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Growing evidence indicates that autism spectrum disorder (ASD) is a neuropsychological

disconnection syndrome that can be analyzed using various complex network metrics

used as pathology biomarkers. Recently, community detection and analysis rooted in the

complex network and graph theories have been introduced to investigate the changes

in resting-state functional network community structure under neurological pathologies.

However, the potential of hidden patterns in themodular organization of networks derived

from resting-state functional magnetic resonance imaging to predict brain pathology has

never been investigated. In this study, we present a novel analysis technique to identify

alterations in community patterns in functional networks under ASD. In addition, we

design machine learning classifiers to predict the clinical class of patients with ASD

and controls by using only community pattern quality metrics as features. Analyses

conducted on six publicly available datasets from 235 subjects, including patients with

ASD and age-matched controls revealed that the modular structure is significantly

disturbed in patients with ASD. Machine learning algorithms showed that the predictive

power of our five metrics is relatively high (∼85.16% peak accuracy for in-site data and

∼75.00% peak accuracy for multisite data). These results lend further credence to the

dysconnectivity theory of this pathology.

Keywords: autism spectrum disorder, resting-state connectivity analysis, community detection, machine learning,

linear discriminant analysis

1. INTRODUCTION

The study of the human brain often confronts problems arising from the brain’s inherent
complexity (Bullmore and Sporns, 2009). To overcome this challenge, complex network analysis
methods have been extensively used in neurosciences, where the human brain is typically modeled
as a network or graph whose nodes represent brain regions and edges represent the anatomical
or functional interactions among them (De Vico Fallani et al., 2014). Network representation has
been a promising computational model to capture the brain’s topological organization as well as
its dynamics (Rubinov and Sporns, 2010). Studies in this area have revealed that the human brain
has a scale-free small-world topology (Eguíluz et al., 2005) with modular fragmentation and highly
connected hubs (Meunier et al., 2010; Nicolini et al., 2017).

One problem eliciting interest in the analysis of resting-state functional brain networks by using
complex network methods is community detection (Fortunato, 2010), which can be described as
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the unsupervised discovery of subgroups of brain regions that
are typically activated together and densely connected (van den
Heuvel et al., 2008; Shen et al., 2010). Several studies have shown
that this modular structure of the functional network reflects the
anatomical and functional segregation of the human brain, with
the presence of hub nodes or regions sharing numerous inter-
community edges. Recent studies have suggested that community
hubs are highly vulnerable to the effects of brain disorders,
resulting in an altered community structure observed in several
neuropsychiatric pathologies (Nicolini et al., 2017).

Previous studies using complex networks methods to the
study of neurological disorders aimed to characterize the
differences between normal and pathological brains. Graph
theoretical metrics illustrated alterations in the resting-
state functional connectome under specific neurological
pathologies, including trauma (van der Horn et al., 2017),
amnestic mild cognitive impairment (Chen et al., 2012),
Alzheimer’s disease (Supekar et al., 2008), epilepsy (Ponten et al.,
2007), attention deficit/hyperactivity disorder(ADHD) (Wang
et al., 2009; Ahmadlou and Adeli, 2011), and autism spectrum
disorder (ASD) (Zhou et al., 2014). In addition, machine
learning techniques using different types of features have
been increasingly used not only to detect pathology-related
alterations but also to make individual subject predictions of
brain disorders (Arbabshirani et al., 2017).

ASD is typically characterized by deficits in social interaction
and communication, rigid and stereotypical behaviors, and
abnormal sensory processing (Rapin and Tuchman, 2008). This
neurological disorder has been classified as a dysconnectivity
syndrome manifesting as the disruption or abnormal integration
of brain regions evidenced by changes in network properties
used as diagnostic markers (Hull et al., 2016). In the task of
automatically detecting ASD by using resting-state functional
MRI (rsfMRI) data, different types of features, including
independent component analysis (ICA) (Uddin et al., 2011) and
functional connectivity among regions of interest (ROIs) (Iidaka,
2015; Plitt et al., 2015), have been used in conjunction with
various machine learning algorithms, such as logistic regression,
random forest, and neural network algorithms.

In this study, we compared the resting-state functional
community patterns of patients with ASD and controls at the
group and individual level to gain a detailed understanding of
the relationship between impaired connectivity and this brain
pathology. We also reconstructed the communities of each ROI
and used a permutation test based on the Rand index to detect
the brain regions whose community structures differ significantly
between patients with ASD and controls.

In previous studies applying network community pattern
analysis to research brain disorders, modularity (a complex
network metric) has emerged as a de facto standard to quantify
the alterations in the distribution of inter-community vs. intra-
community edges under a specific brain disorder. Despite
the increasing popularity of this single metric in community
detection approaches, one common drawback of single indices
is their low sensitivity and specificity (Stam and van Straaten,
2012). Autism being a complex disorder, the underlying neural
phenomenon could be better captured by combined community

patterns indices beyond the individual capability of single
metrics. Here, we used modularity as well as other descriptive
community pattern metrics drawn from the complex networks
literature that have not been previously used for analysing the
community structure of resting-state functional connectivity
networks built from neuroimaging data. By using experimental
data from 235 subjects in six publicly available datasets and
validation data from 214 subjects in six additional datasets, we
showed that these five community patternmetrics alone can serve
as efficient single-subject predictors of autism.

2. MATERIALS AND METHODS

2.1. Datasets
Experimental data were selected from the Autism Brain Imaging
Data Exchange (ABIDE), a large multisite, publicly available
repository of resting-state fMRI scans, forming part of the 1000
Functional Connectomes Project (Di Martino et al., 2014). The
data were downloaded from five sites: Stanford University (STA),
University of Leuven Sample 1 (LV1), University of Leuven
Sample 2 (LV2), Olin Institute of Living at Hartford Hospital
(OLI), University of Pittsburgh, School of Medicine (PIT),
and California Institute of Technology (CAL). The imaging
data included technical scan parameters as well as phenotypic
information of each individual. Demographic information about
participants in each dataset is shown in Table 1; Table S1

provides the technical details of the scans. As part of the
professional and ethical protocol of the 1000 Functional
Connectomes Project, all datasets have been anonymized, and
no protected health information was included. Despite the
availability of phenotypic information, this study did not use
any of this medical or biological information to analyse group
differences or predict the clinical class of individual participants.

2.2. Descriptive Community Pattern
Metrics
In the last decade, community detection has become a prolific
research area in complex networks and pattern recognition (Pons
and Latapy, 2006; Fortunato, 2010; Epalle and Liu, 2016),
with many application domains, such as social network
mining (Girvan andNewman, 2002), graph visualization (Bastian
et al., 2009), compression (Hernández and Navarro, 2012),

TABLE 1 | Datasets.

ASD Control Age(x̄± σ ) Total

Dataset M/F Age M/F Age N = 235

STA 16/4 7.5–12.9 16/4 7.8–12.4 9.9± 1.5 n = 40

LV1 15/0 18–32 14/0 18–32 22.5±3.5 n = 29

LV2 12/3 12.1–16.8 15/5 12.2–16.9 14.16±1.42 n = 35

OLI 17/3 11–24 14/2 10–23 16.8±3.4 n = 36

PIT 26/4 9.3–35.2 23/4 9.4–33.2 18.9±6.8 n = 57

CAL 15/4 17.5–45.1 15/4 17–56.2 28.15±0.41 n = 38

M, male; F, female; x̄, mean; σ , standard deviation.
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parallel computing (Ngonmang et al., 2012), and recommender
systems (Liben-Nowell and Kleinberg, 2007). In neuroscience,
community detection has been applied as an important step in
resolving more complex problems, such as localizing network
alterations in specific brain disorder (Lerman-Sinkoff and Barch,
2016). In this subsection, we introduce the basic mathematical
notations for community detection and review modularity as
well as four other metrics used to describe community structure
in graphs.

A network or graph G = (V ,E) is composed of a set of nodes
V and a set of edges E. In this study, the nodes V , representing
brain regions, are labeled 1, 2, 3...,N, with N = 90. If an edge
(x, y) is in E, then node x is connected to node y. IfG is undirected
and unweighted, the adjacency matrix A of G is the matrix of 0s
and 1s such, that Axy = 1 if and only if (x, y) ∈ E. Community
detection, being a clustering of G, can be defined as a partition
of V into the sets V1, ...,VK such that V1 ∪ ... ∪ VK = V , and
Vi ∩ Vj = ∅ for any i 6= j, with none of the Vi being empty. The
sets V1, ...VK are called communities or clusters. Any partition
V = {V1, ...,VK} is a community structure or community pattern
of a network with K = |V| communities.

Community patterns are commonly described in terms of
quality functions, which depend on both the graph G and the
partition V and whose optimization is typically believed to yield
the best community pattern. However, these metrics can be
considered as descriptive of a network’s modular organization,
rather than true performance metrics, because they do not
provide strict quantitative criteria for more and less optimal
partitioning (Steinhaeuser and Chawla, 2010).

In this study, we investigated the community organization
of resting-state functional brain networks in ASD by using the
following descriptive metrics:

2.2.1. Modularity
Modularity (Q) is the most popular community characterization
metric in the literature. In a network G = (V ,E) and a partition
V = {V1, ...,VK}, the edges of G can be grouped into community
bridge sets Bij as follows: (x, y) ∈ Bkl if and only if x ∈ Vk and

y ∈ Vl. In particular, we note Bi
k
= Bkk as the set of internal

edges of Vk having all their ends in the same community; we note
Be
k
= ∪k 6=lBkl as the set of external edges of Vk having one end in

Vk and the other in V−Vk. By using these notations, a network’s
modularity is defined as

Q(G,V) =

K
∑

k=1

(

2|Bi
k
|

2m
− (

mk

2m
)2

)

, (1)

where mk =
∑

x∈Vk

∑

y∈V Axy is the total degree of community

Vk andm the total number of edges in the network.
The four other community pattern metrics which were

first introduced in (Mitalidis et al., 2014) have so far
received little attention from the scientific community
probably because they were proposed after the publication
of two authoritative review articles on complex network
measures of brain connectivity (Bullmore and Sporns, 2009);
(Rubinov and Sporns, 2010).

2.2.2. Global Density
The global density community quality function (not to be
confused with the popular density metric) is defined as

QGD(G,V) =
1

2
[Qi

GD(G,V)+ 1− Qe
GD(G,V)], (2)

where

Qi
GD(G,V) =

∑K
k=1

∑

x∈Vk

∑

y∈Vk
Axy

∑K
k=1 |Vk|

2

represents the global internal density and

Qe
GD(G,V) =

∑K
k=1

∑

x∈Vk

∑

y∈V−Vk
Axy

∑K
k=1 |Vk| ∗ |V − Vk|

represents the global external density. This formula assumes that
Axx = 1 for all x ∈ V , and all other edges are counted twice.
QGD(G,V) takes values in [0,1], where the value 1 is assigned only
to graphs with perfect community structure.

2.2.3. Local Density
The local density quality function is defined as

QLD(G,V) =

K
∑

k=1

|Vk|

2|V|
∗ [qi(Vk,G)+ 1− qe(Vk,G)], (3)

where the local inner and outer densities are, respectively,
defined as

qi(Vk,G) =

∑

x∈Vk

∑

y∈Vk
Axy

|Vk|
2

and

qe(Vk,G) =

∑

x∈Vk

∑

y∈V−Vk
Axy

|Vk| ∗ |V − Vk|
.

QLD is defined slightly differently than isQGD, but both are based
on the idea of communities being formed by subsets of nodes that
are more densely connected with each other than externally. QLD

also takes values in [0,1].

2.2.4. Distance-Based Metric
The distance-based community quality function is defined as

QDB(G,V) =
1

|V|2
||AG − AV ||, (4)

where ||B|| =
∑

x∈V

∑

y∈V
|Bxy| is a matrix norm, AG is the adjacency

matrix of G, and AVxy = 1 if x, y belongs to the same cluster
(under V), whereas AVxy = 0 if x, y belongs to different clusters
(under V). QDB takes values in [0,1], but unlike with the other
metrics, the value 0 is obtained for graphs exhibiting a perfect
community structure.

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 203

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Song et al. Functional Community Patterns in Autism

2.2.5. Node Membership Metric
The node membership community quality function is defined as
follows:

QNM(G,V) =
1

2|V|

∑

x∈V

[µ(x,V[x])+ 1− µ(x,V − V[x])]. (5)

V[x] indicates the cluster to which x belongs and node
membership is defined by

µ(x,U) =
1

|U|

∑

y∈U

Axy.

Hence, µ(x,U) = 1 if and only if x is connected to every y ∈ U
and µ(x,U) = 0 if and only if x is connected to no y ∈ U; for
intermediate situations, we obtain µ(x,U) ∈ ]0, 1[.

Brain’s functional connectivity networks are known to
be fundamentally modular. The neuronal regions within
a community cluster have strong interconnections among
themselves and weak interdependencies with neuronal regions
outside the cluster. Modularity, global density, local density,
distance-based, and node membership metrics try to quantify the
quality of assignment of regional nodes into cohesive subgroups
or neural functions. All these metrics take values between 0 and
1. A low value of the distance-based metric and a high value of
the four other metrics indicate that connections between regions
within community clusters are dense, and connections between
regions in different community clusters are sparse. An advantage
of these five community pattern metrics is that they can all be
computed based solely on the connectivity of the graph. Figure 1
provides an illustration of how these metrics are computed for
a particular community partitioning of the popular Zachary
Karate’s club network (Zachary, 1977).

Several prior studies have investigated the modular structure
of resting-state structural and functional connectivity networks
derived from MRI in autistic patients compared to healthy
individuals. For instance, Rudie and coauthors used the Louvain
algorithm (Blondel et al., 2008) to partition the brain into
functional subsystems (Rudie et al., 2013). They performed
additional analyses with small-world metrics, including the
clustering coefficient, the characteristic path length, and
modularity, to discover that children and adolescents with
autism display reduction in network modularity. In another
differential study, the authors used the Louvain method to
partition functional brain networks into various subnetworks,
and the Scale Inclusivity metric to estimate the within and
between group similarity of community structures. Their main
finding was that ASD is characterized with atypical connectivity
in the ventro-temporal-limbic subnetworks that may underlie
social impairments in ASD (Glerean et al., 2016). In a similar
study, Keown et al. (2017) showed that functional subnetworks
are globally atypical in ASD, together with reduced network
integration and increased dispersion. Altogether, these findings
suggest an aberrant reorganization of community structure in
ASD, globally characterized by a reduction in modularity in
persons having autism. These pioneering results provide an
important indication that community patterns might be good

neuromarkers for discriminating between ASD patients and
healthy controls. In this study, we verified the hypothesis
that the values of Q,QGD,QLD,QDB, and QNM are significantly
altered under ASD, 0,0,1which would indicate greater evidence
of an altered community organization. In addition, we tested
the hypothesis that these metrics can be used as features for
predicting the clinical class of a particular participant.

The mathematical formulation of each of these metrics
combines both the ideas of both functional integration and
segregation, and they are used in this study to capture
and reflect the imbalance between intra- and inter-cluster
connections in autism. Using these five metrics together
provides different indicators that map the brain’s functional
community patterns and helps highlight significant changes
between health and disease states that can be leveraged by
machine learning classifiers.

2.2.6. Comparing Community Patterns
In this study, we used the Rand index for comparing pairs
of community patterns (Rand, 1971; Steinhaeuser and Chawla,
2010). The Rand index is a statistical metric based on the
community assignment of each pair of nodes and measures the
degree of agreement between two community patterns U and R;
it is computed using the following parameters:

• a: the number of pairs of nodes assigned to the same
community according to both U and R

• b: the number of pairs of nodes assigned to the same
community according to U but different communities
according to R

• c: the number of pairs of nodes assigned to the same
community according to R but different communities
according to U

• d: the number of pairs of nodes placed in different
communities according to both U and R

The sum a + d is the number of agreements between the
two community patterns, whereas b + c is the number of
disagreements. The Rand index between U and R is defined as

Rand(U,R) =
a+ d
(N
2

)
. (6)

2.3. Preprocessing Parameters
The rsfMRI data listed in Table 1 were preprocessed in the
conventional order to facilitate comparison across the six
datasets (Waheed et al., 2016). The data were preprocessed
using the following software tools: MRIcron, SPM12, DPABI
V2.3170105 (Yan et al., 2016), and DPARSFA V4.3170105 (Yan
and Zang, 2010). The first 10 volumes of each series were
discarded for signal equilibrium. Slice timing was performed
to correct images for the acquisition time delay between slices
of each volume, followed by head motion correction by using
a six-parameter (rigid body) spatial transformation. Next, the
images were normalized to the Montreal Neurological Institute
EPI template and resampled into 3-mm isotropic voxels. The
resulting signals were successively smoothed using a 4 mm
FWHM Gaussian kernel, detrended, and band-pass filtered by
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FIGURE 1 | Examples of values of modularity, global density, local density, distance based and node membership metric for a specific community partition of the

popular Zachary Karate’s Club network.This network partition is composed of five communities or modules. Intra-community connections are colored in black and

inter-community connections in red. The five community pattern measures yielded different values for this graph partition.

using the frequency interval of 0.027–0.073 Hz (this interval
was reported to be more reliable when the global signal is not
regressed Liang et al., 2012). The normalized images were finally
mapped with the Automated Anatomical Labeling atlas (AAL) to
obtain 90 ROIs representing functional network nodes (Tzourio-
Mazoyer et al., 2002). After preprocessing each dataset separately,
we merged the time-series extracted from each site to form a
multisite cohort.

2.4. Group-Level Analysis of Community
Structures
To analyse group-level community patterns, first, we computed
the correlation matrix for each participant from time-series data,
by taking the average Pearson’s correlation between all pairs
of ROIs for each dataset. Next, we constructed the average
correlation matrix (average brain network) for each diagnostic
group. Third, these average networks were binarized using
different threshold values ranging from 0.1 to 0.9. Finally,
community detection was performed for each threshold value
and compared between the two diagnostic groups.

Generating graphs at different sparsity levels has the
advantage of allowing comparison between different graph
representations at different levels of correlation. Community
structures were detected using Newman’s spectral modularity
algorithm in the Matlab Community Detection Toolbox
and visualized with BrainNet Viewer (Xia et al., 2013), a
specialized Matlab toolbox for visualizing brain data. Many

algorithms for community detection have been proposed, among
which Newman’s spectral modularity (Newman, 2006) and
Infomap (Rossval and Bergstrom, 2008) have been extensively
used in neuroscience studies. In this study, we used Newman’s
community detection algorithm because it rapidly optimizes
the quality function (modularity) even with poor hardware
performance, and is accurate. Community detection and
evaluation were performed using the Community Detection
Toolbox (ComDet) (Mitalidis et al., 2014) in Matlab. Visual
inspection of networks across the datasets at different sparsities
allowed the identification of general tendencies of group-level
networks toward under- or overconnectivity.

2.5. Subject-Level Analysis
Community detection was also performed at the subject level
and generated four sets of community patterns for sparsity
thresholds ranging from 0.1 to 0.9. Community pattern metrics
were computed for all participants in each site separately, and
multisite data were generated by merging community pattern
metrics computed for each site at each level of sparsity. We used a
two-sample Kolmogorov-Smirnov test to assess the difference in
the distribution of community quality metrics between the two
diagnostic groups. This test was run on each individual dataset
and on the multisite data independently. In addition, kernel
density estimation (KDE) curves were plotted at each sparsity
level to visualize the differences in community pattern metrics
between the two clinical groups (Ledl, 2004). Additionally, a
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pairwise correlation analysis was performed to visualize the
distribution of data from patients with ASD and controls for each
value of the binarization threshold.

The differences in community partition quality indexes,
although important, do not indicate how community
composition or node assignments differ between the two
diagnostic groups. To this end, the Rand index between each
pair of individuals was computed within each clinical group
according to Equation (6). The Rand index was also extended
to test for group differences in each dataset and in the multisite
data. Intuitively, in case of a significant group difference, the
mean within-group pairwise similarity should be higher than
the mean between-group pairwise similarity. Because this
cannot be tested directly, a non-parametric test comparing
the average within-group Rand index in the original data with
that in permuted data with randomized group membership
was performed. P-values were computed based on the number
of times the within-group Rand index on the permuted data
was greater than that on the original data, divided by the total
number of permutations (n= 50,000).

To locate the brain regions that could be responsible for the
difference in the Rand index between the two clinical groups, we
performed another statistical test proposed by Alexander-Bloch
et al. (2012). This test was implemented only on multisite data.
For each network node X, the other 89 nodes were relabeled to
indicate whether they are in the same module as X. These labels
were subsequently compared across participants. In terms of
node X’s functional community, the similarity of two participants
was quantified using the Rand index. Similar to the previous
test, the pairwise similarity metric was used to test for nodal
group difference through a permutation of group labels. The true
within-group mean Rand index was computed for all within-
group subject-by-subject ROI pairs. Subsequently, the labels were
shuffled 10,000 times and the average permuted within-group
Rand index was computed and compared with that of the real
data to generate a p-value. Thus, for each binarization threshold,
a set of 90 p-values was generated to indicate whether each ROI’s
community assignment was more similar across participants
in the same original group than across those in randomly
permuted groups.

2.6. Automatic Prediction of a Participant’s
Class
The spatial distribution of data as visualized in the subject-level
analysis prompted us to verify whether the five community
features (modularity, global density, local density, distance-
based, and node membership) could serve as reliable
predictors of ASD. Therefore, the following classification
algorithms were implemented using Scikit-Learn in a Python
environment: logistic regression (LR), linear discriminant
analysis (LDA), k-nearest neighbors (KNN), classification and
regression trees (CART), naive Bayes (NB), and support vector
machines (SVM).

Given that LDA which yielded the best ASD classification
accuracy with community quality metrics as features is rather
often used as a supervised feature extraction method, we briefly

recall the classification process using LDA. LDA classifier is
derived from a probabilistic model which models, for each class
or diagnostic group k, the class conditional distribution of the
data P(D|y = k). Predictions can then be obtained by applying
Bayes’ rule:

P(y = k|D) =
P(D|y = k)P(y = k)

P(D)
=

P(D|y = k)P(y = k)

6
l∈{0,1}

P(D|y = l)P(y = l)

(7)
and we select the class k which maximizes this conditional
probability. More specifically, P(D|y) is modeled as a multivariate
Gaussian distribution with density:

P(D|y = k) =
1

(2π)p/2|6|1/2
exp

(

−
1

2
(D− µk)

t6−1(D− µk)

)

(8)
where p is the number of features, µk ∈ R

p the class mean
vector, and 6 = cov[D] the p × p covariance matrix. To use this
model as a classifier, we estimate the class priors P(y = k), the
class means µk and the covariance matrix 6 from the training
data (Hastie et al., 2009).

To estimate the performance of each classifier, LOO-cross-
validation was used to evaluate the performance of these
algorithms on each dataset at each sparsity threshold and a 10-
fold cross validation was applied to multisite data at each sparsity
level. The performance of each of these classifiers was reported in
terms of accuracy, precision, and recall.

In order to rank community quality metrics based on
their ASD predictive ability, we employed recursive feature
elimination (RFE) on our best classifiers (Guyon et al., 2002). RFE
is performed by recursively removing predictors and building a
classificationmodel based on those predictors that remain. It uses
classification accuracy to identify predictors and (combination of
predictors) that contribute the most to predicting the diagnostic
group. RFE algorithm outputs a score between 0 and 1 for
each predictor, and the larger the score, the more important
the predictor.

2.7. Robustness of Community Features to
Methodological Variation
Because of concerns about the effect of specific preprocessing
parameters, we tested the robustness of the predictive power of
the five community structure metric using a different validation
dataset preprocessed with several methodological perturbations.
To this end, we formed a separated multisite validation dataset
composed of six additional sites, totalizing in 214 participants
(ASD = 97, CTR = 117). These data were downloaded from
the preprocessed version of ABIDE repository (Craddock et al.,
2013). Our validation cohorts included data from the following
imaging centers: Carnegie Mellon University (CMU, ASD = 14,
CTR = 13), Kennedy Krieger Institute (KKI, ASD = 20, CTR
= 28), Oregon Health and Science University (OHSU, ASD =

12, CTR = 14), Social Brain Laboratory (SBL, ASD = 15, CTR
= 15), San Diego State University (SDS, ASD = 14 , CTR =

22) and Trinity Center for Health Sciences (TRI, ASD = 22,
CTR = 25). Participant demographic information is provided
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in Table S3 and imaging acquisition parameters are summarized
in Table S4. The downloaded imaging data derivatives were
previously preprocessed using the DPARSF pipeline. The
preprocessing treatments included the removal of the first ten
volumes, slice timing and motion correction. Nuisance variable
regression was carried out using 24 motion parameters and low-
frequency drifts. Imaging signals were then band-pass filtered
with a frequency range of 0.01 Hz to 0.1 Hz, without global
signal correction, registered to Montreal Neuroimaging Institute
template using DARTEL (Ashburner, 2007), and smoothed using
a 6-mm FWHM Gaussian Kernel. The mean time courses for
regions of interest were extracted for each subject based on the
CC200 functional atlas which comprises 200 ROIs (Craddock
et al., 2012). Functional connectomes for each participant were
constructed as described previously, and community pattern
metrics were computed for different network sparsity levels
(0.1 ≤ T ≤ 0.9). We retrained KNN and LDA classifiers
with features extracted for each value of the binarization
threshold. Just as previously, A 10-fold cross-validation scheme
was employed to evaluate these additional classifiers.

3. RESULTS

3.1. Variations in Community Patterns
3.1.1. Difference in Overall Network Structure
Visual inspection of community patterns in the group-averaged
networks at all sparsity levels revealed no significant difference
in the number of community clusters between patients with
ASD and controls. Another important observation was an overall
similarity in topological cluster organization between the brains
of patients with ASD and those of controls. However, at higher
sparsities, over- and underactivation of some communities in
the average networks of ASD cohorts was gradually observed.
Notably, overall underconnectivity was found in ASD cohorts
in LV1, LV2, PIT, and CAL data (Figure 2), and resting-state
group network overconnectivity was observed in the OLI and
STA datasets (Figure 3).

To further investigate the extent to which community
structures of task-free functional connectivity were altered in
ASD, we computed the five descriptive community pattern
metrics and generated plots of their average and standard
deviation in patients with ASD and controls (Figure 4). P-
values for mean group differences were estimated using the two-
sample Kolmogorov-Smirnov test. The p-values obtained were
subsequently FDR-corrected for multiple comparisons. Our five
metrics are different ways of capturing the intuition that nodes
within the same cluster should be more densely connected with
each other than the rest of the network; however, they vary
in their mathematical formulations. Communities were isolated
through modularity maximization, and modularity was used in
addition to the other four metrics to compare the resulting
community patterns. Figure 4 shows that the mean difference
between patients with ASD and controls is significant at several
sparsities. For example, modularity is significantly higher for the
ASD class in STA and CAL, whereas it remains significantly
lower in OLI. The spread of the metrics around their averages
also differs between the two clinical classes. Compared with the

control group, in the ASD class we observed a greater spread of
the values of the metrics in STA, LV1, and LV2,and a smaller one
in OLI, PIT, and CAL, possibly reflecting subtypes of ASD.

Multisite data at T = 0.5 exhibited significant differences
in modularity, distance-based and node membership metrics,
with an overall increase in modularity and node membership,
and a decrease in the three other metrics for the ASD group
(Figure 5). This increase in modularity suggests that there
are relatively fewer connections between clusters and more
connections within clusters in patients with ASD. However, the
relationship between community quality metrics and under-
and overconnectivity remains unclear because a decrease in
modularity was associated with underconnectivity in CAL, but
with overconnectivity in STA.

3.1.2. Differences in Community Composition
While the community pattern quality metrics revealed
differences in the structure of resting-state functional networks,
we still needed to quantify the degree of similarity of node
assignment to clusters within each clinical group. To this end,
Rand index similarity was computed between the ASD and
control groups in the datasets (Table 2). The Rand index showed
a high level of agreement and further confirmed the overall visual
similarity of network structures observed (across binarization
thresholds: mean Rand index= 0.82, standard deviation= 0.14).
However, the Rand index permutation testing on individual
subject network partitions revealed that, for some levels of
sparsity, the within-group similarity of community structures of
pairs of participants in the same diagnostic group is higher than
would be expected if the group difference was not significant
(Table 3). Moreover, this difference was also significant for
multisite data (p = 0.033).

3.1.3. Investigating Group Differences by Using

Subject-Level Analysis
The methods used in the group-level analysis enabled qualitative
and quantitative characterization of the difference between the
two clinical groups. However, they do not allow the estimation of
the degree of variability of community structural metrics within
a clinical group compared with that across groups. Visualizing
the inter-subject variability inside and across the two groups
was possible using KDE plots combined with scatter plots
displaying the organization of data from both clinical groups
with respect to each pair of features (see Figures 6, 7 and
Figures S1–S4). Although group-level analyses revealed similar
patterns in the ASD and control groups, KDE showed important
perturbations in the distribution of community quality metrics
in all datasets and across sparsity densities. Moreover, the spatial
organization displayed via feature pairing plots revealed an
interesting tendency of the data frommembers of each of the two
groups to cluster together. These two-dimensional visualizations
provided an encouraging basis for applying machine learning
algorithms to predict the class of a particular participant by using
community structure metrics as features.

A rigorous regional permutation test of community
assignments adapted from Alexander-Bloch et al. (2012)
was applied to multisite data and found several regions
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FIGURE 2 | Group-average network community pattern for the LV2 dataset at sparsity threshold T = 0.8. ROIs are defined according to the AAL90 brain atlas and

colored based on community assignments by Newman’s spectral algorithm. (A) ASD cohort. (B) Control cohort. The group-level community pattern showed an

overall reduction of connectivity in the brains of patients with ASD. Underconnectivity was also observed in LV1, CAL, and PIT.

FIGURE 3 | Evidence of overactivation in the community colored in yellow observed in the average STA dataset network at the sparsity threshold T = 0.4, despite the

community pattern showing an overall preservation of network morphology. (A) ASD cohort. (B) Control cohort. ROIs are defined according to the AAL90 atlas and

colored on the basis of community assignment by using the Newman’s spectral algorithm. At this density level, group-average network overconnectivity was also

observed in the OLI dataset.

with functional community structure assignments differing
significantly between the two clinical populations (see Table 4

and Figure 8). There was variability across groups in the
community assignment of ROIs across all network sparsity
levels. Full details of the test results are presented in Table S2.

3.2. Single Subject Clinical Group
Prediction
As previously mentioned in this document, six classification
algorithms were implemented by using Scikit-learn in a
Python environment to investigate whether the community

structure quality metrics of the participant’s resting-state
functional connectivity networks alone could predict the clinical
group of a particular participant. Among the classification
algorithms, LDA and KNN yielded the best results with
the LOO-cross-validation test; the performances of these
two algorithms are reported in Table 5. LDA achieved peak
accuracy ranging from 74.86% (CAL) to 85.16% (STA).
KNN obtained a range of peak accuracy from 68.42% (PIT)
to 76.12% (STA). However, these results were obtained at
different network sparsity levels. We merged all the five
community pattern features computed for each sparsity level,
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FIGURE 4 | Comparing average and standard deviation of community pattern quality metrics between patients with ASD and controls for the full range of thresholds.

Community quality metrics were computed for each participant, and plots were created based on the average for patients with ASD and controls. Each row

represents a dataset and each column one metric. Group statistical differences were analyzed using the two-sample Kolmogorov-Smirnov test. Only significant

FDR-corrected p-values are reported (p < 0.05).

FIGURE 5 | Evidence of community pattern alteration in ASD. Box plots reveal group differences in terms of community quality indexes at T = 0.5 in pooled data

across experimental sites . P-values were generated with the two-sample Kolmogorov-Smirnov test and subsequently FDR-corrected.

retrained the classifiers and performed a 10-fold cross-validation
test. Multisite data yielded peak accuracy at T = 0.5
(65.66% for KNN and 74.86% for LDA). Compared with

recent autism classification studies, this study obtained a
relatively high classification accuracy with the lowest number of
predictors (Table 6).
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3.3. Feature Importance
To determine which community pattern features were most
predictive, we performed Recursive Feature Elimination (RFE)
on in-site as well as multisite data with stratified-10-fold cross-
validation. This procedure used our LDA model to rank the
five community pattern metrics according to their predictive
performance during the classification process. For CAL, LV1,
LV2, and PIT, the order of feature importance are global density,
node membership, local density, modularity and distance-based
metric, starting from the most important feature. For OLI and
STA, important features are global density, node membership,
local density, distance-based metric, modularity and node
memebership. RFE on multisite data showed that local density
was the most important predictor (score = 0.95), followed by
global density (score= 0.75) and nodemembership (score= 0.5).
Modularity and distance-based metric were the less predictive
features with a score of 0.25 and 0.10, respectively.

3.4. Robustness to Methodological
Variation
Finally, we examined how community pattern metrics would
perform on novel datasets and under a different set of
preprocessing parameters, including the head motion correction

TABLE 2 | Rand Index values measuring the degree of agreement of community

structures between control and ASD groups in real data.

T STA LV1 LV2 OLI PIT CAL

0.1 0.69 0.64 0.76 0.84 0.97 1

0.2 0.62 0.53 0.69 0.71 0.68 0.89

0.3 0.55 0.68 0.6 0.83 0.65 0.65

0.4 0.77 0.77 0.74 0.71 0.75 0.56

0.5 0.89 0.74 0.72 0.82 0.83 0.77

0.6 0.92 0.86 0.84 0.85 0.87 0.76

0.7 0.99 0.95 0.89 0.95 0.92 0.9

0.8 1 1 0.95 0.99 0.99 0.97

0.9 1 1 0.95 1 1 1

x̄ 0.82 0.8 0.79 0.86 0.85 0.83

σ 0.17 0.17 0.12 0.11 0.13 0.16

T, sparsity threshold; x̄, mean; σ , standard deviation.

parameter, the smoothing parameter, the bandpass filtering
frequency range and the ROI parcellation atlas. Our validation
cohorts were used for this purpose. Group-level analyses of
community structure for validation datasets are summarized
in Tables S5, S6. Subject-level analyses of community quality
metrics are recapitulated in Figures S5–S11. Single validation
sites obtained peak classification accuracy of 68.12% for CMU
(T = 0.3), 76.23% for KKI (T = 0.6), 82.02% for OHSU (T =
0.4), 71.09% for SBL (T = 0.7), 80.73% for SDSU (T = 0.3)
and 72.58% for TRINITY (T = 0.8), using LDA and leave-
one-out cross-validation method. Again, classification accuracies
obtained on in-site data using KKN were consistently lower
than those obtained with LDA. For multisite classification on
the whole validation set, the highest classification obtained
is 75.04% (T = 0.4) obtained with LDA and 10-fold cross-
validation (see Table 7 for full classification results on the whole
validation dataset). Taken together, these results suggest that
the discriminative capability of community patterns metrics
used in this study is relatively well-preserved on novel
datasets and under alternative preprocessing choices. However,
the range of filtering thresholds values that yielded peak
classification accuracy differs considerably between experimental
and validation data. Furthermore, the most important features
differs sightly from those obtained with experimental data.
RFE applied on the whole validation dataset revealed global
density was most discriminative (score = 0.90), followed by
local density, node membership, modularity and distance-based
metric that obtained predictive scores of 0.80, 0.70, 0.30, and
0.08, respectively.

4. DISCUSSION

This study addressed two separate but closely related problems:
the characterization of differences in the resting-state functional
network community patterns between patients with ASD and
age-matched controls and the single-subject prediction of this
same neurological disorder. We repeated the same analyses
on six experimental datasets originating from different sites
and including participants of different ages, obtained using
different imaging acquisition parameters. We also applied
this same analysis pipeline on a multisite cohort formed
by merging experimental data from the six sites. We used

TABLE 3 | Rand index permutation testing revealed significant differences between ASD and CTR network community structures.

Dataset Mean

within-CTR

Mean

within-ASD

Mean of all within-group

pairings in real data

Mean of all Within-group

pairings with permuted labels

P-value

real > permuted data

STA (T = 0.4) 0.557 0.548 0.552 0.547 0.017

LV1 (T = 0.3) 0.549 0.551 0.550 0.540 0.032

LV2 (T = 0.3) 0.562 0.536 0.549 0.544 0.019

OLI (T = 0.4) 0.555 0.558 0.557 0.551 0.046

PIT (T = 0.4) 0.541 0.550 0.546 0.541 0.027

CAL (T = 0.4) 0.569 0.564 0.565 0.558 0.001

Multisite (T = 0.5) 0.565 0.557 0.563 0.557 0.033

P-values for mean group differences were estimated using a permutation test with n = 50,000 permutations.
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FIGURE 6 | Left column: KDE plots of variations in the five community pattern metrics across subjects and clinical groups in the CAL dataset at threshold T = 0.4

with a Gaussian kernel bandwidth of 0.02. These plots show significant differences in the distribution of community structure metrics between the two groups. Middle

and right column: organization of ASD and control group data visualized by scatter plots of all pairs of community pattern metrics.

five community pattern comparison metrics to reach more
robust conclusions. The major findings of our investigation
are as follows: (1) Underconnectivity in the networks from
patients with ASD compared with controls was found in
four of the six datasets (LV1, LV2, CAL, and PIT) and
overconnectivity was observed in two (STA and OLI); (2)
statistical analyses provided strong evidence for alterations in
functional community patterns in ASD, as determined using
community quality indexes; (3) group-averaged networks from
patients with ASD and controls exhibited a high level of Rand
index similarity; however, testing of an individual’s community
structures revealed significant differences in cluster composition

between the two classes; (4) the differences in community
assignments was driven by specific regional nodes, most of
which are known to be impaired in ASD; (5) community
quality metrics yielded a minimum of 79% peak classification
accuracy for experimental datasets, and 76% for validation
datasets. Classification accuracy was lower for multisite data
(74.86% for experimental data and 75.04 for validation data).
The originality of our findings stems from the use of four
complex network metrics that have not been previously used to
analyse the functional modular organization of the human brain
using neuroimaging data. To the best of our knowledge, this
study is the first to reveal that the modular organization metrics
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FIGURE 7 | Left column: KDE plots of variations in the five community pattern metrics across subjects and clinical groups in the STA dataset at threshold T = 0.4

with a Gaussian kernel bandwidth of 0.02. These plots show significant differences in the distribution of community structure metrics between the two groups. Middle

and right column: organization of ASD and control group data visualized by scatter plots of all pairs of community pattern metrics.

alone are used to design individual subject predictive models of
neurological disorders.

Our five metrics are derived from the concept of community
structures in complex networks. While the notion of community
structure has not been explicitly defined, community quality
metrics formalize the intuition that while nodes in a community
are densely interconnected, they are only sparsely connected
to the rest of the network. Many quality functions have been
proposed to formalize this intuition, which may suggest that
none of them is completely satisfactory. This justifies the use
of five metrics in this study to investigate community patterns
in ASD. Although the five metrics are formalizations of the

same intuition, they vary considerably in their mathematical
formulations. Modularity Q is the fraction of the edges that
fall within the given clusters or communities minus the
expected fraction if connections were distributed randomly.
Global density QGD is the average of global inner density and
global outer antidensity. Global inner density is the sum of
all within-cluster connections over all communities, divided
by the number of all possible internal edges; global outer
antidensity is evaluated as one minus the number of edges
between the given clusters divided by the number of all possible
bridge connections. Local density QLD is the average of a
cluster’s (local) inner densities and its (local) outer antidensities
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FIGURE 8 | Altered brain regions in autism as revealed by ROI community assignment test. This test was conducted on pooled data across experimental sites.

weighted by a term proportionate to the cluster’s size (to ensure
that small dense clusters do not influence the total clustering
quality disproportionately).QDB tries to formalize the theoretical
hypothesis of perfect community structure stipulating that any
two nodes within the same community are connected and
any two nodes in different communities are not connected.
The node membership quality function computes the average
(over all nodes of the graph) of a statistic that measures the
likelihood of each node to belong to his assigned cluster and
not other clusters. We can see that each of these metrics
summarizing whole-brain connectivity with a single statistic
captures a specific aspect of the quality of functional community
structures. Considering that all these five measures of functional
segregation are highly sensitive to every single connection
and every meaningful grouping of connections in the graph,
they provide a robust method for comparing connectivity
between normal and pathological individuals. Nevertheless,
although both underconnectivity and overconnectivity were
discovered in our datasets, any potential relationship between
these two potential subtypes of autism and functional community
patterns remains unclear. This diversity in findings may be
explained by the multifaceted manners in which ASD manifests
across individuals.

With respect to functional connectivity differences between
the ASD and control groups, our results are in agreement with
previous findings and support the dysconnectivity theory of
autism. Early studies on functional connectivity at rest in autism
tended to support the underconnectivity theory, whereas a few
recent studies have reported either over connectivity or evidence
for both (Hull et al., 2016). However, most of these studies
have focused only on specific ROIs or resting-state networks;

few have addressed connectivity differences at the whole-brain
level by using community detection and analysis over multiple
datasets, as was done in the present study.While statistical testing
revealed significant differences in the network structure and
community composition, a test at the node level indicated that
this difference was caused by several brain regions. These brain
regions include the insula, thalamus, hippocampus, lingual gyrus,
middle temporal gyrus and other functional areas that are known
to be impaired in autism (Nielsen et al., 2013; Chen et al., 2016;
Wang et al., 2017; Heinsfeld et al., 2018).

As shown in Table 6, descriptive community pattern metrics
yielded over 79% accuracy on all of the individual datasets.
Moreover, they yielded a maximum accuracy of 75.04% on a
different multisite validation dataset (Table 7), thus proving to be
robust, viable predictors of autism. While comparing accuracies
across studies is not always straightforward, depending as
they do on additional parameters such as the number of
participants recorded and the preprocessing pipeline used, there
is evidence that our classification significantly outperforms,
even at the group level, recent approaches that used fine-
scaled pairwise correlations on single-site data. Furthermore,
our classification was achieved with the lowest number
of features.

Despite the encouraging prediction performance obtained in
this study, we do not advocate these metrics as potential ASD
clinical biomarkers. One of their limitations for this purpose
is that those network indexes are not complete invariants, in
the sense that non-equivalent graph structures can yield the
same values in those metrics. While this limitation is somewhat
alleviated in this work by the use of several measures, they
nevertheless fall short of neuromarker standards (Plitt et al.,
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TABLE 4 | Regions displaying high disagreement between ASD and control group

for community cluster assignment.

Label Region Hemi Coordinates

x y z

2 Precental gyrus R 41.37 −8.21 52.09

4 Superior frontal gyrus, dorsolateral R 21.9 31.12 43.82

9 Middle frontal gyrus, orbital part L −30.65 50.43 −9.62

12 Inferior frontal gyrus, opercular part R 50.2 14.98 21.41

15 Inferior frontal gyrus, orbital part L −35.98 30.71 −12.11

16 Inferior frontal gyrus, orbital part R 41.22 32.23 −11.91

17 Rolandic operculum L −47.16 −8.48 13.95

20 Supplementary motor area R 8.62 0.17 61.85

23 Superior frontal gyrus, medial L −4.8 49.17 30.89

24 Superior frontal gyrus, medial R 9.1 50.84 30.22

29 Insula L −35.13 6.65 3.44

30 Insula R 39.02 6.25 2.08

37 Hippocampus L −25.03 −20.74 −10.13

38 Hippocampus R 29.23 −19.78 −10.33

47 Lingual gyrus L −14.62 −67.56 −4.63

49 Superior occipital gyrus L −16.54 −84.26 28.17

57 Postcentral gyrus L −42.46 −22.63 48.92

60 Superior parietal gyrus R 26.11 −59.18 62.06

66 Angular gyrus R 45.51 −59.98 38.63

77 Thalamus L −10.85 −17.56 7.98

78 Thalamus R 13 −17.55 8.09

82 Superior temporal gyrus R 58.15 −21.78 6.8

85 Middle temporal gyrus L −55.52 −33.8 −2.2

86 Middle temporal gyrus R 57.47 −37.23 −1.47

89 Inferior temporal gyrus L −49.77 −28.05 −23.17

This test was performed on merged data across experimental sites. Hemi, hemisphere;

L, left; R, right. These regions can be visualized in Figure 8.

TABLE 5 | Classification performance on our data cohorts by using the five

community pattern descriptors as features with KNN and LDA algorithms.

Algorithm KNN LDA

Dataset Accuracy Precision Recall Accuracy Precision Recall

STA (T=0.2) 76.12 74.48 72.91 85.16 84.25 83.95

LV1 (T = 0.3) 70.31 66.83 61.00 82.77 80.10 81.89

LV2 (T = 0.3) 69.69 48.17 51.67 81.33 80.79 80.29

OLI (T = 0.4) 74.44 77.58 72.01 80.28 79.08 80.04

PIT (T = 0.3) 68.42 57.50 52.49 79.59 78.03 78.77

CAL (T =0.6) 72.00 73.33 71.21 83.35 82.92 83.01

Multisite(T = 0.5) 65.66 59.00 59.00 74.86 76.07 71.67

T, Threshold; KNN, K-nearest neighbor; LDA, linear discriminant analysis. We only report

the sparsity thresholds that yielded the highest classification accuracy.

2015). Another major limitation is their great dependence on
network filtering threshold for which there is no objective
selection criterion. That said, community quality patterns
remain a valuable tool for investigating network connectivity
disruptions in ASD pathology and anticipating the polarity of a
particular participant before using the recommended diagnostic

methods. Further research may provide a solid basis for their
clinical application in the future. Autism spectrum encompasses
several neurological disorders andmanifests itself through a wide
range of symptoms and different characteristics. The way the
brain’s architecture breaks down under the effects of autism is
subtle and complex. A single metric, modularity, for example, is
not enough to capture all the changes in brain structure across
the spectrum. The use of several structural metrics is, therefore,
more appropriate to capture and identify this disease.

Classifiers designed based on features extracted from ABIDE
rsfMRI data typically perform better on single-site data than
multisite data. Decreased accuracy in multisite data could be
attributed to ASD subtypes or other heterogeneities across
the ABIDE sites (Di Martino et al., 2014). Different studies
employed different approaches for utilizing multisite data
for ASD classification in the literature. One approach is to
learn biomarkers of neurological status and perform separate
classification at individual sites and then combine the results
in a meta-analysis (Chen et al., 2016). Another approach
consists of treating multisite data as a single, homogeneous
dataset (Nielsen et al., 2013). These two approaches were used
in this study to assess the viability of functional network
community pattern metrics as predictors of ASD. While these
two approaches fail to account for the variability that has
been proven to be significant between sites, their use in this
study provides preliminary evidence for community quality
metrics as potential predictors of autism. Recent approaches
for combining imaging data from multiple sites leverage
similarity across sites while accounting for individual site
differences through a joint optimization (Wang et al., 2017;
Heinsfeld et al., 2018). While these novel approaches yield better
classification accuracy in multisite studies, they may not be
suited for studies that extract imaging features based on global
connectivity indexes.

In this study, community detection was performed by
optimizing themodularity quality function. Then the community
quality indexes were calculated based on the found community
structures. Given the results for feature importance, it is
interesting to see that modularity is one of the least important
predictive features for the ASD classifiers. One might then
suspect that optimizing some of the other quality functions
might lead to communities that yield better discrimination
between persons with ASD and typical controls. In this work, the
modularity maximization algorithm was chosen for community
identification mostly because of its good performance on
functional brain networks in previous studies. We cannot,
therefore, rule out the fact that the predictive power of the
other quality measures is a consequence of using modularity
for the original clustering. Using an alternative graph clustering
algorithm such as Infomap (Rossval and Bergstrom, 2008) to
perform the original clustering could be useful for verifying
this hypothesis. In addition, it would be interesting to conduct
a comparative study where the initial community detection is
performed by optimizing each of the other quality functions
and then computing and using all the metrics as features
for classification. This, however, is beyond the scope of
this paper.
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TABLE 6 | Comparing our classification results with recent works.

Types of features # of features Classifier # of subjects (ASD, CTR, Total) Peak accuracy % References

Functional connectivity 26,393,745 Thresholding (40, 40, 80) 79.0
Anderson et al., 2011

ICA components 10 Linear Regression (20, 20, 40) 78.0 Uddin et al., 2011

Functional connectivity among 7266 ROIs 26,400,000 General Linear Model (447, 517, 964) 60 Nielsen et al., 2013

Functional connectivity among 220 ROIs 24,090 Random Forest (126, 126, 252) 91 Chen et al., 2015

Functional connectivity among 90 ROIs 4005 Probabilistic Neural Network (312, 328, 640) 90 Iidaka, 2015

Functional connectivity Variable Support Vector Machine (59, 89, 148) 76.7 Plitt et al., 2015

Functional connectivity among 84 ROIs 7,056 Support Vector Classification (468, 403, 871) 67 Abraham et al., 2017

Functional connectivity among ROIs 600 Deep neural network (505, 530, 1035) 70 Heinsfeld et al., 2018

HOG and personal characteristic data 47 Support Vector Machine (538, 573, 1111) 65 Ghiassian et al., 2016

ROIs HMMs likelihoods 114 SVM (121, 171, 292) 75.86 Jun et al., 2019

Time series 90 LSTM (529, 571, 1100) 68.5 Dvornek et al., 2017

Community metrics from 90-ROI networks 5 Linear Discriminant Analysis (117, 118, 235) 74.86 This work

HOG, Histogram of Oriented Gradients; LSTM, Long Short-Term Memory network; HMM, Hidden Markov Models.

TABLE 7 | Classification performance on the entire validation set by using the five

community pattern descriptors as features with KNN and LDA algorithms.

Threshold KNN LDA

Accuracy Precision Recall Accuracy Precision Recall

0.1 58.25 59.23 59.27 65.14 64.34 64.89

0.2 55.69 56.61 61.55 68.85 68.15 68.18

0.3 65.95 64.29 64.07 69 70.15 71.58

0.4 65.97 66.13 64.13 75.04 73.16 74.28

0.5 66.16 67.81 64.51 72.49 71.44 72.77

0.6 64.33 62.45 63.18 71.16 70.98 69.14

0.7 64.17 65.3 64.41 67.24 66.88 65.69

0.8 58.09 54.75 56.85 65.55 65.11 63.13

0.9 55.75 55.78 54.07 66.82 67.12 66.33

KNN, K-nearest neighbor; LDA, linear discriminant analysis.

One limitation of the classification framework proposed in
this study, and graph-based approaches in general, is that
the classification results are very dependent on thresholding
parameter T. Graph screening is a major and most recurring
issue for the binarization of functional brain networks. In
this study, we performed a systematic analysis of functional
brain networks for increasing threshold values ranging from
0.1 to 0.9, as there is no objective criterion for determining
an interval of thresholds for which community quality metrics
would remain relatively stable. Our classification results on single
and multisite data show that, broadly, threshold values falling
between 0.3 and 0.6 yielded the best classification accuracies (see
Tables 5, 7). This suggests that brain networks that are either
too densely connected or too sparse are not good choices for
reaching “optimal” classification accuracy on new data. Still,
finding a general rule for choosing the best network filtering
threshold remains a challenging endeavorDe Vico Fallani et al.
(2014). A potential good workaround solution to the threshold
problem could be to perform community detection and compute

metrics directly from unfiltered networks. A drawback of this
solution could be the challenge of defining and interpreting
communities in the context of signed networks with positive and
negative connections.

Other limitations of this study include the fact that the same
spatial normalization template was used for all participants
despite age differences in the experimental populations.
Detection of regional distortions could probably be more
accurate by using multiple brain templates adapted to different
age ranges. Also, many subjects with ASD were on medication at
the time of scanning, and it cannot be ruled out that treatments
could influence resting-state functional connectivity community
patterns in these individuals. Third, community detection was
performed on unweighted networks, ignoring the potential
significance of the information carried by edge weights. Finally,
we used values of Pearson’s correlation coefficient as node
weights before binarization; however, different correlation
metrics may yield different graph representations of the same
datasets and yield different characterizations of functional
connectivity differences in ASD. Further studies are necessary
to investigate community pattern differences in ASD by
using weighted network representation. Further studies are also
warranted to determine the effects of different correlationmetrics
and other network construction techniques on resting-state
functional network community patterns.

5. CONCLUSION

We propose a framework to characterize and discriminate
patients with autism spectrum disorder from normal control
subjects. Our approach is based on graph-based feature
extraction. A combination of five well-selected community
pattern quality indexes was used as features for classification.
In addition, various statistical tests were applied to evaluate the
overall network topology and community composition in ASD
at the group as well as subject levels. Results for functional
connectivity difference between autistic patients and normal
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subjects were consistent with existing studies, revealing both
patterns of underconnectivity and overconnectivity. In particular,
we demonstrated that the modular structure is significantly
disturbed in patients with ASD. More importantly, we showed
that the discriminative power of the modular structure as
captured by the selected metrics is comparatively high, lending
further credence to the dysconnectivity theory of this condition,
for which network connectivity patterns are increasingly being
considered as potential biomarkers.
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