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Abstract
The reduced efficiency of the cluster randomized trial design may be compensated by implementing a multi-period design. The
trial then becomes longitudinal, with a risk of intermittently missing observations and dropout. This paper studies the effect of
missing data on design efficiency in trials where the periods are the days of the week and clusters are followed for at least one
week. The multilevel model with a decaying correlation structure is used to relate outcome to period and treatment condition. The
variance of the treatment effect estimator is used to measure efficiency. When there is no data loss, efficiency increases with
increasing number of subjects per day and number of weeks. Different weekly measurement schemes are used to evaluate the
impact of planned missing data designs: the loss of efficiency due to measuring on fewer days is largest for few subjects per day
and few weeks. Dropout is modeled by the Weibull survival function. The loss of efficiency due to dropout increases when more
clusters drop out during the course of the trial, especially if the risk of dropout is largest at the beginning of the trial. The largest
loss is observed for few subjects per day and a large number of weeks. An example of the effect of waiting room environments in
reducing stress in dental care shows how different design options can be compared. An R Shiny app allows researchers to
interactively explore various design options and to choose the best design for their trial.
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Introduction

Over the past two decades, the cluster randomized trial
(Campbell & Walters, 2014; Donner & Klar, 2000; Eldridge
& Kerry, 2012; Hayes & Moulton, 2009; Murray, 1998) has
become a standard design in the biomedical, health and be-
havioral sciences. As outcomes of subjects within the same
cluster are correlated, cluster randomization has lower effi-
ciency than individual randomization. Efficiency may be im-
proved by increasing the sample size, but this is not always
possible in practice, as the number of clusters and cluster size
are often limited. Various alternative strategies have been pro-
posed to increase efficiency, such as including covariates
(Bloom, 2005; Bloom, Richburg-Hayes, & Black, 2007; De
Hoop, Teerenstra, Van Gaal, Moerbeek, & Borm, 2012;
Konstantopoulos, 2012; Moerbeek, 2006; Murray &

Blitstein, 2003; Raudenbush, 1997; Raudenbush, Martinez,
& Spybrook, 2007), taking a pretest measurement on the re-
sponse variable (Murray, 2001; Murray & Blitstein, 2003;
Murray, Hannan, Wolfinger, Baker, & Dwyer, 1998;
Murray, Van Horn, Hawkins, & Arthur, 2006) and taking
multiple measurements at baseline and endline (Copas &
Hooper, 2020).

Another strategy involves implementing a multi-period de-
sign within a cluster randomized trial such that the study be-
comes longitudinal. The duration of the trial is split into pe-
riods, such as days, weeks or months. Within each period a
treatment is implemented within each cluster, and subjects are
measured on their outcome variables. Introducing multiple
periods raises questions with respect to the design and analysis
of cluster randomized trials. What is the optimal trade-off
between study duration, the number of periods, the number
of clusters and the number of subjects per cluster per period?
What is the increased efficiency of a cohort versus a repeated
cross-sectional design? What is the increased efficiency of a
crossover or stepped-wedge design versus a parallel-group
design? What is the appropriate model for data obtained from
multi-period trials, and which is the best estimation method?
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How do we model the correlation between outcomes of sub-
jects within the same or different period? How does the cor-
relation structure influence efficiency? Over the past two de-
cades, dozens of papers on the design and analysis of multi-
period cluster randomized trials have appeared, especially in
the biostatistical literature (Giraudeau, Ravaud, & Donner,
2008; Grantham, Kasza, Heritier, Hemming, & Forbes,
2019; Hooper & Bourke, 2015; Rietbergen & Moerbeek,
2011).

A question that has received too little attention thus far is:
what are the effects of missing data on design efficiency in
multi-period cluster randomized trials? Two types of missing
data can be distinguished: those that are planned by the re-
searcher and those that are not. The former are referred to as
planned missing data designs (Rhemtulla, Jia, & Little, 2014;
Wu, Jia, Rhemtulla, & Little, 2016). Such designs occur
when, for generally practical reasons, the researcher plans
not to record all the measures that would be desirable, but only
some, for instance to lower the burden on the clusters. In this
case the registration is necessarily carried out intermittently.
For instance, a researcher can plan a trial with a duration of a
certain number of weeks where measurements are only taken
on the five workdays of each week. In such a trial design,
intermittently missing data occur at the two weekend days of
each week. It would then be of interest to compare such a
design with one in which measurements are taken on all seven
days each week.

The other type of missing data occurs unintentionally when
a researcher plans to measure on certain days, but for reasons
beyond his or her control, measurements cannot be taken on
some of these days. Such unplanned missing data can describe
an intermittent or monotone pattern (or a combination of the
two), depending on the position of the missing values within
the longitudinal study design. Intermittently missing data, also
known as non-monotone or general missing data, are missing
within a trajectory: there are missing observations between the
observed. Monotone missing data are missing either at the
beginning or at the end of a trajectory. The monotone missing
data include the case of left- or right-censored follow-ups. If
measurements cannot be taken on a certain day, then all the
following (respectively, preceding) days are also missing
(Genolini, Écochard, & Jacqmin-Gadda, 2013). Right-
censored follow-ups occur when there is dropout. Dropout is
the rule rather than the exception in longitudinal research.
During the course of the trial, clusters may drop out for vari-
ous reasons, for instance because they were randomized to the
least interesting treatment condition, because they lost interest
in the trial or because they are no longer willing to put effort in
recruiting, treating and measuring subjects. The effect of drop-
out in longitudinal trials has been studied for trials in which
there is no clustering (Galbraith &Marschner, 2002; Hedeker,
Gibbons, &Waternaux, 1999; Moerbeek, 2008; Molenberghs
& Verbeke, 2001; Vallejo, Ato, Fernández, & Livacic-Rojas,

2019) and for cluster randomized trials (Heo, 2014; Roy,
Bhaumik, Aryal, & Gibbons, 2007).

This paper extends previous research on the effect of drop-
out on planned missing data design efficiency of repeated
cross-sectional multi-period two-arm parallel cluster random-
ized trials. The design is repeated in cross-sectional fashion,
meaning that different sets of subjects are measured during
each period and hence each subject is measured only once.
The design is parallel, meaning that each cluster receives one
treatment condition, and does not change treatment during the
course of the trial. All calculations can be done using a Shiny
app that is available on the internet. This Shiny app will be
explained in further detail later in this contribution. The focus
is on trials where each period is one day of the week, and
where clusters are followed for either one or multiple weeks.
In such trials the implementation of treatment can be done
during a single day, and outcomes are measured the same
day. Examples are trials that evaluate methods to reduce anx-
iety in the waiting room of medical care practices, trials that
evaluate nutrition and hydration on the day of exams, those
that evaluate a new type of equipment or procedure during
surgery, and trials that evaluate distraction methods during
child vaccination. There exist trials in which the period is
shorter (i.e. a fraction of the day) or longer (e.g. a week or a
month). The Shiny app cannot be used for such trials.

The effect of dropout is studied using the Weibull survival
function to model the probability of clusters dropping out
during the course of planned missing data designs, by com-
paring various weekly measurement schemes. This function
allows for various rates of dropout and also for constant, in-
creasing or decreasing dropout probabilities over time, the
same in both groups (experimental group and control group)
or different. The dropout occurs at the level of the cluster,
meaning that once a cluster drops out, no further data are
recorded on any subjects within that cluster. The Shiny app
does not allow for dropout at the individual level.

The multilevel model is used to relate a subject’s outcome
to study period and treatment condition. This model explicitly
takes into account the nesting of subjects within clusters, and
hence the correlation of outcomes of subjects within the same
cluster. Furthermore, the correlation between outcomes of
subjects within different time periods is modeled to decrease
with increasing lag between these time periods. Design effi-
ciency is measured by the variance of the treatment effect
estimator. A high variance implies the design is inefficient,
meaning that it has low statistical power for the test on treat-
ment effect, whereas a low variance implies an efficient design
with high statistical power. An example of a trial evaluating a
method to reduce anxiety in the waiting room of dental prac-
tices is used to illustrate the findings in this paper. Throughout
the paper it is assumed that the missing data mechanism is
either missing completely at random (MCAR) or missing at
random (MAR). In both cases the missingness is unrelated to
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the outcome variable. For MCAR, the missingness does not
depend on other variables either, while for MAR it does de-
pend on other variables, such as treatment condition. It is
much more difficult to model informative missingness (miss-
ing not at random, MNAR), which is therefore outside the
scope of this paper and not included in the Shiny app.
Furthermore, the app is restricted to linear models for quanti-
tative outcomes.

Statistical model

This section describes the statistical model for the repeated
cross-sectional multi-period two-arm parallel cluster random-
ized trial. A graphical presentation of this trial is given in Fig.
1. The multilevel model, also known as the mixed or hierar-
chical model, is used to describe the relation between treat-
ment condition and outcome (Goldstein, 2011; Hox,
Moerbeek, & Van de Schoot, 2018; Raudenbush & Bryk,
2002; Snijders & Bosker, 2012). The outcome yhij of subject
i = 1, …, m in period h = 1, …, T in cluster j = 1, …, 2k is
given by

yhij ¼ βh þ x jθþ uhj þ ehij: ð1Þ

βh is the period effect for period h, xj denotes treatment
condition (0 = control, 1 = intervention), and θ is the effect
of treatment. Note that because all period effects are included
in the model, a common intercept is not required.

The model explicitly takes the hierarchical data structure
into account by including a random term at the subject level,

ehij∼N 0;σ2
e

� �
; and another one at the level of the cluster-

period, uhj∼N 0;σ2
u

� �
. The first implies that the outcomes of

subjects within a cluster-period vary across the mean score
within that cluster-period. The second implies that the mean
score of a cluster in a certain period varies across the mean
within that period across all clusters in the same treatment
condition. These two random terms are assumed to be inde-
pendent from each other; hence the variance of an outcome
is simply the sum of the two variance components:

var yhij
� �

¼ σ2
e þ σ2

u. The intraclass correlation coefficient

is the proportion variance at the cluster level:
ρ ¼ σ2

u= σ2
e þ σ2

u

� �
. It is the expected correlation between

the outcomes of two randomly drawn subjects within the
same cluster-period. The covariance between two outcomes
from different clusters is always equal to zero, as outcomes
of subjects from different clusters are assumed independent.
The covariance between two outcomes within the same

cluster-period is cov yhij
�

; yhi0 jÞ ¼ σ2
u. The covariance be-

tween two outcomes within different cluster-periods h and

h′ is smaller and is defined as cov yhij
�

; yh0 i0 jÞ ¼ σ2
ur

jh0−hj.

Here we account for a non-uniform exponential decay struc-
ture: the covariance becomes smaller if the lag between the
two cluster-periods increases (Grantham et al., 2019; Kasza,
Hemming, Hooper, Matthews, & Forbes, 2019). This struc-
ture is also known as the first-order autoregressive structure.
It should be noted that many other covariance structures are
possible, such as Toeplitz, and the heterogeneous first-order
autoregressive and Toeplitz structures. See for instance
section 5.1 of Liu (2016) for an extensive description of
such structures. Although these structures are also very

Fig. 1 Schematic representation of the repeated cross-sectional multi-period two-arm parallel cluster randomized trial. Each box represents a cluster-
period. As the design is repeated cross-sectional, different sets of subjects are included in each of the cluster-periods
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common in longitudinal data research, the first-order
autoregressive structure is the only structure that is applied
in this contribution and its Shiny app.

The first-order autoregressive structure is the most parsi-
monious of these structures, as it specifies only two covari-
ance parameters to describe all variances and covariances
within a cluster across all time periods: ρ ∈ [0, 1] and r ∈ [0,
1]. As was explained above, the first is a correlation that only
applies if the two subjects are within the same cluster-period.
The second quantifies how much this correlation decreases if
the two subjects are still in the same cluster but one period
apart: (1 − r) × 100% is the percentage reduction in correla-
tion. For instance, if r = 0.9, then the covariance decreases
by (1 − r) × 100% = 10% per period. Say the correlation is ρ
= 0.05. Then the correlation between two subjects one period
apart is 90% of 0.05, or 0.045; the correlation between two
subjects two periods apart is 90% of 0.045, or 0.0405, and so
forth. If r = 1, then the covariance structure is uniform, which
implies all covariances are equal, irrespective of the lag be-
tween any two cluster-periods. This structure is also known as
compound symmetry. It results in higher correlations between
cluster-periods than the first-order autoregressive structure,
and as a result, the variance of the treatment effect estimator
is higher, especially when (1 − r) is large (Grantham et al.,
2019; Kasza et al., 2019). Therefore, the compound symmetry
correlation structure results in lower power.

The model for cluster j in matrix notation is

y j ¼ X jγ þ Z ju jþeij: ð2Þ

yj is a vector of lengthm × T of responses in cluster j, andXj

is the m × T by T + 1 design matrix for the fixed parameters in
cluster j. γ = (β1, β2,…, βT, θ)′ is the vector of length T + 1
with the effects of period and treatment. Zj is the m × T by T
design matrix for the random cluster-level effects in cluster j.
eij is the vector of length m × T with random subject-level
effects. eij∼Nm�T 0;σ2

eI j
� �

with Ij the m × T by m × T identity
matrix in cluster j. uj = (uj1, uj2,…, ujT)′ is the vector of length

T with random cluster-level effects. u j∼NT 0;σ2
uR j;hh

0
� �

with

R j;hh0¼cov yhij
�

; yh0 i0 jÞ ¼ σ2
ur

jh0−hj.

The covariance matrix of the outcomes in cluster j is cal-
culated as

cov y j
� �

¼ V j ¼ σ2
uZ jR jZ

0
jþσ2

eI j: ð3Þ

The regression coefficients are estimated as

bγ ¼ ∑2k
j¼1X

0
j
bV−1

j X j

� �−1

∑2k
j¼1X

0
j
bV−1

j y j ð4Þ

with associated covariance matrix

cbov bγ� �
¼ ∑2k

j¼1X
0
j
bV−1

j X j

� �−1

: ð5Þ

The element in row T + 1 and column T + 1 is the variance

of the treatment effect estimator, var bθ� �
, which has our pri-

mary attention in the remainder of this paper. This variance
indicates how efficiently the treatment effect is estimated. A
low variance is preferred, as it implies an efficient estimate
and hence a high power for the test on treatment effect. High
variance, on the other hand, implies an inefficient estimate and

hence low power. A simple analytical expression for var bθ� �
is difficult to obtain, especially when the trial includes many
cluster-periods or in the case of missing data. For that reason,

var bθ� �
is calculated numerically in the software R (R Core

Team, 2020), using the functionsolve to invert matrices. An
R shiny app (Chang, Cheng, Allaire, Xie, & McPherson,

2016) is made available to calculate var bθ� �
of various de-

signs and to compare these designs with each other. Shiny is
a working environment for the development of web applica-
tions in the R language. The application is an interactive app
for applied researchers and methodologists that allows easy
access to a series of tools for evaluating the effect of planned
missing data and dropout on design efficiency and statistical
power in repeated cross-sectional multi-period two-arm paral-
lel cluster randomized trials. The Shiny app will be described
in further detail in Section 4.

An example

Anxiety in patient-centered care is linked to negative health
outcomes, such as longer recovery periods, lower pain thresh-
olds and resistance to treatment. Various methods aimed at
reducing pre-procedure waiting anxiety have been proposed:
music, aromatherapy, interior design features, play opportuni-
ties and media distractions (Biddiss, Knibbe, & McPherson,
2014).

Leather, Beale, Santos, Watts, and Lee (2003) compared
two different types of waiting room environments in a United
Kingdom neurology outpatient waiting area, a so-called nou-
veau environment and a traditional environment. These envi-
ronments differed with respect to various features including
general layout, color scheme, floor covering and lighting. The
two types of environments were compared on outcome mea-
sures such as self-reported stress and anxiety, satisfaction rat-
ings and pulse readings. The authors concluded that the phys-
ical design of the hospital environment is an important and
integral part of the therapeutic milieu.
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Suppose this trial is to be replicated in another setting in
another country, say in dentistry care in the Netherlands. It is
obvious that multiple dental practices are to be recruited so
that a sufficient number of patients can be enrolled in a limited
amount of time, and so that the results will be generalizable to
all dental practices in the country. The redesign of the waiting
areas may be expensive, so a trial like this will obviously run
for multiple weeks to justify these trial costs. In theory, a
crossover or stepped-wedge trial design would be possible.
The advantage of clusters changing their treatment during
the course of a trial is increased efficiency. However, in this
specific trial this advantage may be outweighed by increased
costs due to the redesign of the waiting areas during each
crossover. Also, redesigning multiple waiting areas during
the course of a weekend may be difficult to achieve, and it
may also result in increased dropout rates. The parallel-group
design is therefore the most obvious choice.

Shiny app

The Shiny app is available online at https://utrecht-university.
shinyapps.io/missing_data_CRT/. It can be used to plan a
repeated cross-sectional multi-period two-arm parallel cluster
randomized trial and in four different situations:

1. When there is no data loss. In this case, data are recorded
for seven days a week for at least one week, and dropout is
absent. Section 5 shows how design efficiency is influ-
enced by the number of weeks and number of subjects per
cluster-period, for various values of ρ and r.

2. Trials where the registration is carried out during a certain
number of days of the week. In other words, the trial is
planned under the planned missing data design umbrella,
and there is no data loss due to dropout. Section 6 con-
siders four conditions of a planned missing data design
withmeasurements on five or fewer days of the five work-
days (Monday through Friday) and compares these to the
complete data design (i.e. the design from situation 1).

3. Trials for which measurements are taken seven days of the
week and where dropout occurs. In Section 7, theWeibull
survival function is used to describe the amount of drop-
out and whether the risk of dropout increases, decreases or
remains constant during the course of the trial. Designs
with various dropout patterns will be compared with the
complete data design.

4. Trials with intermittently planned missing observations
with dropout. In Section 8 the example from the previous
section is revisited. Measurements are taken Mondays
through Fridays, and designs with either 4 or 8 weeks
and with either 10 or 15 clusters per condition are com-
pared in a situation where dropout occurs.

The Shiny app allows for the specification of five designs.
Whenever acceptable values have been entered, it returns the
results for those five designs. The user has to pay attention to
the designs that are most convenient in his/her trial by chang-
ing the default input. The top part of the Shiny app allows the
user to specify the designs, the correlation parameters, details
about the statistical test on treatment effect, and the dropout
pattern in both experimental conditions. The right part of the
bottom shows the variance of the treatment effect estimator,
power and design efficiency in graphical and table format.

The left part at the top allows the user to specify the design
parameters. The range of the number of subjects per day is
specified at the top. Below that, five different designs can be
specified by selecting the days of the week in which measure-
ments are taken, along with the number of weeks (R ≥ 1) and
number of clusters per condition (k ≥ 1). It should be noted that
designs should be specified such that measurements are taken
on at least two days. So a design with one week and one day
will generate a warning. Note that the five default sets of days of
the week are those that are used in Section 6. However, the user
can select any number and combination of days of the week. In
the middle part at the top, the correlation parameters ρ ∈ [0, 1]
and r ∈ [0, 1] should be specified, along with the details for the
test on treatment effect (effect size Cohen’s d ≠ 0, type I error
rate α ∈ [0, 1] and whether the test is one- or two-sided). In the
right part at the top, the parameters of the Weibull survival
function should be specified (ω ∈ [0, 1] and γ > 0), along with
the maximum duration of the trial (tmax ≥ 1). These parameters
will be explained in further detail in Section 7; for now it is
important to understand that the parameter ω should be equal to
zero in the case where there is no dropout (situations 1 and 2)
and between 0 and 1 if there is dropout (situations 3 and 4). The
app allows different dropout patterns for the two experimental
conditions. The hazard and survival probability functions are
displayed in the second and third tabs. The user may consult
Table 11.1 in Moerbeek and Teerenstra (2016) for a priori
estimates of ρ. Unfortunately, such an extensive overview of
estimates does not exist for r, ω or γ, and the user is encouraged
to search the literature for similar studies, or use experts’ opin-
ions or expectations.

Once all input has been specified, the submit button at the
bottom left should be pressed. Calculating the output may take
a while, especially when the number of subjects per cluster-
period is large; the progress is shown at the bottom right. The
output is given in three graphs (variance of the treatment effect
estimator, power for the test on treatment effect, and efficiency
of designs 2-–5 as compared to design 1). The same output is
given in table format; the number of subjects per cluster-
period is shown in the first column, the variance of the treat-
ment effect estimator of designs 1-–5 shown in the next five
columns, the power of these designs in the next five columns,
and their efficiencies as compared to design 1 in the last five
columns.
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Trials without missing data

This section summarizes how the variance of the treatment
effect estimator behaves in trials without missing data. For
more extensive results the reader is referred to related papers
in the medical statistical literature (Grantham et al., 2019;
Kasza et al., 2019). The variance depends on the intraclass
coefficient ρ and decay parameter 1 − r and on the design
ξ = (k, m, T), where k is the number of clusters per condition,
m is the number of subjects per cluster-period and T is the
number of periods. The design can also be written as ξ = (k,
m, R), where R is the number of consecutive weeks over which
measurements are taken. In the case where measurements are
taken on each of the seven days of the week, the number of
periods is T = 7 × R.

Figure 2 shows the variance of the treatment effect estima-
tor as a function of the number of subjects per cluster-period
m, number of weeks R, the intraclass correlation coefficient ρ
and decay parameter 1 − r. The variances are calculated for
trials with k = 5 clusters per treatment condition. As explained
previously, the variance is a measure of efficiency: the higher
the variance, the less efficient the design.

Figure 2 shows that the variance increases with in-
creasing intraclass correlation ρ. This is not surprising,
as the same relation holds for cluster randomized trials
with just one period: the higher the intraclass correlation,
the higher the correlations between the outcomes of sub-
jects in the same cluster, the less information there is in
the data, and hence the higher the variance of the treat-
ment effect estimator. Figure 2 also shows that the vari-
ance decreases with increasing decay 1 − r. A higher de-
cay implies a lower correlation between outcomes in the
same cluster, and hence a lower variance, but this param-
eter is most often not under the control of the researcher.
By using the Shiny app, the reader can easily verify that
highest variance is obtained with the compound symmetry
correlation structure, for which 1 − r = 0.

Figure 2 also shows that the variance decreases with in-
creasing number of subjects per cluster-period m, especially
when the number of weeks R is low. However, this effect
becomes negligible when the number of subjects per cluster-
period becomes larger than 5, and the variance approaches a
limit when the number of subjects per cluster-period further
increases. A similar relation holds for cluster randomized trials
with just one period: increasing the cluster size has some effect
when cluster size is small, but the effect becomes minimal at
larger cluster sizes (Hemming, Girling, Sitch, Marsh, &
Lilford, 2011; Moerbeek & Teerenstra, 2016; Raudenbush,
1997). Furthermore, Fig. 2 shows that the variance decreases
with increasing number of weeks, especially when the number
of weeks is small. This is also obvious, since a larger study
duration implies that more measurements are taken and hence
a lower variance is achieved.

As follows from Eq. (5), the variance is inversely related to
the number of clusters, a relation that also holds for cluster
randomized trials with one period (Moerbeek & Teerenstra,
2016; Raudenbush, 1997). For instance, doubling the number
of clusters results in a variance that is half as large. Changing
the number of clusters implies rescaling the vertical axis in
Fig. 2, while the effects of the other two design factors (m and
R) remain unchanged for any given ρ and 1 − r. For that rea-
son, other values of the number of clusters are not considered
in this figure or the figures in the next two sections.

Trials with intermittently planned missing
observations without dropout

The results in the previous session are based on trials in which
measurements can be taken on all seven days of the week.
This may indeed be the case in, for example, a trial with
patients nested within hospitals where two different methods
to relieve stress and anxiety in the emergency room are com-
pared. In other trials, however, the clusters may be health
professionals such as psychotherapists or dentists, who most
often do not work seven days a week. The aim of this section
is to compare planned missing data designs with fewer than
seven days of the week to the design with seven days of the
week. As we do not consider dropout, the parameter ω should
be fixed to zero in the Shiny app for both conditions.

The following five measurement schemes are taken into
account:

S1 ¼ Mo; Tu;We; Th;Fr; Sa; Suf Þ

S2 ¼ Mo; Tu;We; Th;Frf Þ

S3 ¼ Mo; Tu; Th;Frf Þ

S4 ¼ Mo; Tu;We; Thf Þ

S5 ¼ Mo; Tu; Thf Þ

With scheme S1, measurements are taken on all seven days,
and with scheme S2, measurements are taken on the five work-
days only. With the other three schemes, measurements are
taken on either three or four days of the workweek. These
schemes are rather typical in the Netherlands, where many
elementary schools are closed on Wednesday and/or Friday
afternoons and during the two days of the weekend. Parents
who have elementary school children and do not work full-
time most often have a day off each Wednesday or Friday or
even both.
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The efficiency of measurement scheme Ss relative to
scheme St is calculated as

RE ¼
var bθ� �

St

var bθ� �
Ss

; ð6Þ

where the numerator and denominator are the variance of the
treatment effect estimator obtained with schemes St and Ss,
and s, t = 1, 2, 3, 4, 5, respectively. The inverse of the relative
efficiency indicates how often measurement scheme Ss should
be replicated to do as well as St. In most practical situations,
relative efficiencies above 0.8 or 0.9 are favored. RE = 0.9
implies that a trial with scheme Ss should include 1

0:9 −1
� � �

100% ¼ 11% extra clusters to do as well as a trial with
scheme St; for RE = 0.8 an increase of 25% is needed.

The two top panels of Fig. 3 show the efficiency of mea-
surements schemes S2–S5 relative to measurement scheme S1
as a function of the number of subjects per cluster-period m
and for two different values of the number of weeks R. This
figure holds for (ρ, 1 − r) = (0.025,0.05). As is obvious, lower
efficiency is achieved when measurements are taken on fewer
days. The relative efficiencies of measurement schemes S3 and

S4 are almost the same, since both include four days. The lag
between the first and the last day is larger for scheme S3 than
for S4, and hence it has a slightly larger relative efficiency. A
similar finding holds for longitudinal intervention studies with
repeated measurements within subjects (Moerbeek, 2008):
higher efficiency is achieved when study duration increases
(while keeping the number of days constant). The loss in ef-
ficiency may be considerable: in most scenarios considered in
Fig. 3 it is below 0.9, and in extreme cases it may be as low as
0.47.

For any measurement scheme S2 through S5, the loss of
efficiency is larger for small numbers of subjects per cluster-
period m and for small numbers of weeks R. This is unfortu-
nate since, as was shown in Fig. 2, the highest variance is
achieved with the lowest number of subjects per cluster-
period and lowest number of weeks. In other words, the com-
bination (m, R) with highest variance suffers the most from not
measuring on all seven days of the week.

In the two top panels of Fig. 3, the scheme with measure-
ments on all seven days is used as reference for calculating the
relative efficiency. It is of course possible to use any other
measurement scheme as reference, for instance the scheme
with measurements on the five workdays (scheme S2). The

Fig. 2 Variance of the treatment effect estimator as a function of the
number of measurements per cluster-period (m, horizontal axis within
each graph), number of weeks (R, lines within each graph) and for four

combinations of the intraclass correlation coefficient ρ and decay param-
eter 1 − r (separate graphs). The number of clusters per condition is k = 5
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results of this comparison are presented in the two bottom
panels of Fig. 3. The schemes with four days (S3 and S4) have
relative efficiencies above 0.8, so taking measurements on
four rather than five workdays of the week requires a slight
increase in the number of clusters. As is obvious, the measure-
ment scheme with just three days performs worst; the relative
efficiency can be as low as 0.65.

Figures S3a–S3d in the online supplement present re-
sults for four different combinations (ρ, 1 − r). For a given
decay, the loss in efficiency is slightly higher if the
intraclass correlation is lower. Furthermore, for a given
intraclass correlation, the loss in efficiency is slightly
higher if the decay is higher. As we saw in the previous
section (Fig. 2), the largest variance of the treatment effect

estimator was observed for high intraclass correlation and
low decay. Thus the combination (ρ, 1 − r) with the highest
variance suffers the least from measuring on fewer days of
the week. The figures in the supplement also show that for
the other combinations (ρ, 1 − r), the relative efficiencies of
schemes S3 and S4 differ somewhat more than for (ρ, 1 −
r) = (0.025,0.05).

In many cases the health professionals that are included
will not work on exactly the same days, meaning that a trial
uses a mixture of various measurement schemes: Ss =∑lwlSl,
with wl the weight for scheme Sl such that 0 < wl < 1 and
∑lwl = 1. The variance of the treatment effect estimator is cal-
culated as explained in section 2, and plugged into Eq. (6) to
calculate the relative efficiency.

Fig. 3 Efficiency of the treatment effect estimator for various
measurement schemes (separate lines) as compared to scheme 1 (top
panels) and scheme 2 (bottom panels), as a function of the number of

measurements per cluster-period m (horizontal axis) and the number of
weeks R (separate panels). Intraclass correlation coefficient ρ = 0.025 and
decay parameter 1 − r = 0.05
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Trials with dropout

Dropout occurs when clusters drop out of the study and do not
return in later periods. Dropout may vary across the two ex-
perimental conditions. It may be higher in the control condi-
tion in the case where clusters in this condition are less moti-
vated because they were not randomized to a new and prom-
ising intervention and are therefore less willing to recruit pa-
tients for a long amount of time. On the other hand, dropout
may be higher in the intervention condition if the intervention
puts a large burden on the clusters and subjects or when it has
harmful side effects.

It is assumed that dropout can occur on any day, not nec-
essarily at the end of a week. For the sake of simplicity, we
assume dropout only occurs at the end of a day, not during a
day. This implies that dropout is discrete rather than continu-
ous. The effect of dropout depends on howmany clusters drop
out and when they do so. We use basic concepts of discrete-
time survival analysis to model dropout patterns (Singer &
Willett, 1993, 2003). The survival probability function gives
a cluster j’s probability of staying in the trial up to at least day
t:

S tjt
� � ¼ P T j≥ t

� �
: ð7Þ

The discrete random variable Tjmeasures the elapsed study
time (i.e. number of days). The associated hazard probability
function gives the probability of cluster j experiencing the
event on day t, conditional on not having experienced the
event up till then

h tjt
� � ¼ P T j ¼ t

� ��T j≥ t
�
: ð8Þ

It is calculated as

h tjt
� � ¼ S t j t−1ð Þ

� �
−S tjt

� �
S t j t−1ð Þ
� � : ð9Þ

To calculate the effect of dropout, the vector K = (k1, k2,
…, kT)′, with kh being the number of clusters with exactly h
measurements, needs to be known in both treatment condi-
tions. This vector is random; the associated probability vector
is p = (p1, p2,…, pT)′. A cluster’s probability ph of having ex-
actly hmeasurements is calculated from the survival function:
ph = S(th) − S(th + 1) for h = 1, …, T − 1 and pT = S(tT). This is
the probability of dropping out between th and th − 1. For each
possible vector K, a probability can be calculated, and the
variance of the treatment effect estimator can be calculated
from (5). The expected variance is then the sum of probability
× variance over all possible vectors K. This procedure is hard-
ly useful in settings where the number of periods, and hence
the number of vectors K, is large. The variance of the treat-
ment effect can be approximated by using a sampling proce-
dure (Verbeke & Lesaffre, 1999). The vector K is sampled a

large number of times from the multinomial distribution with
probability vector p. For each draw, the variance of the treat-
ment effect estimator is calculated and the mean of the vari-
ance across all draws is used to calculate the effect of dropout.
The drawback of this procedure is that it may be time-con-
suming, especially if the number of draws is large. A yet
further approximation is made by not using a sampling proce-
dure, but replacing the vector K by its expectation E(K) = k ×
p. This procedure has been compared to the sampling proce-
dure; both produced very similar results (Galbraith &
Marschner, 2002).

Many different survival functions exist; we use theWeibull
survival function (Galbraith & Marschner, 2002; Moerbeek,
2008), which is given by

S tjt
� � ¼ exp −λtγð Þ: ð10Þ
Time is rescaled by dividing by tmax, which is the maxi-

mum duration the trial can take. tmaxmay be based on financial
or practical considerations, such as the maximal duration most
clusters are willing to participate in the trial, but it may also be
set by the trial’s funding organization. The parameter λ is
replaced by − log(1 − ω), where ω ∈ [0, 1] is the proportion
of clusters that drop out at some time during the course of a
trial with tmax. The survival function then becomes

S tjt
� � ¼ 1−ωð Þtγ : ð11Þ

Figure 4 shows the survival and hazard probability func-
tions for a trial with a duration of 28 days (i.e. measurement
scheme S1 and R = 4 weeks) for various values ω and γ and
with equal dropout across the two experimental conditions.
When γ < 1 the hazard probability decreases during the course
of the study, when γ = 1 it is constant and when γ > 1 it in-
creases. As is obvious, the hazard probability becomes larger
and the survival probability becomes smaller when ω becomes
larger.

Figure 5 shows the effect of dropout for a trial with mea-
surement scheme S1 as a function of the number of subjects
per cluster-period m and for two different numbers of weeks
R. The efficiency is displayed relative to a trial without drop-
out (ω = 0). Three values ω and three values γ are considered.
Note that ω is the proportion dropout in a trial with a maximal
duration tmax = 28 days (i.e. R = 4), as displayed in Fig. 4. The
results in Fig. 5 hold for (ρ, 1 − r) = (0.025,0.05).

For each γ, the loss in efficiency is larger when ω is larger.
This is obvious, since the greater the number of clusters that
drop out, the larger the variance of the treatment effect esti-
mator and hence the lower the efficiency of the trial.
Furthermore, for large γ, the effect of ω is smaller than for
small γ, especially for small R. This finding can be explained
as follows. The survival probability function hardly varies
across the three values of ω in a trial with just seven days
(R = 1) and γ = 2, see the panel at the bottom left in Fig. 4.
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Hence, the relative efficiency hardly depends on the value of
ω. The smaller the γ, the more the survival probability func-
tions of the three values ω differ in a trial with seven days, and
hence the larger the effect of ω on the relative efficiency.
Increasing study duration implies that the survival functions
for various values ω differ even more. Hence, the effect of ω
on the relative efficiency becomes stronger.

Figure 5 also shows that, for each ω, the efficiency is larger
when γ is smaller. This is also obvious, since a smaller γ implies
that the hazard probability is largest at the beginning of the trial.
In other words, smaller γ implies that there aremore clusters with

fewer days, so the variance becomes larger and the trial becomes
less efficient.

The loss in efficiency is largest with few subjects per
cluster-period m. This implies largest loss in efficiency for
those trials that already have a large variance. Furthermore,
the effect of m becomes smaller for large values of m.

Finally, a larger loss in efficiency is observed for a larger
number of weeks R. A larger R implies a longer trial duration
and hence a larger amount of dropout during the course of the
trial. For instance, consider a trial with 28 days (R = 4) where half
of the clusters have dropped out by the end of the trial (ω = 0.5).

Fig. 4 Survival and hazard probability functions for ω= 0.2, 0.5 and 0.8 (separate lines within each graph) and for γ= 1/2 (top panel), 1 (middle panel)
and 2 (bottom panel)
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Reducing study duration to a quarter (R = 1) would result in a
dropout proportion of 0.28 (γ= 1/2), 0.14 (γ= 1) or 0.03 (γ= 2).
So a shorter study duration implies that fewer clusters drop out,
hence a smaller loss of efficiency. Therefore, studies that have
higher variance of the treatment effect estimator due to a short
study duration suffer the least from dropout.

The Online Supplement shows relative efficiencies for four
combinations of the intraclass correlation coefficient ρ and
decay parameters 1 − r, see Figs. S5a–S5d. The effects of ρ
and 1 − r are as in the previous section: for a given decay 1 − r,
the loss in efficiency is slightly larger for a smaller ρ, and for a

given ρ the loss in efficiency is slightly larger for a larger 1 − r.
Thus the combination (ρ, 1 − r) with the highest variance suf-
fers the least from dropout.

Trials with intermittently planned missing
observations with dropout

Here we revisit the example in Section 3 to demonstrate
the evaluation of designs of trials with intermittently
planned missing observations with dropout. The data

Fig. 5 Efficiency of the treatment effect estimator for various dropout
patterns (ω, separate lines and γ, separate panels) as compared to no
dropout, as a function of the number of measurements per cluster-period m

(horizontal axis) and the number of weeks R (separate panels). Intraclass
correlation coefficient ρ= 0.025 and decay parameter 1− r= 0.05
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should become available within at most 8 weeks. It is
likely that some dental practices may drop out. Let us
suppose that the dropout rate is ω = 0.2 in traditional
waiting areas and ω = 0.1 in nouveau waiting areas.
Dropout may be expected to increase slightly during the
course of the trial as dental practices lose motivation to
ask their patients to participate. Such a dropout pattern is
achieved by choosing γ > 1; let us assume that γ = 2. To
calculate the efficiency of the design, a priori estimates of
the intraclass correlation coefficient and decay parameter
must be specified. Let us assume that ρ = 0.05 and 1 − r =
0.05.

In the Netherlands, dental practices are typically closed
during the weekend.We compare four designs with a different
number of dental practices per condition and different num-
bers of weeks. All designs include all five workdays:

Design 1 : k ¼ 10;R ¼ 4; Scheme

¼ Mo; Tu;We; Th;Frð Þ

Design 2 : k ¼ 15;R ¼ 4; Scheme

¼ Mo; Tu;We; Th;Frð Þ
Design 3 : k ¼ 10;R ¼ 8; Scheme

¼ Mo; Tu;We; Th;Frð Þ
Design 4 : k ¼ 15;R ¼ 8; Scheme

¼ Mo; Tu;We; Th;Frð Þ

The study should be designed so that it has a power of at
least 80% in a two-sided test with a type I error rate α = 0.05.
Leather et al. (2003) found a zero effect for patients’ rating on
anxiety, and small effects for disability (Cohen’s d = 0.22) and
pain (Cohens d = 0.27). In the calculations that follow we
assume a small effect size Cohen’s d = 0.2.

Figure 6 shows the power as a function of the number
of patients per day. Obviously, higher power is achieved
when more patients are observed per day, but for all de-
signs, the power levels off to a certain limit when the
number of patients per day increases. The lowest power
is observed for design 1. With this design, sufficient pow-
er cannot be achieved even when as many as 20 patients
per day are included. Designs 2 and 3 have comparable
power levels. Design 3 has slightly higher power when at
most four patients per day are included, while design 2
has slightly higher power for at least five patients per day.
The number of patients to be included per day to achieve
at least 80% power is 9 and 11 for designs 2 and 3,
respectively. The largest power is achieved with design
4: only two patients per day are needed to achieve at least
80% power.

Based on some criterion, the best design can be cho-
sen from designs 2-4. If, for example, trial duration is
to be minimized, then design 2 is the best choice. If, as
another example, recruiting dental practices is difficult,
then design 3 should be chosen. If, as yet another ex-
ample, the total number of patients should be mini-
mized, then design 4 should be chosen.

The impact of using a measurement scheme with fewer
days may also be studied. For Scheme = (Mo, Tu, Th, Fr),
the required number of patients per day is 11 (design 2),
13 (design 3) and 3 (design 4). For Scheme = (Mo, Tu,
Th), the number of patients per day is 15 (design 2), 18
(design 3) and 3 (design 4). Therefore, including fewer
days in the design results in a larger number of subjects
to be measured per day to achieve the desired power
level.

Conclusions and discussion

Missing data result in a loss of efficiency. In the case of planned
missing data designs, measurements are not taken on certain days
of the week. The fewer the number of days in which measure-
ments are taken, the lower the efficiency. In addition, lower effi-
ciency is obtained if the lag between the first and last day of the
week in which measurements are taken becomes smaller.
Furthermore, the loss in efficiency in planned missing data de-
signs is largest for small numbers of subjects per period and small
numbers ofweeks. In the case of unplannedmissing data resulting
from dropout, clusters drop out of the trial and do not return in
later periods. The higher the amount of dropout, the larger the loss
of efficiency, especially if dropout is largest at the beginning of
the trial. The loss in efficiency due to dropout is largest for small
numbers of subjects per period and large numbers of weeks. In
both planned and unplanned missing data designs, the loss of
efficiency increases when the size of the intraclass correlation
decreases and the decay parameter increases.

The relation between sample size, number of weeks and
missing data patterns, on the one side, and variance of the
treatment effect estimator, efficiency and power on the other
side cannot be captured by a simple mathematical relation-
ship. For this reason, it may be explored by using the Shiny
app. Various designs may be specified and the power for each
of them can be calculated. Among all designs with sufficient
power, the best one may be chosen based on some criterion,
such as shortest study duration, smallest number of clusters or
smallest number of measurements.

To use the Shiny app, the values of the intraclass correlation
coefficient and decay parameter should be specified. The values
of such parameters are often unknown in the design phase of a
trial. An a priori guess may be based on researchers’ expecta-
tions, expert opinion or findings in the literature. Over the past
two decades, estimates of intraclass correlation coefficients in
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cluster randomized trials with one period have been published;
see Table 11.1 of Moerbeek and Teerenstra (2016) for an over-
view of such papers. It is important that such estimates also
become available for multi-period cluster randomized trials,
along with estimates of the decay parameter. Furthermore, it
would be very helpful if the dropout that occurred within a trial
would be described in detail to facilitate planning future trials.
Not only should the total amount of dropout during the course of
a trial be given, but the hazard probability function should be
given as well. Finally, the size of the effect must be specified.
When a priori estimates of Cohen’s d, ρ, 1 − r,ω and γ cannot be
found in the literature, then the researcher may be able to come
upwith a range of plausible values of these parameters. Then, the
worst-case scenario (i.e. smallest d, largest ρ, smallest 1− r, larg-
est ω and smallest γ) may be used in the Shiny app.

In this paper the Weibull function was used to model the
probability of dropout in each of the time periods. This is a very
flexible function, as it allows for constant, increasing or decreas-
ing hazard over time. Of course, there exist many other survival
functions, and it would even be possible to let the researcher
specify the hazard probability in each of the time periods.
However, this is outside the scope of this paper. Furthermore,
the probability of dropout was assumed to depend on treatment
condition and time elapsed since the start of the study. Theremay
be other factors that influence dropout, for instance the number of
days perweek inwhichmeasurements are taken or the number of
subjects who have to be measured per day. It would be

interesting to explore more complicated survival and hazard
functions in future research.

This paper is restricted to a repeated cross-sectional design,
meaning that each subject is measured only once. Higher effi-
ciency is achieved by using a cohort design. For such a design,
the statistical model needs to be extended to accommodate re-
peated measures within subjects. Sample size calculations for
such a model are given in Hooper, Teerenstra, De Hoop, and
Eldridge (2016), but that study is restricted to a compound sym-
metry structure and does not take missing data into account.
Future research should focus on exponential decay at both the
cluster and subject level. It is also possible to include multiple
cohorts, and thismay be done in a serial or parallelmanner. In the
first case, cohorts are observed one after the other, while mea-
surements across multiple days are taken within each cohort. In
the second case, subjects aremeasured on a fixed day of theweek
during the course of multiple weeks. Furthermore, it is also pos-
sible to implement a combination of a cohort and repeated cross-
sectional design.

The focus of this paper is on a parallel-arm design, meaning
that all subjects within the same cluster receive the same treat-
ment. Such a design is often chosen if there is a risk of contam-
ination of the control condition (Moerbeek, 2005). Such con-
tamination is likely to occur in trials where the cluster is a
therapist. Although in theory it would be possible to let each
therapist offer the intervention and control, in practice it would
be difficult for therapists not to let clients in the control

Fig. 6 Power levels as a function of the number of subjects for the four designs in the waiting room example
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condition benefit from the intervention. The parallel-arm design
may also be preferred for financial or practical reasons. In the
example in the previous section, it would not be cost-effective
to redesign the waiting area during the course of the trial in all
dental practices. If such objections do not exist, a design in
which clusters are exposed to both treatment conditions may
be chosen to increase efficiency. With a crossover trial, clusters
cross back and forth between the control and intervention con-
ditions. In the example in the previous section, this might have
been possible if the trial evaluated the effect of music or aro-
matherapy. The effect of dropout in a two-period crossover
cluster randomized trial has been studied previously
(Moerbeek, 2020), and an extension should be made to designs
with more than one crossover. Another type of trial in which all
clusters receive both treatment conditions is the stepped-wedge
design. Here all clusters start in the control, and there is a
sequential rollout of the intervention across all clusters. Kasza
and Forbes (2019) studied the information content in each of
the cluster-periods and found that the most information-rich are
those cluster-periods that occur immediately before and after
the switches. It would also be interesting to study the effect of
dropout in stepped-wedge cluster randomized trials.

In summary, this paper presents new results concerning the
effect of dropout on planned missing data design efficiency in
repeated cross-sectional multi-period two-arm parallel cluster
randomized trials. The Shiny app enables researchers to eval-
uate their design with respect to power and to compare its
efficiency with competing designs.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-020-01529-7.

Open practices statements The Shiny app is available at https://utrecht-
university.shinyapps.io/missing_data_CRT/.

The source code is available at https://github.com/MirjamMoerbeek/
CRT_missing_data
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