nologies) and 10% v/v FBS. Cells were passaged biweekly at a 1:8 ratio with TrypLE
(Life Technologies).

U2OS cells were maintained between passage 5–15 in RPMI 1640 supplemented
with 10% v/v FBS. Cells were passaged weekly at a 1:4 ratio with TrypLE. All cells
were obtained from ATCC and maintained at 37 °C and 5% CO2.

Electrospray ionization. RNA samples in TE buffer (3 uM) were analyzed by mass
spectrometry (Agilent 1290 Infinity II liquid chromatography system (LC) coupled
with Agilent 6530B Q-TOF mass spectrometer (MS)) in a negative ion polarity
mode. LC is performed with gradient elution (buffer A: 50 mM HFIP; 15 mM
Hexylamine 2% MeOH; buffer B: MeOH, 0.75 mL/min, 2–95% B in 1.05 min) on
an Acquity UPLC BEH C18 VanGuard Pre-column (1.7 um, 2.1 × 5 mm). Elec-
trospray ionization performed with a dual ESI source (gas temp 325 °C, drying gas
12 L/min, nebulizer 40 psi, Vcap 4 kV, fragmentor 250, skimmer 65). Data acquired
in 100–3200 m/z range and deconvoluted in 4000–40000 m/z range.

Fragment analysis. Fragment analysis was done using a 5200 Fragment Analyzer
System (Agilent) according to manufacturer protocols. DNA analysis was done
using DNA small fragment kit (Agilent DNF-476) while RNA was analyzed using
the small RNA kit (Agilent DNF-470).

RNP formation and delivery. 10 pmol Streptococcus Pyogenes [SV40 NLS]-[Sp.
Cas9]-[SV40 NLS] protein (Aldevron Cat. #9212) was combined with 30 pmol
synthetic sgRNAs (Synthego) in 20 μL total volume and allowed to complex for
10 min. During this incubation, cells were harvested and counted. To the RNP
solution 5 µL of cell solution at a concentration of 4 × 104 cells/µL was added and
gently mixed.

Cell+RNP solution was transfected using the 4D-Nucleofector system (Lonza)
in the 20 µL format. HEK293 transfections were conducted in SF buffer using
protocol CM-130. U2OS and Hep3b transfections were conducted in SE buffer
using protocol CM-104 and CM-130, respectively. Following transfection, cells
were recovered in culture media and plated into 96-well plates. To create paired
replicates, transfections were split into two pools. One that received light treatment
while the other remained in the dark.

DBsgRNA inactivation. CRISPRoff inactivation was performed using a Sunray
600 UV Flood Lamp (Uvitron International). 345 nm, 6.5″ × 6.5″ colored glass
alternative longpass filters were obtained from Newport.com and mounted using
custom 3D-printed containers.

Inactivation using an upright microscope was performed using a Zeiss Axios
Observer with a Colibri 7 Flexible Light Source and 385 nm LED. Imaging was
preformed using a 4× objective lens.

Genomic analysis. Genomic DNA was isolated using DNA QuickExtract (Luci-
gen) following manufacturer protocol. After harvesting, extract solution was
incubated at 65 °C for 15 min, 68 °C for 15 min followed by 98 °C for 10 min.
Genomic PCR was performed using AmpliTaq Gold 360 Master Mix (Thermo
Fischer) using primer sequences found in Supplementary Table 2. Following
Sanger sequencing, presence of indels was analyzed via ICE (ice.synthego.com).
Raw traces are also available at Zenodo 4009447.

Digital droplet PCR. Cellular RNA was extracted using RNA QuickExtract
(Lucigen) without DNase. RNA was quantified using RiboGreen (Thermo Fisher)
and normalized. Total RNA was reverse transcribed using iScript Advanced cDNA
Synthesis Kit (BioRad) with 0.4 μM reverse primer for transcription. Reverse
transcription product was amplified using 2x EvaGreen ddPCR Mastermix and
thermal cycled at 95 °C for 3 min followed by 40 cycles of 95 °C for 30 s and 52.4 °C
for 1 min. Signal was then stabilized at 4 °C for 5 min followed by inactivation at
90 °C for 5 min. Droplets were then read by a QX200 Droplet Digital PCR System
and analyzed with QuantaSoft V1.7 (BioRad).

Statistics. All error bars are shown as ±1 SD. p values were computed using
Student’s two-tailed t test or one-way ANOVA and deemed significant at α < 0.05.
Data was analyzed using Prism 8.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sanger sequencing data supporting this work are available at Zenodo with accession code
4009447. All additional data is also available upon reasonable request. Source data are
provided with this paper.
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