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Abstract

Understanding the molecular machinery involved in transcriptional regulation is central to

improving our knowledge of an organism’s development, disease, and evolution. The build-

ing blocks of this complex molecular machinery are an organism’s genomic DNA sequence

and transcription factor proteins. Despite the vast amount of sequence data now available

for many model organisms, predicting where transcription factors bind, often referred to as

‘motif detection’ is still incredibly challenging. In this study, we develop a novel bioinformatic

approach to binding site prediction. We do this by extending pre-existing SVM approaches

in an unbiased way to include all possible gapped k-mers, representing different combina-

tions of complex nucleotide dependencies within binding sites. We show the advantages of

this new approach when compared to existing SVM approaches, through a rigorous set of

cross-validation experiments. We also demonstrate the effectiveness of our new approach

by reporting on its improved performance on a set of 127 genomic regions known to regulate

gene expression along the anterio-posterior axis in early Drosophila embryos.

Introduction

When studying the complex control of gene expression, often the first step is to locate an

enhancer, or cis-regulatory module (CRM), within the genome. An enhancer is a non-coding

region of DNA, typically located upstream of the promoter region, which binds transcription

factor (TF) proteins and subsequently regulates the gene’s expression. This regulation is

extremely important for many of the key processes involved in embryonic development [1, 2].

The discovery of clusters of key TF binding sites has been critical to identifying potential

enhancers in the genome, and mapping out the organization of these binding sites has been

crucial in guiding our understanding of enhancer function and evolution [2–4].

DNA motif discovery and sequence classification to identify portions of the genome with

specific biological function(s) has been a central problem in computational biology, addressed
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by numerous approaches based on sequence alignment [5, 6], profiling consensus patterns of

motifs [7, 8], and hidden Markov models [9, 10]. In this study, we draw from ideas introduced

in Position Weight Matrix-based approaches to develop a novel, unbiased Support Vector

Machine approach [11, 12].

Position Weight Matrix approach

Since the 1980s, one of the most popular bioinformatic approaches for predicting transcription

factor binding sites (TFBSs) involves constructing a Position Weight Matrix (PWM) and scan-

ning a DNA sequence for subsequences with a high probability of binding the TF of interest

[13–15]. Standard implementations of this approach rely on the assumption that nucleotide

positions within a TFBS are independent of each other [16, 17]. Even with this simplifying

assumption, these models have proven themselves effective in predicting binding sites in a

variety of different species [16–20].

In an attempt to implement a more systematic and unbiased approach in predicting TFBSs,

there have been numerous different extensions to this approach, relaxing the assumption of

nucleotide independence of contiguous nucleotides within the binding site. Common exten-

sions include dinucleotide and k-mer models, which allow for dependence between adjacent

nucleotides or a contiguous string of k nucleotides, respectively [21–23]. Even more recently,

an algorithm was developed, referred to as MARZ, that combinatorially considers all possible

gapped nucleotide dependencies across a fixed number of nucleotides [11]. By considering all

possible dependencies, this new algorithm includes traditional PWM models, dinucleotide

and k-mer models, as well as models with noncontiguous (i.e. gapped) dependencies. When

tested on a set of well characterized TFs in Drosophila, MARZ illustrated that gapped models

often outperform traditional PWM-based models [11, 12]. Although this may not be the case

for all TFs or in all species, these studies have highlighted the importance of using an unbiased

approach and considering all possible combinations of nucleotide dependence when attempt-

ing to make robust predictions of TFBSs.

Support Vector Machines

In recent years, discriminative approaches, such as Support Vector Machines (SVM), have

been introduced and shown to be the best performing methods for sequence classification

[24]. In the SVM classifier approach, the input sequences from different classes are considered

as labeled examples and a learning algorithm is trained to find an optimal decision boundary

between the different classes. The decision boundary (determined by a hyperplane in a multi-

dimensional feature space) optimally separates the feature representations of the labeled exam-

ples. In this supervised approach, the unlabeled (test) sequences are later given to the

algorithm, and the algorithm uses the learned decision boundary to predict labels/classes for

these test sequences [25].

One of the earliest SVM approaches for biological sequence classification, which was origi-

nally implemented on protein sequences made up of strings of amino acids, was the Fisher ker-

nel [26]. This approach, tested on the SCOP database [27], is based on a computationally-

demanding generative model that requires one to build hidden Markov model profiles for

each positive training sequence to obtain the feature vector representations. A new protein

sequence is represented by a Fisher score vector, then its Kernel function for a given protein

family is computed based on the Euclidean distance between this score vector and the score

vectors that are precomputed for the known positive and negative examples of that protein

family [26]. In a later study by [28], the SVM-pairwise kernel was introduced in which the

pairwise alignments between each training sequence are used as the SVM features. This
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methodology is similar to the Fisher kernel approach and the process is computationally-

expensive as well. In [29], a more efficient “spectrum” kernel was introduced for the classifica-

tion of protein sequences, where the feature vector consists of the occurrences of all k-mer

contiguous subsequences in a given amino acid sequence. In subsequent works, the authors

extended their approach for “inexact” subsequence matches for the improved classification

performance, which allows up to a certain number of mismatches when counting the k-mer

occurrences [30, 31].

The advantage / extension of our approach. The k-mer spectrum is an effective represen-

tation of DNA sequences in terms of discriminating functional segments (i.e., TFBS, or

promoter/enhancer regions) from the genomic background. The TFBSs can be characterized

by the specific composition of the k-mer subsequences inherent to the binding preference of a

TF protein, where the consensus motif sequence is defined as the most observed k-mer in the

corresponding binding sites followed by those that differ from the consensus sequence in vari-

ous degrees.

It has been suggested that protein binding sites have varying levels of nucleotide interde-

pendencies, i.e., the nucleotide patterns in certain (non-adjacent) bases within binding sites

may appear more often than the patterns in other bases [12, 32, 33]. This suggests a (gapped)

dependency in some non-adjacent bases within the TFBSs which can be modeled by a

“gapped” k-mer. The gapped k-mer is a length k sequence of nucleotides that breaks depen-

dency in certain bases that cannot form a significant consensus, i.e., we can assume the inter-

dependency between the first and the last nucleotides in the following 3 binding sites

{“AACA”, “ACGA”, “AGTA”}, where a “gapped” k-mer represented by “ANNA” (where each

‘N’ represents a gap, corresponding to no specific nucleotide preference) will be a better fit to

the majority of TFBSs (i.e., 3/3) than any other “contiguous” k-mer.

Following this intuition, to account for the TF proteins that possess nucleotide interdepen-

dency, a more suitable representation of the DNA binding sites –in terms of sequence discrim-

ination– should incorporate the gapped k-mer compositions as well as the regular k-mers. In

that respect, the composition (enrichment) of the specific gapped k-mers in the analyzed

sequence (relative to the enrichments obtained from the training data) can help identify such

TFs that possess interdependency in their preferred binding sites. In the following section, we

describe a generalized discriminative approach for detecting functional DNA sequences

including those that may possess nucleotide interdependency in particular TFBSs.

Although PWM-based approaches are often used for TFBS discovery, and have shown suc-

cess in incorporating gapped dependencies, SVM approaches require much less prior knowl-

edge of binding preferences [11, 12, 24, 25]. A PWM is built from a set of sequences known to

bind a specific TF [11, 16, 17]. Thus, these studies focus on specific sets of TFs, often with the

goal of identifying high affinity binding sites, and have no flexibility in discovering TFBSs for

TFs not included in the initial input [11, 16, 17]. SVM approaches, on the other hand, require

no knowledge of the TFs that may bind to the DNA search sequence or their binding prefer-

ence within the genome; they are searching for enriched motifs within the search sequence

with the goal of identifying TFBSs [24, 25]. Due to the extremely different inputs needed, and

often-different underlying goals of using such algorithms, it is impossible to conduct a valid

comparison of the results from PWM-based vs. SVM approaches.

SVM for sequence classification

Support Vector Machine (SVM) is a discriminative learning method that finds an optimal

decision boundary that separates, in the case of binary classification, the positive and negative

data sets represented in a high-dimensional vector space [25]. Consider the training data set of
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labeled input vectors (xi, yi), i = 1, . . ., t, where xi 2 R
N is the projection of the i-th input

data into a high-dimensional feature space (obtained by a known mapping function, C), and

yi 2 {−1, 1} is the respective class label. In this classification problem, a basic (linear) decision

boundary B can be found by minimizing ||w||2 subject to yiðxT
i w þ bÞ � 1, i = 1, . . ., t, where

w 2 RN is the normal vector to the decision boundary (which is a hyperplane, i.e.,

B ¼ fx 2 RN : xTw þ b ¼ 0g), b is the classifier bias, and the term xT
i w represents the inner

product between the vectors xi and w. For practical considerations a dual problem is rather

solved to find the decision boundary by forming the Lagrangian (with multipliers α) for the

above quadratic programming problem [24]:

max
X

i

ai �
1

2

X

i

X

j

aiajyiyjx
T
i xj;

subject to ai � 08i;
ð1Þ

whereby the normal vector w can be optimally constructed from w = ∑i yiαixi. Here, the

learned variables (w, b) serve as the parameters of the classification rule. A test example z is

then classified by the expression

f ðzÞ ¼ zTw þ b ¼
X

i

yiaiz
Txi þ b;

where f(z) represents the distance of z from the learned decision boundary, and its sign gives

the estimated class label. The inner product in (1) yields a measure of similarity in the feature

space F where the coordinates are defined by the vector elements. The similarity between any

two input data (χi, χj) can be generalized by using the Kernel functions K(χi, χj) [24].

A convenient Kernel function for sequence classification is the k-spectrum kernel, [29]

which describes the similarity of sequences by their (k-mer) subsequence compositions of a

fixed length k. Consider that the training data χ is a character sequence belonging to an input

space X consisting of all finite sequences from an alphabet A of size ℓ. For a given k� 1, it is

projected to a frequency vector called “k-spectrum”, i.e., x = Ck(χ), that represents the occur-

rences of all possible k-mer subsequences in χ

CkðwÞ ¼ ð�αðwÞÞα2Ak ;

where ϕα(χ) is the number of times α occurs in χ, and Ak
represents the set of all possible

length-k sequences from the alphabet A.

In [29], the k-spectrum kernel’s mapping function Ck considers only the subsequences of

“contiguous” (dependent) nucleotides (i.e., k-mers). In a later related work, authors introduce

the mismatch kernel to allow for a certain number of mismatches in the k-mer occurrences.

Recently, a more systematic approach was proposed for detecting regulatory sequences pos-

sessing certain degrees of nucleotide interdependency through the search of sequence motifs

called “gapped k-mers” [11]. In our study, we extend the concept of k-spectrum given in [29]

by incorporating all types of nucleotide interdependency in k-mers to improve the predictive

power of the feature set. That is, we extend the feature set of k-mers by those of the gapped

k-mers given in [11] that ignore all possible subsets of nucleotides. As it will be explained next,

the mapping function only evaluates the data points under the k-spectrum and computes the

extended (gapped) features efficiently by folding this spectrum in certain coordinates specific

to the gapped k-mer features.

Gapped k-mers have been recently used for regulatory sequence prediction in the SVM-

based classifiers. In [34], the authors consider ℓ-mers with k non-gapped bases (k� ℓ) and esti-

mate ℓk feature frequencies based on the ℓ-mer mismatch profiles between sequences. Their
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model considers a fixed number of gaps, i.e., ℓ − k, when computing the SVM kernel. In con-

trast, we allow “variable-length” gaps (between 0 and k − 1) in the k-mer and thereby incorpo-

rate a full and unbiased list of sequence features in the SVM kernel. This also allows us to

perform systematic analyses on the sequences which we describe next.

In the context of gapped dependency, another recent study [35] employed an SVM learning

approach, repDNA, in which pseudo nucleotide compositions that represent the gapped

dependency of nucleotides is incorporated into the k-mers, as well as more sophisticated fea-

tures derived from the physicochemical properties of DNA.

Folded k-spectrum kernel

We use the binary notation to refer the dependent nucleotides in a subseqeunce α, where ‘1’

represents the dependent nucleotides and ‘0’ represents the gap. For example, given k = 3

(3-mer) the binary value of the decimal number 5 is 101; therefore 5 encodes the 3-mer

sequences of which only the 1st and the 3rd nucleotides are interdependent. We denote this

dependency model by a set of gapped k-mer features A3

5
which consists of 16 sequences vary-

ing on the nucleotides (1,3), i.e., A3

5
¼ fANA;ANC;ANG;ANT;CNA; . . . ;TNG;TNTg, where

the gaps are represented by ‘N’. Similarly, the decimal number 7 yields the binary sequence

111 and the corresponding A3

7
represents the set of all (contiguous) 3-mer sequences. For

k = 3, the remaining possible feature sets are A3

3
and A3

1
which consists of all possible dimer

(011) and monomer (001) sequences, respectively.

As described above, there are 4 different feature sets (gapped k-mer models) for k = 3, i.e.,

monomer, dimer, 1-gapped, and 3-mer. In general, this number grows exponentially with k,

i.e., 2k−1 different feature sets. However, in practice the length of k = 6 is a sufficient (and opti-

mal) choice for the purpose of sequence discrimination [36, 37], which we also used in this

study. In the following, we present a general formulation of the folded k-spectrum kernel for

any k.

Using the same notation, we define the feature map of a particular feature set

Ak
2m� 1

;m ¼ 1; . . . ; 2k� 1 by

Fðk;mÞðwÞ ¼ ð�αðwÞÞα2Ak
2m� 1

; ð2Þ

where F(k,m) maps the input data into the m-th feature set which can be denoted by

Ak
2m� 1
¼ ð½aa . . . a� 
 ð2m � 1Þ

ð2Þ
Þ

a2A, with (l)(2) representing the decimal l in binary sequence,

i.e. (5)(2) = 101. In Eq (2), we used the relative frequency mapping for ϕα(χ) to cancel out the

influence of different sequence lengths and different background frequencies of α, i.e., it repre-

sents the number of times α occurs in χ divided by the number of possible k-mers (|χ| − k + 1),

relative to the same measure observed in the genome

�αðwÞ ¼
# α occurs in w

jwj � kþ 1

# α occurs in genome
jgenomej � kþ 1

� �� 1

:

Notice that in (2), a value of m = 2k−1 corresponds to the last feature set (which is the set of

contiguous k-mers), where the term 2m − 1 yields the length-k sequence of 1s in the binary

representation, i.e., (2m − 1)(2) = (2 × 2k−1 − 1)(2) = (2k − 1)(2) = {1}k = [11. . .1]. Similary, m = 1

represents the monomer model with the feature set

Ak
2m� 1
¼ Ak

1
¼ fN . . .NA; N . . .NC; N . . .NG; N . . .NTg;
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and m = 2 represents the dimer model with the feature set

Ak
2m� 1
¼ Ak

3
¼ fN . . .NAA; N . . .NAC; N . . .NAG;

N . . .NAT ; N . . .NCA; . . . ; N . . .NTTg:

Any other value between 2<m< 2k−1 corresponds to the gapped feature sets given that k> 2.

Considering all possible gapped k-mers, i.e., {m = 1, . . ., 2k−1}, the extended k-spectrum feature

map is then given by

CkðwÞ ¼ ðFðk;mÞðwÞÞ
2k� 1

m¼1
: ð3Þ

For efficiency, we only evaluate the contiguous k-mer features under the k-spectrum map,

i.e., F(k,2k−1)(χ), then the mapping of χ to any other feature set (m< 2k−1) is calculated as a lin-

ear sum of the feature-specific values in this k-spectrum map, imitating a folding process over

those coordinates. For example, given k = 3 the frequency of the feature sequence “ANA” in

A3

5
, is computed by

�ANAðwÞ ¼
X

a2A

�AaAðwÞ

¼ �AAAðwÞ þ �ACAðwÞ þ �AGAðwÞ þ �ATA ðwÞ;

where [ϕAAA(χ), ϕACA(χ), ϕAGA(χ), ϕATA(χ)] are obtained from F(k,2k−1)(χ). In other words, the

mapping function of a gapped k-mer feature (i.e., “ANA”) is the (unweighted) linear combina-

tion of the mapping functions of all contiguous k-mer features which differ from that gapped

k-mer sequence in the gapped locations.

Additional approaches

Many alternative approaches have been recently proposed in motif discovery and feature pre-

diction. One such approach investigates the gapped nucleotide dependencies in terms of dis-

criminating real pre-miRNA sequences from false sequences. In [38], authors use k-mer

components to represent the RNA sequences, and they propose an approach (degenerate k-

mer) to deal with the problem of over fitting. In another study, this method was modified and

applied to DNA-binding proteins [35] based on building pseudo amino acid composition pro-

files and then incorporating gapped dependency between amino acid pairs through a reduced

alphabet of amino acids. Features such as these pseudo components of DNA, RNA, or protein

sequences are generated using previously published and available tools such as repDNA and

Pse-in-One. [39, 40]. The approach was evaluated by the Support Vector Machines

classification.

Another computational method was proposed in [41], referred to as WSMD, in which the

optimal set of motifs and the sequences containing them are simultaneously identified through

a weakly supervised learning method. Although the method does not incorporate the gapped

dependency in the identified motifs, using a similar approach, referred to as LMMO, which

maximized the classification accuracy and other relevant metrics (AUC [42]), the algorithm was

able to discover a variety of regulatory motifs using a continuous global optimization scheme.

Materials and methods

Data sets

We tested the proposed SVM kernel through the binary classification problem, i.e., discrimi-

nating a single class of positive (functional) DNA sequences from negative (background) DNA

The folded k-spectrum kernel for detecting transcription factor binding sites
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sequences. As the positive signal set, we used the set of 127 CRMs studied in [43], belonging to

114 genes of interest in early Drosophila development that exhibit differential expression pat-

terns along the anterio-posterior (AP) axis. The CRM sequences were originally obtained from

the data base [44] and extended by 100-bps of flanking sequence in each direction. We gener-

ate the negative signal set by retaining the same distribution of sequence lengths and nucleo-

tide compositions as the positive signal set. That is, for each sequence in the positive set, we

generate 10 different scrambled versions using random (uniformly-selected) permutations of

nucleotides from the original sequence.

Although using a larger negative set generally leads to the problem of an imbalanced data

set, we have not observed any imbalance in our data set; as shown in our results, the proposed

approach performs with excellent precision-recall curves. If our algorithm resulted in subopti-

mal performance due to class imbalance on a particular data set, conventional approaches

could be applied from the fields of machine learning and bioinformatics, such as data sampling

[45] [46], sample weighting [47] [48] [49], cost-sensitive learning [50] [51], kernel-based meth-

ods [52], or hybrid approaches [53].

All positive and negative data sets used in this study are available from http://www.

columbia.edu/*ae2321/DmelCRMs.zip.

Identifying top-enriched features

Through SVM training, one can investigate the enrichment of the individual features (gapped

k-mers) observed in a given input sequence. For this, we use all positive and negative data sets

and train the SVM with the proposed kernel. The elements w(n), n = 1, . . ., N in the resulting

decision (weight) vector w ¼ ½wð1Þ; . . . ;wðNÞ� 2 RN may indicate the relative discriminative

power of the corresponding features, whereby the class of a test example mapped into this fea-

ture space x ¼ ½xð1Þ; . . . ; xðNÞ� 2 RN is obtained through the sum of the weighted frequencies

of its sequence features, i.e. the sign of the inner product wTx ¼
PN

n¼1
wðnÞxðnÞ. Following

this intuition, given the test sequence x we define the enrichment score of the n-th feature in

this sequence by r(n) = w(n)x(n) and the score vector corresponding to all features by

r ¼ ½rð1Þ; . . . ; rðNÞ� 2 RN .

Considering the DNA sequence data, different subsets of features may be enriched in differ-

ent sequences due to the underlying degeneracy of the binding sequence [54]. In addition,

since the nature of DNA binding prefers a “consensus” for particular nucleotides rather than

the exact binding sequence, k-mers containing a preferred core sequence with certain mis-

matches may also be enriched [31]. Thereby, it is intuitive to expect that a number of top-

enriched features estimated for a given sequence may represent binding sites for the underly-

ing regulatory factor(s) driving the CRM’s primary function [36].

To investigate this, we calculate the enrichment vectors for every positive sequence used in

the SVM training (i.e., CRM data set), i.e., {ri, i = 1, . . ., P}. For each given sequence, we select

the top-enriched features residing above a cutoff weight (0.005) and those belonging to the

same feature set (gapped k-mer model) are used to construct the relevant “gapped k-mer

motif”. For example, suppose that in the top-enrichment results there are only two features

ANT and TNT belonging to the set A3

5
, then the corresponding gapped k-mer motif of A3

5
will

be (A/T)NT. In fact, such a motif may be the fragment of a real DNA binding motif (i.e., tran-

scription factor binding site), whereby using this k-mer motif one can search for the possible

hits in a known motif data base. By this motivation, we generated all such motif fragments esti-

mated for each given sequence in the CRM data set.

The folded k-spectrum kernel for detecting transcription factor binding sites
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Filtering out potential false positive gapped k-mers (false discovery-

based feature elimination)

It is known that certain sequence patterns may be found more frequently in the genomic back-

ground, entailing the danger, for the above procedure, of falsely discovering such patterns (fea-

tures) and predicting the subsequent (false) motif hits [55–57]. To address any false discovery

caused by the underlying nucleotide composition, we set out to eliminate the features that

putatively lead to false enrichments. This is done by replacing the positive inputs with a set of

“false” positive sequences to identify an ensemble of corresponding falsely-enriched features

(Fig 1). That is, we replace each positive training sequence χi, i = 1, . . ., t with 10 scrambled

versions of it (χf
j ; j ¼ i; . . . ; iþ 9), and use this expanded (false) positive set for training the

SVM with the proposed kernel; then we estimate the top-enriched gapped k-mers (with

rfj ðnÞ; n ¼ 1; . . . ;N) for each of the false positive sequences χf
j ; j ¼ 1; . . . ; 10t, and discard

those residing below the cutoff weight (0.005), i.e., set rfj ðnÞ ¼ 0 if rfj ðnÞ < 0:005.

One should note that the 127 CRMs in the positive set are not an exhaustive list of CRMs

driving expression of genes in early Drosophila development that exhibit differential expres-

sion patterns along the AP axis [43, 44]. Therefore, to obtain “false” positive sequences, we

randomly scramble the positive sequences, retaining the same number of A, C, G and T nucle-

otides, opposed to a strategy of choosing random sequences from the genome [11, 12, 58].

Comparing top-enriched features with those in JASPAR

After filtering, we compared the individual gapped k-mers against a relevant motif data base

(i.e., JASPAR’s core data base for insects) [59] to elucidate the putative regulatory factors. For

this task, we used the motif comparison tool Tomtom [60] which calculates statistical measures

(p-value) to quantify the similarity between two motifs. For each sequence, we obtained all the

motif hits found by Tomtom and retained those with a significant p-value score < 10−3.

To improve the filtering procedure, we further discard “insignificant” false positives by fil-

tering out any gapped k-mer which does not lead to a significant JASPAR hit. That is, for each

false positive input χf
j ; j ¼ 1; . . . ; 10t, we construct all enriched gapped k-mer motifs and

search the motif database via Tomtom. If a gapped k-mer motif results in a significant hit to a

JASPAR motif (p-value< 0.001), then we keep this gapped k-mer motif, assuming that it con-

sistently appears on the genomic background; otherwise if the motif is not found in JASPAR,

we discard that motif, regarding it as an “insignificant” false positive.

The remaining gapped k-mers (features) are referred to as “false” and are used to remove

the corresponding features found in the positive training sequence’s top-features. That is, we

filter out the n-th gapped k-mer (set ri(n) = 0) if it belongs to one of the “gapped models” of the

falsely-enriched features (corresponding to rfj ðnÞ) in the respective scrambled copies j = i, . . .,

i + 9. After removal, the remaining gapped k-mers (with enrichment scores rhi ðnÞ > 0:005) at

each input sequence are assumed to be “high-confidence” predictions, whereby we constrained

the feature set to this collection, i.e., C
h
k ¼ ð[iIðrhi ÞÞ \Ck where Iðrhi Þ represents the indices

of the remaining features with rhi ðnÞ > 0:005; n 2 f1; . . . ;Ng (Fig 1).

Cross-validation

We assess the performance of the proposed folded k-spectrum kernel through cross-validation

tests. During this procedure, a true positive was defined as a CRM from the original set of 127

‘positive’ CRMs that was not used in the initial training step but was detected by the algorithm

(i.e., correctly classified as a positive sequence). Similarly, a false negative was defined as a

The folded k-spectrum kernel for detecting transcription factor binding sites
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Fig 1. SVM with feature elimination based on the discovery of false enrichments. Feature enrichments (r) are estimated by SVM learning and a

cutoff threshold. Then the false enrichments are detected and eliminated through using the background (scrambled) positive sequences (χfj ) in the SVM

learning. After elimination, the remaining features (rhi ) are used in the final SVM model C
h
k .

https://doi.org/10.1371/journal.pone.0185570.g001
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CRM from the original set of 127 ‘positive’ CRMs that was not used in the initial training step

and was not detected by the algorithm (i.e., incorrectly classified as a negative sequence). Thus,

any CRM with a low number of false negatives after this analysis represents a CRM that, even

when left out of the training data, can still be detected as a positive sequence.

Since our data set consists of experimentally verified CRMs, we operate under the assump-

tion that the set contains a large number of TFBSs [44]. Therefore, for a valid assessment of

performance, we implement a 10-fold cross validation (i.e., we train the algorithm on a large

majority of the inputs and test it on the remaining subset).

Given a set of input sequences (i.e., the CRM data set) with positive and negative class labels

we randomly divide them into 10 disjoint subsets by retaining (approximately) equal propor-

tions of the positive/negative sequences. At each fold, one different subset is left for testing and

the other 9 subsets are used for training the SVM with the proposed folded k-spectrum kernel.

We note that the false positive features are eliminated from the feature set and the feature map

is constrained to C
h
k following the procedure described in the previous sections.

After processing 10 folds, each input sequence is tested (classified) once. We then obtain

those class predictions and determine the true/false predictions for the positive and negative

sequences. The corresponding ROC curve and Area Under Curve (AUC) score are then gener-

ated (Fig 2).

We re-evaluate these predictions in the repeated experiments in order to average out the

influence of randomization on the test subsets. We repeat the above procedure 100 times by

randomly dividing the data in each experiment, then check the cumulative “false negative” pre-

diction of each input sequence, which represents the number of times a trained classifier fails

to detect that sequence accurately. This evaluation elucidates the predictive power of the

“gapped k-mer” features on the individual input sequences.

We want to identify the group of CRMs in which the classifier performs with low accuracy,

i.e., through repeated experiments the classifier “consistently” fails to detect those CRMs and

results in a high number of false negative (FN) calls. The consistency can be defined by setting

a threshold in the FN call rate, i.e., FN>10/100. For example, if a classifier (falsely) predicts a

positive test sequence as negative in at most 10% of the repeated (randomized) cross-validation

experiments, we can assume that the classifier is able to predict that sequence with high (90%)

accuracy. Fig 2 displays the (sequence-specific) prediction accuracy of the classifiers, the con-

tiguous k-spectrum kernel and the folded k-spectrum kernel, based on the 10% FN call rate

cutoff. Subsequently, one can determine the groups of CRMs that the methods (contiguous

k-mer vs. folded k-mer) perform differently or similarly, and investigate the underlying result

of each classifier on these CRM groups.

Results

Identification of enriched motifs

We implemented the folded k-spectrum kernel approach using a set of 127 CRMs responsible

for the regulation of 114 genes exhibiting differential expression during early Drosophila devel-

opment. These CRMs are referred to as our ‘positive sequences’, as each of them has been

experimentally shown to regulate gene expression along the AP axis, and thus each is thought

to contain motif(s) corresponding to TFBSs present in the early embryo [61]. Those referred

to as ‘negative sequences’ during our SVM training procedure have been constructed by ran-

domly scrambling the positive sequences while retaining each sequence’s original nucleotide

distribution (see Methods for more details).
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Fig 2. Discovery of the different groups of sequences in the two methods’ (contiguous k-mer SVM, folded k-

mer SVM) predictions, based on the differential FN (false negative) calls cumulated over multiple cross-

validation tests. For each method, multiple randomized leave-sets-out cross-validation tests are performed and an

ensemble of FN-predicted sequences are determined (A). The sequences that are called negative above 10% call rate

(FN cutoff) are then reported (B). The reported sequences of both methods are compared and the intersecting/differing

groups of sequences are determined (C).

https://doi.org/10.1371/journal.pone.0185570.g002
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Based on the cross-validation tests described in Fig 2 (with 10% FN call rate cutoff), our

algorithm resulted in the identification of three very interesting subsets (groups) of these

CRMs:

Group 1. those that are correctly detected as belonging to the ‘positive sequence set’ by

gapped k-mers (i.e., folded k-spectrum kernel), but not detected by contiguous

k-mers (i.e., contiguous k-spectrum kernel),

Group 2. those that are incorrectly identified as belonging to the ‘negative sequence set’ by

both gapped k-mers and contiguous k-mers, and

Group 3. those that are correctly detected as belonging to the ‘positive sequence set’ by both

contiguous k-mers and gapped k-mers.

We observed that 7 CRMs fall into Group 1, 7 fall into Group 2, and the remaining 113 fall

into Group 3 (Fig 3A, S1 Table). One should note that none of the 127 CRMs were correctly

detected by contiguous k-mers but not by gapped k-mers due to the fact that contiguous

k-mers are included when considering all possible gapped k-mers. The subset of CRMs con-

tained in Group 1 may contain crucially important TFBSs with gapped motifs, which are unde-

tectable using the standard approaches. Therefore, we focus our attention on those motifs

Fig 3. Classification performance of the (contiguous) k-spectrum kernel vs. folded k-spectrum kernel without (A) and with (B) feature

elimination (FE) procedure. For each method, 100 randomized leave-sets-out cross-validation tests are performed and an ensemble of FN-predicted

sequences are determined. The bar plot displays the total number of times a given (positive) CRM sequence is classified as negative.

https://doi.org/10.1371/journal.pone.0185570.g003
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(gapped k-mers) enriched in the Group 1 CRMs (S2 Table), and include the enriched gapped

k-mers in the Group 2 and 3 CRMs in the Supplementary Information (S3 Table).

The results in S2 Table give a comprehensive picture of all of the gapped k-mers found to

be enriched (weight> 0.005) in the Group 1 CRMs. However, to further investigate the impor-

tance of particular gapped k-mer models, we combined these results into S4 Table, which gives

each gapped k-mer model found to be enriched, the number of enriched gapped k-mers that

fell into that gapped k-mer model, and the cumulative weight of those enriched gapped

k-mers. Note that the most highly enriched gapped k-mers in each of the Group 1 CRMs are

those containing only a small number of gaps (i.e. most have a single nucleotide gap), suggest-

ing that these gaps are contributing significantly to TFBS identification.

Removing false positives

There are some sequence features that may be found to be more abundant than others, even in

the genomic background sequence, due to the sequence composition, although they do not

represent TFBSs. Thus, in an attempt to remove these ‘false positive’ motifs (spurious gapped

k-mers), we have used a filtering procedure (see Methods for more details). This procedure has

eliminated approximately 88% of the total gapped k-mer features that were previously found to

be enriched. S5 and S6 Tables, and all remaining figures correspond to these filtered results.

After filtering, 9 CRMs fall into Group 1, 1 falls into Group 2, and the remaining set of 117

CRMs fall into Group 3 (Fig 3B, S7 Table). Note that 3 CRMs moved from Group 2 to Group 1

after filtering (i.e., the filtering procedure allowed them to be correctly detected as belonging

to the ‘positive sequence set’ by gapped k-mers, but still incorrectly identified them by contigu-

ous k-mers), only 1 CRM moved from Group 1 to Group 2 after filtering (i.e., the filtering pro-

cedure caused the gapped k-mers to lose their ability to correctly identify the CRM). Thus,

overall the filtering procedure improves the performance of the gapped k-mers when com-

pared to the contiguous k-mers.

S5 Table shows the gapped k-mers found to be enriched in the Group 1 CRMs using the

127 positive CRM sequences for training after eliminating features characterized as ‘false’ dur-

ing this procedure.

The overall number of enriched gapped k-mers in the Group 1 CRMs decreases after filter-

ing (from an average of approximately 176 enriched gapped k-mers per CRM to 90 enriched

gapped k-mers per CRMs, S2 vs. S5 Tables), but there still remain a large number of enriched

gapped k-mers.

Again, to investigate the importance of particular gapped k-mer models, we combined the

filtered results into S6 Table, the number of enriched gapped k-mers within that model, and

the cumulative weight of those enriched gapped k-mers. An interesting observation is that

those found to be highly enriched after filtering have a small number of gaps, i.e., αααNαα,

αNαααα, ααααNα, ααNααα etc., where α 2 {A, C, G, T}.

However, one should note that the gapped k-mers that belong to the contiguous model

ααααααwere characterized as false enrichments in all cases.

Improved performance of the folded k-spectrum approach

To validate our model and compare it to the traditional k-spectrum kernel, we conducted a set

of cross-validation experiments. This was done by determining the number of true positive/

false negative class predictions of sequences through a random leave-sets-out analysis (see

Methods for more details).

After repeating the leave-sets-out analysis 100 times using both the traditional k-spectrum

kernel as well as the folded k-spectrum kernel (with feature elimination) during the initial
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training, leaving out subsets of the positive as well as negative (scrambled) CRMs for testing,

the resulting number of false negatives found are shown in Fig 3B and in S7 Table. One should

note that the SVM with folded k-spectrum performs better than the traditional SVM with

k-spectrum method in all CRMs.

The overall performance of the classifiers are evaluated through the ROCcurves, i.e., false

positive rate FP
FPþTN

� �
vs. true positive rate TP

TPþFN

� �
and the precision-recall curves (PR), i.e.,

precision (or positive predictive value) TP
TPþFP

� �
vs. recall (or true positive rate). Fig 4 shows the

superimposed ROC/PR curves of the 100 binary classification results, with the corresponding

average Area Under the Curve scores for ROC (AUCavg) and for PR (AUCPRavg). Fig 5 shows

the results corresponding to the top four panels of Fig 4 when the feature elimination proce-

dure is applied. The folded k-spectrum approach clearly outperforms the contiguous k-spec-

trum in terms of AUC and AUCPR scores, with the feature elimination procedure further

improving the classifier’s performance.

We also compared our results to those of the repDNA algorithm [35] by generating the k-

mers (with k = 1, . . ., 6) and a set of features incorporating the gapped dependency, i.e., dinu-

cleotide-based autocovariance (DAC) features, dinucleotide-based cross covariance (DCC)

features, and pseudo dinucleotide composition (PseDNC) features. We applied 10-fold cross-

validation using the binary classifier SVM, and repeated this test 100 times. The results illus-

trate that the folded k-spectrum approach also outperforms the repDNA algorithm in terms of

both AUC and AUCPR scores (Fig 4).

Enriched motifs correspond to known TFBSs

For the enriched motifs found after filtering in the 9 Group 1 CRMs, we set out to gain some

insight into what particular TFs these motifs may be binding in vivo. The improved predictive

power obtained by the gapped k-mer models in those CRMs suggests the presence of TFs with

strong nucleotide interdependencies in their binding sites. To identify these candidate TFs, we

analyzed the enriched gapped k-mers using the insect motif database, JASPAR, along with the

widely used comparison tool, Tomtom, quantifying the similarity between our enriched motifs

(gapped k-mer sequences) and known motifs for regulatory factors [59, 60].

We analyzed all 817 enriched gapped k-mers found in the Group 1 CRMs, and found 136

significant hits using JASPAR (p-value< 10−3, see S8 Table). The most prominent feature of

this analysis was that a large number of the enriched gapped k-mers correspond to TFBSs for

TFs known to regulate genes involved in early AP patterning in Drosophila.

TFs known to regulate AP patterning genes. The hits found by all gapped k-mers corre-

spond to 29 different TFs, 14 of which are known to be involved in regulating AP patterning

genes [2, 62]. These include BCD, BTD, GSC, OC, KR, TTK, KNI, TLL, HKB, H, SLP, OPA,

ODD, and RUN. It is not surprising to find such a large number of the significant hits corre-

sponding to TFs known to regulate AP patterning genes since the 127 CRMs used for the anal-

ysis are known to regulate genes that are differentially expressed along the AP-axis. However,

it is worth noting that through this analysis some interesting gapped dependency patterns

emerged. As an example, we focus on BCD, the TF found with the second highest number of

occurrences in Group 1 CRMs.

The enriched gapped k-mers that were found to be significant with the known BCD motif

using Tomtom were aligned and used to construct the weblogo in Fig 6B. One should note

that this weblogo is very similar to JASPAR’s BCD motif (Fig 6A), in which the gaps signifi-

cantly align to the 4th base and the (flanking) 7th base of the JASPAR motif. Although the

majority (7) of these aligned enriched gapped k-mers have the contiguous 5-mer model
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Fig 4. Superimposed performance curves, ROC (left) and PR (right), of the 100 cross-validation tests by

SVM learning with contiguous k-spectrum kernel (top), folded k-spectrum kernel (middle), and repDNA

features (lower). Note that many of the ROC curves overlap due to the very small number of false positives found.

Different colors represent different cross-validation results.

https://doi.org/10.1371/journal.pone.0185570.g004
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(Nααααα), the remainder of them (3) have a consistent appearance of the gap in the 4th base,

suggesting a non-adjacent (gapped) dependency between nucleotides 2 and 3, and 5 and 6.

One possible explanation for this gapped dependency may be the three-dimensional shape

of the DNA when bound by BCD. BCD is a homeodomain TF, and thus is thought to mediate

DNA binding through contact primarily with nucleotides in the major groove using the home-

odomain recognition helix, although there is evidence of additional DNA contact in the minor

groove via the relatively unstructured N-terminal domain [63–65]. Therefore, nucleotides in

Fig 5. Superimposed performance curves, ROC (left) and PR (right), of the 100 cross-validation tests by using the feature

elimination (FE) in SVM learning with contiguous k-spectrum kernel (above) vs. folded k-spectrum kernel (below). Note that many

of the ROC curves overlap due to the very small number of false positives found. Different colors represent different cross-validation results.

https://doi.org/10.1371/journal.pone.0185570.g005
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the transition between the major and minor groove may not be as important when binding.

When the BCD binding sites in the JASPAR database, originally identified using bacterial-1

hybrid experiments [62], were analyzed using the newly developed and validated high-

throughput approach, DNAshape, [66] they were predicted to contain a significantly smaller

minor groove width estimated on the 4th base [67]. We believe the gap we observe in the 4th

base (and the entailing dependency between the surrounding nucleotides) may be due to this

reduced minor groove width, signifying the nucleotide position where the transition occurs

from the major to minor groove.

Discussion

Approaches to binding site prediction from DNA sequence data have been developed, and

improved upon for decades. The development and implementation of the novel approach laid

out in this manuscript has led us to some very interesting conclusions. Most striking, and

Fig 6. Weblogos of the JASPAR motif (A) and the enriched gapped k-mer motifs (B) corresponding to

the BCD TFBSs. Note that in the weblogos, A, C, G, and T represent the corresponding nucleotides, while

purple N’s in (B) represent gaps introduced by the enriched gapped k-mers.

https://doi.org/10.1371/journal.pone.0185570.g006
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probably most important to the general bioinformatic community, is the illustrated advantages

that this new approach, which incorporates gapped dependency, has shown over existing SVM

approaches. To highlight the success of this approach, note that 126 of the 127 CRMs tested

were correctly identified as belonging to the ‘positive sequence set’ by this new algorithm,

while 9 of those were not correctly identified by the previous contiguous k-mer approach, and

the only remaining CRM was incorrectly identified by both approaches. Thus, our new algo-

rithm outperformed the previous algorithm over the complete set of 127 CRMs (Fig 3B). We

also found, through a rigorous set of cross-validation tests, that our novel approach outper-

formed the previous approach in terms of the AUC measurements (average of 0.996 vs. 0.98,

Fig 5), as well as in terms of the AUCPR measurements (average of 0.986 vs. 0.951, Fig 5).

Beyond showing the advantage this approach holds over previous SVM approaches, we

have also illustrated its utility on the specific set of CRMs tested, validating the method and

raising new biological hypotheses regarding the nature of DNA-protein binding. The 127

CRMs chosen for this study belong to 114 genes which exhibit differential expression patterns

along the AP-axis in early Drosophila embryos. When comparing the gapped k-mers found to

be enriched using our algorithm to those in the insect motif database, JASPAR, we found that

14 of the 29 TFs found were indeed known to be involved in regulating AP patterning genes.

Although not all TFs found were known to be involved in the regulation of AP patterning

genes, the appearance of many of these other TFs can still be explained in a reasonable biologi-

cal context. For example, BRK and MAD are thought to compete for binding sites effecting

Dpp signaling events in early Drosophila development, and our results support this as we have

found them enriched on the same enhancers. We have also found enrichment of CTCF bind-

ing site sequences within these 127 known CRMs, which has been shown to be involved in

enhancer-promoter looping. These results all lead us to believe that the motifs we are identify-

ing, in many cases, likely represent true TF binding sites.

Conclusion

This study has introduced a novel approach to motif identification, which builds upon previ-

ous approaches in machine learning to allow for a less biased approach to binding site discov-

ery. We have shown its ability to predict TF binding sites on a set of 127 CRMs, and have

offered some insight into the molecular basis for its success. In the future, it will be very inter-

esting to see similar analyses performed on various other sets of sequences, possibly including

sequences from different species and different time points in development. Such studies could

help in answering a deeper biological question of whether universal rules exist governing bind-

ing site preference, strength, and flexibility.
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