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Vanessa Gonçalves Pereira6, Vânia D’Almeida6, Fabio Luiz Navarro Marques7, Andreia Hanada Otake8,9,

Roger Chammas8,9, Sang Won Han1,2*

1 Research Center for Gene Therapy, Federal University of São Paulo, São Paulo, Brazil, 2 Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil,

3 Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 4 Department of Biochemistry, Federal University of São Paulo, São

Paulo, Brazil, 5 Department of Genetics, Federal University of Rio Grande do Sul, São Paulo, Brazil, 6 Department of Pediatrics, Federal University of São Paulo, São Paulo,

Brazil, 7 Nuclear Medicine Center, University of São Paulo, São Paulo, Brazil, 8 Laboratory of Experimental Oncology, Department of Radiology and Oncology, School of

Medicine, São Paulo University, São Paulo, Brazil, 9 Translational Investigation Center of Oncology, Cancer Institute of São Paulo State, São Paulo, Brazil

Abstract

Mucopolysaccharidosis type I (MPSI) is an autosomal recessive disease that leads to systemic lysosomal storage, which is
caused by the absence of a-L-iduronidase (IDUA). Enzyme replacement therapy is recognized as the best therapeutic option
for MPSI; however, high titers of anti-IDUA antibody have frequently been observed. Due to the immunosuppressant
properties of MSC, we hypothesized that MSC modified with the IDUA gene would be able to produce IDUA for a long
period of time. Sleeping Beauty transposon vectors were used to modify MSC because these are basically less-immunogenic
plasmids. For cell transplantation, 46106 MSC-KO-IDUA cells (MSC from KO mice modified with IDUA) were injected into the
peritoneum of KO-mice three times over intervals of more than one month. The total IDUA activities from MSC-KO-IDUA
before cell transplantation were 9.6, 120 and 179 U for the first, second and third injections, respectively. Only after the
second cell transplantation, more than one unit of IDUA activity was detected in the blood of 3 mice for 2 days. After the
third cell transplantation, a high titer of anti-IDUA antibody was detected in all of the treated mice. Anti-IDUA antibody
response was also detected in C57Bl/6 mice treated with MSC-WT-IDUA. The antibody titers were high and comparable to
mice that were immunized by electroporation. MSC-transplanted mice had high levels of TNF-alpha and infiltrates in the
renal glomeruli. The spreading of the transplanted MSC into the peritoneum of other organs was confirmed after injection
of 111In-labeled MSC. In conclusion, the antibody response against IDUA could not be avoided by MSC. On the contrary,
these cells worked as an adjuvant that favored IDUA immunization. Therefore, the humoral immunosuppressant property of
MSC is questionable and indicates the danger of using MSC as a source for the production of exogenous proteins to treat
monogenic diseases.
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Introduction

Mucopolysaccharidosis type I (MPSI) is an autosomal recessive

disease that leads to systemic lysosomal storage caused by the

absence of the enzyme alpha-L-iduronidase (IDUA) [1,2]. IDUA

participates in the degradation of glycosaminoglycans (GAG), and

its absence causes the accumulation of heparan sulfate and

dermatan sulfate in various tissues and organs, which causes coarse

facial features, mental retardation, skeletal abnormalities, short

stature and excess GAG in the urine [3].

Currently, with the high production capacity of the recombi-

nant IDUA enzyme, enzyme replacement therapy (ERT) has

become the best therapeutic option for MPSI. Although the cost of

treatment is very expensive (US$ 150–300 thousand per year),

patients treated weekly with this enzyme via intravenous infusion

have shown great improvement. Dramatic reduction in urinary

GAG excretion, normalization of hepatosplenomegaly and

improved respiratory function and physical capacity were the

main benefits that were observed in most patients treated by ERT

[4,5].

The IDUA in circulation is taken up by cells via mannose-6-

phosphate receptor through a mechanism known as cross-

correction. For efficient ERT, it is essential to maintain the active

catalytic site of the enzyme and that these enzymes penetrate

efficiently into deficient cells. Despite the existence of this transport

mechanism for IDUA, most MPSI patient cells have never

interacted with this enzyme. Therefore, IDUA becomes a foreign

body that can generate an immune response. In clinical studies of

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e92420

http://creativecommons.org/licenses/by/4.0/


lysosomal storage diseases (LSD) by ERT, alloantibodies were

generated in all LSD [4,5]. The initial clinical studies of ERT for

MPSI reported that approximately 40% of patients generated

specific antibodies against IDUA, but immunoprecipitation of the

enzyme or inhibition of its catalytic activity were not observed [6].

However, a posterior, multinational prospective study showed that

patients with a high-titer antibody response showed sub-optimal

therapeutic effects when compared to patients who did not have

this response [7]. In another study, 91% patients were positive for

alloantibodies, but the neutralizing effect of these antibodies

against IDUA was unknown [8]. The consequences of these

immune responses may affect treatment and could lead to rapid

disease progression and subsequent early death [5].

Mesenchymal stem cells (MSC) are able to differentiate into

osteocytes, chondrocytes, adipocytes and other cells and are

capable of proliferation and adhesion to plastic, which facilitates

their cultivation and expansion in large quantities [9]. The main

sources of MSC are bone marrow and adipose tissue, but it is

known that virtually all tissues possess MSC [10]. One of the

properties of MSC is their capacity for secreting immunosuppres-

sive molecules such as nitric oxide [11,12], prostaglandins,

indoleamine 2,3-dioxygenase and IL-6 [13].

The immunosuppressant effects of MSC upon T cells, natural

killer cells, dendritic cells and macrophages have been widely

studied [14,15,16,17]. Although the immunomodulatory activities

of MSC upon B cells are still controversial, strong evidence

suggests a delay in B cell maturation and antibody production by

MSC in mice [18,19] and human cell culture [20,21]; however,

their interaction in vivo is still not well known.

Because the antibody generation against IDUA is a serious

problem when treating MPSI patients with ERT and based on the

immunosuppressive property of MSCs, we hypothesized that

MSCs modified with an IDUA gene can constitutively produce

IDUA because the MSCs could decrease or avoid the generation

of anti-IDUA antibodies. To test this hypothesis, we modified

MSC with a Sleeping Beauty transposon (SB) vector expressing the

human IDUA gene to constantly provide IDUA in vivo and

injected these cells into the peritoneum of IDUA knockout mice

and wild-type mice. The production of anti-IDUA antibodies and

IDUA were monitored for weeks to evaluate our hypothesis.

In this study, we used the SB system for gene transfer because it

is an integrative, non-viral vector and therefore it is expected to

bring about long-term gene expression and an immune response

against the vector should be minimal because this system is

completely void of viral proteins, which can trigger undesired

immune reactions.

Materials and Methods

Animals
All procedures involving animals were performed with the

approval of the Research Ethics Committee of the Federal

University of São Paulo, Brazil (Approval number: CEP 1278/07).

IDUA knockout mice (KO) [2] were kindly provided by Dr.

Elizabeth Neufeld (UCLA, Los Angeles, USA) and were main-

tained in our animal house by breeding heterozygous animals

(HT). Two-month-old KO mice served as sources for MSC culture

establishment; four-month-old KO mice were used for in vivo

experiments; and three-month-old C57BL/6 mice (WT) were

purchased from INFAR (National Institute of Pharmacology, São

Paulo, Brazil) for MSC culture establishment and in vivo

experiments.

Vectors’ construction
The cDNA encoding the human IDUA gene was excised from

the pTiger vector [22] using HindIII and inserted in the uP [23] or

pVAX vectors (Invitrogen San Diego, CA, USA) for uP-IDUA

and pVAX-IDUA construction, respectively. The uP vector

contains the complete CMV promoter with enhancer sequences,

and the pVAX vector only contains the minimum CMV promoter

sequence. For pT2-CMVi-IDUA and pT2-IDUA, the expression

cassettes were excised from uP-IDUA and pVAX-IDUA, respec-

tively, using NruI and XhoI and then inserted in the EcoRV site of

pT2-BH vector (kindly provided by Dr. Perry B. Hackett of the

University of Minnesota, USA). The pT2-CAGGS-IDUA vector

promotes IDUA expression by the hybrid CAGGS promoter,

which was kindly provided by Dr. Elena Aronovich of the

University of Minnesota, USA. The pCMV-SB11 and pCMV-

DDDE vectors express SB transposase or SB transposase without a

catalytic domain, respectively. These vectors were kindly provided

by Dr. Perry B. Hackett of the University of Minnesota, USA. The

pCMV-SB100X vector was kindly provided by Dr. Zsuzsanna

Izsvák and Dr. Zoltán Ivics from the Max-Delbrück-Center for

Molecular Medicine, Berlin, Germany.

Mesenchymal stem cells culture and nucleofection
The KO and WT mice were euthanized by cervical dislocation

to obtain mesenchymal stem cells (MSC-KO and MSC-WT,

respectively) by flushing the bone marrow of the femur and tibias.

Technologies, Carlsbad, USA) supplemented with 10% fetal

bovine serum (Life Technologies), 2 mM glutamine (Life Tech-

nologies), 50 units/ml penicillin and 50 mg/ml streptomycin

sulfate (Life Technologies). The osteogenic and adipogenic

differentiation were performed based on an established protocol

[22]. After five passages, plasmid delivery was carried out by

nucleofection with 10 mg total vector (proportion of the shuttle

vector and the SB transposase vector were 1:1 (w/w)) using the

human MSC Nucleofector kit (Lonza, Basel, Switzerland) and

program U-23.

MSC transplantation
The KO and WT mice were treated with 80 mg/kg of

isosorbide mononitrate by gavage two hours previous to the

procedure. MSC-KO and MSC-WT were nucleofected with the

pT2-CAGGS-IDUA and pCMV-SB100X vectors (MSC-KO-

IDUA and MSC-WT-IDUA, respectively) and were expanded for

15 days. Four million cells were diluted in 4 ml of DMEM and

were injected into the peritoneum of each mouse.

a-L-Iduronidase enzyme assay
In vitro IDUA dosage was performed using a previously

described protocol [22] that utilized 4-methylumbelliferyl-a-L-

iduronide (Glycosynth, UK) in fluorometric assays. The IDUA

activity from plasma was determined using protocols described by

Aronovich et al. [24], and enzymatic activity was expressed as

nmol of 4-methylumbelliferone that were released per mg tissue

protein per hour (U/mg) or per ml plasma per hour (U/ml).

Measurement of anti-IDUA antibody
The presence of human anti-IDUA antibody was determined

using a method described by Di Domenico et al. [25]. Blood

samples were collected fifteen days after the third injection,

centrifuged at 5006g/5 min and diluted in 0.1% BSA/PBS. Fifty

microliters of diluted serum was then used for the Enzyme-linked

immunosorbent assay (ELISA) reaction.

Stem Cells Do Not Prevent Antibody Response
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Histological analysis
The tissues were fixed in 4% paraformaldehyde for 48 hours,

dehydrated and embedded in paraffin. Sections of 4-mm thickness

were obtained and stained with hematoxylin-eosin (HE) to

determine the degree of tissue regeneration and the presence of

adipocytes and infiltrated cells. Images were obtained using an

optical microscope (Olympus BX60) and analyzed digitally [26].

111In-labeled MSC distribution
The MSC-KO was cultivated in the previously described

conditions. Three million cells were incubated with 10 mCi of
111In-oxine for 30 minutes at 37uC. 111In-labeled MSC were

injected intraperitoneally into six 3-month-old WT mice. Two,

four and twenty-four hours after injection, these mice were

euthanized by cervical dislocation and the tissues were collected

and weighed. The 111In-oxine level was measured using the 1282

Compugamma program (LKB Wallac, Gaithersburg, Md.), and

the radioactivity in each organ was expressed in two ways: by the

counts per unit mass and as a percentage of the injected dose. In

all cases, the radioactive decay of 111In was corrected to the time of

injection. Differences in the radioactivity of the measured organs

were determined using analysis of variances (ANOVA) at a

threshold of p = 0.05 to indicate a statistical significance.

Cytokines measurement
The GM-CSF, IFNc, TNFa, IL-2, IL-4, IL-5, IL-10 and IL-12

in treated KO mice serum from MSC-KO-IDUA (n = 3) and non-

treated KO mice (n = 2) were measured fifteen days after the third

cell injection using a Bio-Plex Pro Mouse Cytokine 8-Plex panel

(Bio-rad, Hercules, CA) in Luminex and analyzed using the Bio-

Plex Manager 6.0 software (Bio-rad).

Intramuscular immunization plus Electroporation in vivo
Using a 1 ml insulin syringe, 50 mg of plasmid DNA in 50 ml of

PBS was delivered into each of the quadriceps muscles of the mice

(25 mg pT2-CAGGS-IDUA plus 25 mg pCMV-SB100 or pCMV-

DDDE per mouse). Immediately after the DNA injection,

electroporation was performed using a needle electrode of

0.5 cm needles of 0.5 mm thickness and with a 5 mm distance

between them. Three electric pulses (field strength = 100 V/cm;

pulse length = 50 ms; ECM 830 field generator, BTX Division,

Genetronix, San Diego, CA, USA) were delivered at 1 s of

intervals [27].

Results

Characterization of MSC and in vitro IDUA gene
expression

MSC were established according to the culture criteria that

were described previously. The MSC-KO were maintained in

culture for up to 40 passages without morphological changes or

differentiation potentials in osteocytes and adipocytes (Figure 1).

To obtain a large amount of IDUA-producing MSC, the MSC-

KO were nucleofected with the following plasmids: pT2-CMVi-

IDUA, pT2-IDUA and pT2-CAGGS-IDUA (Figure 2). For vector

integration, the MSC were nucleofected with pCMV-SB100X,

and pCMV-SBDDDE (Figure 2) was used as a negative control

because this vector did not express the SB transposase. All

transfected cells produced IDUA after three days, ranging from

10 U/mg to 100 U/mg (Figure 3), but MSC transfected with

pCMV-SB100X and pT2-CAGGS-IDUA maintained the initial

level of IDUA throughout the 30-day follow-up (Figure 3). The

control without transposase (pT2-CAGGS-IDUA and pCMV-

DDDE) decreased the expression of IDUA over time because no

gene integration occurred. After 3 days, the activity of transfected

IDUA cells with pT2-CAGGS-IDUA and pCMV-SB100X

quadrupled (105654 U/mg to 429698 U/mg). These IDUA-

producing cells were frozen. The IDUA activity remained above

300 U/mg for 365 days after nucleofection (Figure 3). Based on

these data, MSC modified with the pT2-CAGGS-IDUA and

pCMV-SB100X (MSC-KO-IDUA) plasmids were used for

therapy in KO mice.

MSC biodistribution
To determine the biodistribution of the injected MSC, the MSC

were radiolabeled with Indium-111 that was conjugated to oxine,

injected into the peritoneum of the mice, and the organs were

isolated for radioactivity counting. Two hours after MSC

injection, radioactivity was detected in the spleen, stomach, large

and small intestines, liver and kidney; and 24 hours later, the

profile of radioactivity distribution was quite similar to that of

2 hours after injection (Figure 4). The highest radioactivity was

found in the spleen and was statistically significant.

MSC transplantations and antibody responses
For the first MSC-KO implantation, the cells were nucleofected

with pT2-CAGGS-IDUA and pCMV-SB11, and 46106 of these

cells that were suspended in 4 ml were injected into the

peritoneum of 4-month-old KO mice. These mice produced

28.8658.7 U/mg of IDUA per mouse, and the final volumes and

protein concentrations of the crude extracts were usually 1 ml and

3 mg/ml, respectively; therefore, at the moment of cell injection,

these cells were producing approximately 9.6 U of IDUA. Taking

into account that a mouse weighing 25 g contains approximately

2 ml of blood, the initial IDUA activity of the MSC-transplanted

mouse should be approximately 4.8 U, which corresponds to the

activity of a wild-type mouse [22]. Therefore, if this cell

transplantation worked as expected, the IDUA activity in the

blood would be measurable and the KO mice could be treated.

However, after more than a month of follow-up, IDUA activity

was not observed in any mouse (Figure 5A). During this

Figure 1. Differentiation and characterization of MSC-KO
cultures derived from IDUA-KO mice. MSC-KO cells were
differentiated into osteoblasts (upper panel) and adipocytes (lower
panel) before (A) and after nucleofection (B, C). Deposits of fat and
calcium, which are characteristic of adipocytes and osteoblasts,
respectively, are stained in yellow and red, respectively. The original
magnification is 1006, and the bars correspond to 50 mm.
doi:10.1371/journal.pone.0092420.g001
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experiment, three mice died during the cell transplantation and

blood sampling.

One month after the first cell transplantation, these animals

were treated again with 46106 MSC that were modified with

SB100X, which produced 359.226108.16 U/mg. Based on the

same calculation as before, we conclude that 120 U was injected

into the peritoneum, and this value was 12-fold higher than what

was used in the first transplantation. In this experiment, two new

KO mice were included for comparison with the other ongoing

mice. One day after cell transplantation, more than 1 unit of

IDUA activity was present in the blood of the three mice, which

represented about a half of the activity of heterozygous mice

(Figure 5B). Two more treated mice had slightly elevated IDUA

activities, but these values were not statistically significant.

However, these IDUA activities decayed soon later, and only

two of them had some activity on the 10th day. In the three mice

that had higher IDUA activity, one had received MSC-KO-IDUA

for the first time, and another new mouse had IDUA activity but

its level was low. These results indicated that the transplanted cells

could not adapt in the peritoneum and died soon after injection, or

the IDUA produced by the transplanted cells were quickly

captured by host cells, or the IDUA was neutralized by antibodies.

In addition, the first cell transplantation apparently did not cause

immunization or tolerance. After the second cell transplantation,

two more mice died because of MPSI disease evolution.

When these mice reached approximately 6-months-old, the

third injection of MSC-KO-IDUA was carried out with the

intention of reverting, at least partially, the disease progression. At

this time, we injected the same number of cells, but they produced

more IDUA activity: 530.66659.72 U/mg, which represents an

injection of 179 U. The six-month-old KO mice were used to be

weakened because of disease progression; consequently, any

treatment in this stage was a challenge. After a week of follow-

up, we did not detect any IDUA activity in these mice (Figure 5C).

Figure 2. Schematic vector diagrams. CMV: minimum human
cytomegalovirus promoter; CMVi: complete human cytomegalovirus
promoter; CAGGS: chicken b-actin promoter with CMV enhancer; IDUA:
human IDUA cDNA; pA: polyadenylation signal; IR L: left inverted
repeated sequence; IR D: right inverted repeated sequence; SB100X:
Sleeping Beauty 100X; DDDE: Mutated Sleeping Beauty without
transposase activity.
doi:10.1371/journal.pone.0092420.g002

Figure 3. IDUA production by MSC-KO modified with IDUA-expressing vectors. IDUA activity of all nucleofected cells were monitored for
30 days, except for the pT2-CAGGS-IDUA + pCMV-SB100X nucleofected cells, which were monitored for one year. *p,0.0001 for the pT2-CAGGS-
IDUA+pCMV-SB100X group compared to other groups. A two-way ANOVA with the Bonferroni post hoc test was used. Vector descriptions are in the
Methodology section.
doi:10.1371/journal.pone.0092420.g003
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However, surprisingly, these mice presented a high titer of anti-

IDUA antibody (Figure 5D), which was observed after 15 days of

the third cell transplantation.

To evaluate the antibody response that was generated against

IDUA in the MSC-KO, the same cell transplantation procedure

was performed using a MSC-WT that was modified with the same

vectors to express IDUA. In this step, we used the MSC-WT to

eliminate any interference from the IDUA mutation in the

immunosuppressant property of MSC. The MSC-WT-IDUA

produced 461.55652.05 U/mg, which corresponded to 154 U

before injection into the peritoneum. Therefore, these values were

very similar of those that were used in the previous MSC-KO-

IDUA transplantation. After two weeks of cell transplantation,

anti-IDUA antibody was detected in all mice and was present until

the last assay, which occurred on the 98th day (Figure 6A). The

antibody titer of the mice transplanted with MSC-WT-IDUA

without SB was only half of that from mice transplanted with

MSC-WT-IDUA with SB, which indicated that long-term antigen

expression induced a stronger antibody response. Antibody titer

decays occurred on the 43rd and 52nd days for unknown reasons,

but these levels later returned to normal in both groups. These

results clearly demonstrate that MSC did not suppress the

antibody response against IDUA.

To understand the immunogenicity of IDUA, WT mice were

transfected with the same vectors by electroporation. Electropo-

ration was adopted here because this method brought about better

immunization [27]. The antibody response began about a week

later than that of the MSC-IDUA transplantation (Figure 6B), but

the antibody titer was similar (OD 490 nm<10), and this level was

maintained until the 40th day, which was the day of the last

antibody titration.

As the final experiments, the MSC- KO- IDUA treated mice

were killed and their organs were analyzed by histology. Among

the changes observed, we found inflammatory infiltrate in the

renal glomeruli, thickening of the Bowman’s capsule, reduction of

the lumen of the renal tubules and replacement of normal tissue by

inflammatory infiltrate in the renal medulla (Figure 7A). These

histological alterations are typically observed in kidneys during the

filtration of immune complexes, which are formed by antigens and

antibodies. Therefore, this evidence also supports the previous

results that indicate that antibody responses were increased by

MSC-KO-IDUA or MSC-WT-IDUA transplantations.

The cytokine profiles of MSC-KO-IDUA-treated mice were

then analyzed using blood samples that were collected 15 days

after the last cell transplantation, and the non-treated WT mice

were used as a control. Among the analyzed cytokines, only TNF-

alpha was present in MSC-KO-IDUA-treated mice and was 5-fold

higher than that of the control group (Figure 7B), which indicated

a state of inflammation in these mice.

Discussion

Monogenic diseases are of great interest for gene therapy studies

because these diseases currently have no effective treatment. MPSI

patients must have a constant supply of IDUA to relieve disease

manifestation, and this can be performed by enzyme replacement

therapy. It has been observed that anti-IDUA antibodies can be

generated by ERT [4,5,6,7,28,29], and such an antibody response

is somewhat expected because the IDUA is a new protein in these

patients. However, in animal models, it was shown that ERT or

gene therapy started at birth could overcome partially antibody

response and improve outcome in difficult-to-treat organs

[30,31,32]. Based on the immunosuppressant properties of MSC

[11,12,13,14,17,20,21], we hypothesized that the production of

IDUA by these cells could avoid the antibody response and

become a long-term IDUA producer.

The SB system has been proven to be efficient to gene transfer

and long-term gene expression in many mammalian cells,

including MSC [33]. Here, we showed that this system is also

efficient in modifying MSC-KO by nucleofection (Figure 2)

because IDUA gene expression has remained nearly constant for a

year with the same level as observed initially. The increased IDUA

activity during the first week was likely due to continuing

integration activity by the SB100X transposase, which led to

multiple gene copy integrations per cell [33] and/or by high

SB100X activity during the first week after nucleofection [34]. In

addition, the property of differentiating into osteocytes and

adipocytes (Figure 1) was maintained after transfection, which is

an important characteristic of these cells [9,10,35].

Because MPSI is a monogenic disease that affects all patient

cells, an ideal therapy should be one that could provide IDUA to

all affected cells, but this practice is not feasible at this moment.

The peritoneum is a highly vascularized region that is easy to

Figure 4. Biodistribution of MSC after injection into the
peritoneum. MSC were labeled with 111In before injection, and
radioactivities in the isolated organs were counted 2 (A) and 24 hours
(B) later. Five and three mice were used for 2- and 24-hour experiments,
respectively. * p,0.05 when comparing the spleen to all other tissues. A
one-way ANOVA with the Bonferroni post hoc test was used.
doi:10.1371/journal.pone.0092420.g004
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access; therefore, a large volume of MSC can be injected. These

injected cells can rapidly traffic to affected organs, such as the

liver, spleen and kidneys, because of its proximity to these organs.

In addition, secreted IDUA will circulate easily and provide this

enzyme to the body. The ability for MSC trafficking through the

peritoneum is not clearly known, but because macrophages are

located in this space and they can traffic through other organs

[36,37], it is expected these cells have a similar mobility. To

monitor the mobility of MSC through the peritoneum, radiola-

beled MSC were injected into the peritoneum, and the organs

were removed later to quantify radioactivity. The vessel dilator

isosorbide mononitrate was administered before cell injection to

enhance cell trafficking through the peritoneum. White-blood-cell

labeling with 111In-oxine is a well-known procedure for analyzing

infection and inflammation in animals and humans [38,39].

Because 111In-oxine is a neutral molecule, it can easily penetrate

the cell membrane, thus allowing 111In to attach to an intracellular

component such as lactoferrin [40] and causing 8-hydroxyquino-

line to be released by the cell. The exchange of 8-hydroxyquino-

line by an intracellular component only occurs if the intracellular

component can form a more stable complex; therefore, it is

expected that the labeled MSCs can hold 111In until their death.

Because our biodistribution experiments lasted only 24 hours, we

expected that only a minimum number of MSC would die. In

addition, because the half-life of this radioactivity is 2.8 days,

counting the radioactivity 24 hours after injection will provide

reliable radioactivity counting because the remaining activity at

this time would be approximately 80% of the initial value. Under

these experimental conditions, we observed that the spleen was the

main organ that received the injected MSC. However, the

stomach, kidneys and intestine, which are adjacent to the

peritoneum, also had high radioactivity (Figures 4A and 4B). In

addition, the basal radioactivity found from the peritoneum and

Figure 5. IDUA and anti-IDUA antibody production after MSC-KO-IDUA transplantation. For the first transplantation (A), four million MSC-
KO cells were nucleofected with pCMV-SB11 and pT2-CAGGS-IDUA and transplanted into the peritoneum. Three mice died during this experiment:
88.1.2, 88.1.5 and 89.1.3. Approximately, 40 days after the first cell transplantation, the second transplantation was performed using MSC-KO that
were nucleofected with pCMV-SB100X and pT2-CAGGS-IDUA (B). Here, two new IDUA-KO mice were included (#). A month after the second
transplantation, a third transplantation was performed using the same procedure as the second (C). Fifteen days after the last cell transplantation,
blood samples were collected to quantify the anti-IDUA antibody (D). *p,0.05 when comparing the IDUA-KO group to other groups. A two-way
ANOVA with the Bonferroni post hoc test was used. HT: heterozygous mouse. KO: IDUA-KO mouse.
doi:10.1371/journal.pone.0092420.g005

Stem Cells Do Not Prevent Antibody Response
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the intraperitoneum fluid 2 hours after injection indicates high

mobility of MSC from the peritoneum to circulation.

These data indicate that the distribution of the MSC-KO-

IDUA through the body by intraperitoneal injection was an easy

and productive procedure.

To test the hypothesis that MSC modified with IDUA could

become a good, long-term source of IDUA in vivo because of the

immunosuppressant properties of MSC, four million MSC-KO-

IDUA were injected into the peritoneum three times over one-

month intervals. In an attempt to minimize the immune response,

MSC were modified with SB11 to produce a low level of IDUA

and were used in the first injection, and for the second and third

injections, they were modified with SB100X to produce high levels

of IDUA. Considering that the total blood volume of a mouse

weighing 25 g is approximately 2 ml, the expected IDUA activities

in the blood after injections are 4.8, 60 and 90 U/ml for the first,

second and third injections, respectively. Therefore, the units

produced by the first injection are similar to that produced by a

wild-type mouse (462.5 U/ml) [24,31,41], and the units produced

by the other injections are well above this level and are

comparable to human patient submitted to ERT [6,28]. However,

no enzyme activity was detected after the first injection and only a

small peak of IDUA production (less than 2 U/ml) was observed

one day after the second injection, but this level was not sustained

days later (Figures 5A and 5B). To verify the low production of

IDUA after MSC-KO-IDUA administration, a third injection was

carried out using MSC-KO-IDUA, which produced high IDUA

activity; however, no enzymatic activity was detected in any of the

mice (Figure 5C). Unlike IDUA activity, these MSC-KO-IDUA-

treated mice presented high titers of anti-IDUA antibody

(Figure 4D), high concentration of TNF-alfa (Figure 7B) and

damaged cortical and medullar kidney tissue (Figure 7A). These

results led us to doubt that the immunosuppressant property of

MSC from KO mice could be lost or reduced due to IDUA gene

mutation or GAG accumulation in MSC. To better investigate

this question, MSC-WT was transfected with IDUA and injected

in WT mice following the same protocol that was used in the KO

mice. In this experiment, no IDUA was detected, but the human

anti-IDUA antibody was detected on the 13th day after MSC

injection and reached its highest titer on the 21st day (Figure 6A).

This antibody response was faster than the classic DNA

immunization by electroporation [27] that was at the 21st day

and reached its highest point on the 34th day after immunization

with a similar optical density (Figure 5B). Taking into consider-

Figure 6. Anti-IDUA antibody production after MSC-IDUA transplantation or electroporation with plasmid vectors. MSC from wild-
type mice (C57/Bl6) were nucleofected with pCMV-SB100X and pT2-CAGGS-IDUA and transplanted into the peritoneum of wild-type mice (n = 6 per
group) following the same procedure that was used for the KO mice (A). In the negative control group, pT2-CAGGS-IDUA and pCMV-DDDE were
used. For DNA immunization, pT2-CAGGS-IDUA with pCMV-SB100X or with pCMV-DDDE vectors were injected into the thighs of the mice and
underwent electroporation (n = 5 per group). A two-way ANOVA with Bonferroni post hoc test was used.
doi:10.1371/journal.pone.0092420.g006
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ation that the human and murine IDUA have approximately 80%

protein homology, it was surprising to have an antibody response

within two weeks that lasted more than 100 days in some animals

after only a single injection (Figure 6A). This experiment does not

provide information about the preservation of the immunosup-

pressant property of MSC-KO; however, it clearly shows that

these MSC do not suppress human anti-IDUA antibody

generation, as was expected. In addition, the antibody responses

that were generated after in vivo transfection of WT mice with

IDUA vectors by electroporation, which produced a similar level

of mice that were transplanted with MSC-WT-IDUA or MSC-

KO-IDUA, indicated that the participation of MSC in immuno-

suppression should be minimum.

The immunosuppressant activity of MSC in vivo seems to be

controversial. For example, the treatment of the autoimmune

disease Systemic Lupus Erythematosus (SLE) with bone marrow

MSC increased the survival and decreased the level of circulating

anti-dsDNA [42]. A similar result was observed in a NZBxNZW

F1 mouse model that was treated with MSC from adipose tissue

for disease prevention. However, the therapeutic effect was lost

when the treatment began after disease onset [43], the survival

time did not increase, and the formation of the anti-dsDNA

antibody could not be avoided [44]. Therefore, more in vivo

experiments will be necessary to better define the immunosup-

pressant or proinflammatory role of MSC.

In conclusion, our in vivo study with MSC modified to

constitutively produce IDUA showed an unexpected adjuvant

effect of MSC for immunization, which raised high titers of an

anti-IDUA antibody. This antibody response was as strong as

DNA immunization by electroporation and lasted longer. There-

fore, the use of genetically modified MSC for the long-term

production of IDUA in KO mice to treat MPSI still faces

unavoidable antibody responses. Our studies have been carried

out in a murine model using the human IDUA gene, but the use of

human MSC as a source for production of exogenous proteins to

treat monogenic diseases must be well validated before it is

clinically applied.
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Figure 7. Postmortem analyses of IDUA-KO mice treated with MSC-KO-IDUA by histology and cytokine production. Kidneys from
three treated mice were stained with Hematoxylin-Eosin (A). Inflammatory infiltrate in the cortex (*), replacement of normal tissue by inflammatory
infiltrate in the renal medulla (R), thickening of the Bowman’s capsule (???) and reduction of the lumen of the renal tubules (x) were marked in the
figure. Cytokine production was then evaluated using blood samples from the three treated and two non-treated mice 15 days after the last cell
transplantation (B). Only TNF-alpha was detected in the treated mice. *p,0.0001 by the paired student t-test.
doi:10.1371/journal.pone.0092420.g007
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