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ABSTRACT We used time-resolved metabolic footprinting, an important technical
approach used to monitor changes in extracellular compound concentrations during
microbial growth, to study the order of substrate utilization (i.e., substrate prefer-
ences) and kinetics of a fast-growing soil isolate, Paraburkholderia sp. strain 1N. The
growth of Paraburkholderia sp. 1N was monitored under aerobic conditions in a soil-
extracted solubilized organic matter medium, representing a realistic diversity of
available substrates and gradient of initial concentrations. We combined multiple an-
alytical approaches to track over 150 compounds in the medium and complemented
this with bulk carbon and nitrogen measurements, allowing estimates of carbon use
efficiency throughout the growth curve. Targeted methods allowed the quantifica-
tion of common low-molecular-weight substrates: glucose, 20 amino acids, and 9 or-
ganic acids. All targeted compounds were depleted from the medium, and depletion
followed a sigmoidal curve where sufficient data were available. Substrates were uti-
lized in at least three distinct temporal clusters as Paraburkholderia sp. 1N produced
biomass at a cumulative carbon use efficiency of 0.43. The two substrates with high-
est initial concentrations, glucose and valine, exhibited longer usage windows, at
higher biomass-normalized rates, and later in the growth curve. Contrary to hypoth-
eses based on previous studies, we found no clear relationship between substrate
nominal oxidation state of carbon (NOSC) or maximal growth rate and the order of
substrate depletion. Under soil solution conditions, the growth of Paraburkholderia
sp. 1N induced multiauxic substrate depletion patterns that could not be explained
by the traditional paradigm of catabolite repression.

IMPORTANCE Exometabolomic footprinting methods have the capability to provide
time-resolved observations of the uptake and release of hundreds of compounds
during microbial growth. Of particular interest is microbial phenotyping under envi-
ronmentally relevant soil conditions, consisting of relatively low concentrations and
modeling pulse input events. Here, we show that growth of a bacterial soil isolate,
Paraburkholderia sp. 1N, on a dilute soil extract resulted in a multiauxic metabolic re-
sponse, characterized by discrete temporal clusters of substrate depletion and me-
tabolite production. Our data did not support the hypothesis that compounds with
lower energy content are used preferentially, as each cluster contained compounds
with a range of nominal oxidation states of carbon. These new findings with
Paraburkholderia sp. 1N, which belongs to a metabolically diverse genus, provide
insights on ecological strategies employed by aerobic heterotrophs competing
for low-molecular-weight substrates in soil solution.
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Low-molecular-weight (LMW) compounds in soil solution comprise a small amount
of total soil carbon yet represent an important carbon pool at the interface between

the decomposition of larger residues and subsequent assimilation by the soil microbial
community (1). The LMW C pool is typically less than 10% of soil solution C and totals
to 1 to 2 g of C m�2 down to a meter depth in typical forest soils (2). Because of their
small compound size (�1 kDa) and the presence of specific and nonspecific membrane
transport systems in microbial cells, LMW compounds are rapidly assimilated and
mineralized by the microbial community (3). The composition of the LMW fraction of
soil solution reflects common precursors and intermediates found in the metabolism of
plant and microbial cells (4). These compounds, primarily sugars, amino acids, and
organic acids, are maintained at low concentrations by a balance of microbial uptake
and a constant supply from metabolite release, cell death, root exudation, depolymer-
ization, and downward movement of soil solution (5). Estimates of half-lives of specific
compounds within this class vary from less than an hour to more than 7 days
depending on the soil horizon being investigated (6–8). Though rapidly cycled, these
compounds are thought to disproportionately make up persistent C and N pools after
transformation (1) and are increasingly being represented in finer resolution in micro-
bially explicit models to predict stabilization rates (9).

Compound uptake preferences and metabolic use efficiency (carbon use efficiency
[CUE], synonymous with microbial growth yield) of LMW C and N is predetermined and
regulated by the individual microbial cell (10) as well as influenced by environmental
stoichiometric limitations (11) and the presence and availability of other organic
substrates (12). A current question is whether we may determine first principles for the
diverse metabolic potential inherent in the soil microbial community. Previous exo-
metabolomic trials with bacteria and yeasts have shown almost no links between
genetic or ecotype relatedness and substrate uptake patterns (13) to strong genotypic
clustering or mixed clustering in relation to substrate uptake (14, 15). There is evidence
for (16) and against (17) whether individual bacterial populations exhibit conserved
uptake preferences when diverse resources are abundant. Quantitative stable isotope
probing work on complex, in situ soil communities suggests that evolutionary back-
ground may be the main constraint on carbon assimilation (18). One relatively well-
defined ecophysiological paradigm that appears to hold true for soil bacteria is the
broad distinction between copiotrophic (r-selected) and oligotrophic (K-selected) life
histories (19). In this framework, copiotroph populations have higher growth rates, are
adapted to pulsed input events, and tend to exhibit inefficient conversion of LMW C
into biomass (10). Our current capacity to model LMW C cycling in soil solution may be
limited by our ability to define the predominant ecophysiological characteristics that
govern heterotroph activity.

There is clear evidence from LMW tracer experiments in the field (20–22) and
laboratory incubations (23–25) that oxidized compounds are taken up more rapidly by
the microbial community, followed by a less efficient conversion of that C to biomass
(lower CUE) in surficial soil horizons. These observations are often associated with an
inferred relationship between the energetic content of a carbon substrate (12, 26) and
its potential CUE. Generally, a compound with a higher nominal oxidation state (NOSC)
will require more energy, in the form of reducing equivalents, to reduce the carbon to
the oxidation state of the biomass being created (��0.2). In other words, growth on
substrates with a NOSC above that of biomass (27) will reduce growth efficiency due to
energy limitations, while substrates with a NOSC far below that of biomass will be
carbon limited during growth (28). It is also possible that under mixed-substrate
utilization, the more oxidized compound could be used primarily for energy generation
alone (12). This may explain earlier and less efficient use of higher-NOSC compounds in
these studies. It has been hypothesized that the relationship between NOSC and CUE
may resemble a bell-shaped curve centered around the NOSC of biomass (29). How-
ever, under aerobic conditions, a more likely relationship is a linear increase to a
theoretical maximum with increasing energetic content (lower NOSC) (30).

Relationships between compound identity, uptake, and CUE are not as clear at the
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microbial population level. Substrate preferences can be extremely divergent, even
across similar fast-growing isolates (31). A traditional view is that these fast-growing
organisms, which are considered copiotrophs, should stagger uptake based on poten-
tial maximal growth rate on that substrate (19). This phenomenon, known as catabolite
repression, is the classic paradigm of microbial substrate selection and often exhibits
diauxic growth patterns (32, 33).

Much of the theoretical underpinning for the hypotheses that higher-NOSC com-
pounds are more readily assimilated or those that support catabolite repression are
based on simplified, minimal media (34). The NOSC framework, though field tested, is
built upon single-carbon-source-culturing trials (30), and deviations can be observed
under even simple mixed-substrate-culturing conditions (12). There is also an assort-
ment of observations showing simultaneous use of substrates that provide medium or
low maximum growth rates when low-concentration, mixed-substrate media are used
(35). It is imperative that appropriate media mimicking the relevant ecological niches
be used to develop relationships between compound characteristics and C utilization
(36). Time-resolved metabolic footprinting provides an avenue for addressing these
concerns (17). This approach uses sigmoidal model fits to define the midpoint of
substrate depletion from the media (t50) and parse out substrate preferences during
microbial growth. It has been used in conjunction with both natural (37–39) and
defined, complex media (40) and has shown the ability to link isolate exometabolite
profiling with in situ community function (41).

In this work, we utilized time-resolved exometabolomic footprinting to profile
substrate preferences and CUE of the fast-growing soil bacterium Paraburkholderia sp.
strain 1N (42). Paraburkholderia is a relatively newly defined genus created from the
subdivision of Burkholderia and predominantly isolated from bulk soil and the rhizo-
sphere or found as endophytes (43–45). This organism has been found to preferentially
respond to additions of phenolics and drive priming in forested soils (46). Paraburk-
holderia sp. 1N was isolated using an undefined, complex growth medium referred to
as soil-extracted solubilized organic matter (SESOM) (47) derived from an organic rich
surface horizon in a hemlock-hardwood stand. SESOM was used to recreate conditions
encountered in soil solution following rainwater infiltration and residence in a surficial
forest soil when fast-growing populations are most active. The depletion of naturally
occurring organic substrates as well as appearance of metabolites was monitored in
batch study using liquid chromatography (LC) coupled with high-resolution mass
spectrometry (HRMS) as well as 1H nuclear magnetic resonance (NMR) analyses. Our aim
was to phenotype this fast-growing soil microorganism under realistic, pulsed input
conditions. We tested for relationships between substrate chemical parameters (NOSC,
initial concentration) and microbial preferences (t50) and depletion rates, as well as
explored potential links between the aforementioned parameters and CUE.

RESULTS
Isolation and genomic characterization. The forest soil isolate Paraburkholderia

sp. 1N was isolated on soil-extracted solubilized organic matter (SESOM) and classified
to the genus Paraburkholderia (see Fig. S2 in the supplemental material) (42). Draft
genome size was measured to be 11.1 Mb, containing 353 contigs, with a GC content
of 60.6%. The annotated draft genome was found to contain 11,964 coding genes with
4,045 distinct functions. Only 3,704 genes could be matched with SEED annotation
ontology. The largest portions of annotated genes are assigned functions that fall
within carbohydrate metabolism (n � 1,039), amino acid metabolism (n � 666), and
metabolism of aromatic compounds (n � 487) (Fig. S3). The phosphoenolpyruvate
protein of the phosphotransferase system (PTS), a type of phosphotransferase system
implicated in well-studied carbon catabolite repression systems, is present (EC 2.7.3.9).
Annotated ATP-binding cassette (ABC) transporters of interest include the presence of
the branched-chain amino acid uptake systems (Liv, TC 3.A.1.4.1), an oligopeptide
uptake system (Opp, TC 3.A.1.5.1), and a dipeptide system (Dpp, TC 3.A.1.5.2). Further
characterization of this isolate can be found in the work of Wilhelm et al. (42).
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SESOM provides a complex, realistic growth medium. SESOM was created from
the organic (Oa) horizon of the hemlock-dominated stand, and initial characterization
was conducted using a range of analytical techniques. SESOM had a yellowish hue and
was acidic (Table 1). Potassium was the major cationic component, with appreciable
amounts of sodium, aluminum, and iron as well (Table S1). There was no detectable,
dissolved inorganic carbon at this pH, and therefore, the entirety of measured solution
carbon was organic. The solution had an observed C/N ratio of 16.4. Approximately 16%
of solution nitrogen (TN) was in the form of NH4

�, while 41% was found to be in the
ninhydrin-reactive pool and was considered to be predominantly in the form of amino
acids. The remaining 43% was uncharacterized but organic in nature. Reducing sugars
accounted for 16.5% of total organic carbon (TOC) in the solution. Specific LMW
compounds of interest were quantified using two different targeted LC-HRMS and 1H
NMR measurements (Table 2; see also Materials and Methods). In total, compounds
targeted using LC-HRMS and 1H NMR and colorimetric methods accounted for 19.5% of
TOC and 39.9% of TN. Many additional compounds could be putatively identified using
untargeted approaches but could not be quantified. Glucose is the dominant sugar
present and the only sugar estimate that could be reliably made from 1H NMR spectra
(Table 2 and Fig. S1). Valine, alanine, and glutamate were the dominant amino acids
present, while acetate, lactate, and gluconate were the predominant organic acids
present out of those quantified (Table 2).

Paraburkholderia sp. 1N was grown aerobically in SESOM and growth rate (�max) was
determined to be 0.17 h�1 (generation time � 4.1 h) using linear fitting during expo-
nential growth (Fig. 1). During the course of growth, 51.8 mg of C/liter (28.3% of initial
TOC) was assimilated and 32.5 mg of C/liter (17.7% of initial TOC and 62.8% of
assimilated C) was lost from the culturing vessel entirely (Fig. 2). This amount was
assumed to be predominantly respiratory CO2 losses from the system (Fig. 2A, cumu-
lative CO2), though it could have contained small amounts of volatile organic carbon as
well. Biomass production reached a mean plateau of 21.7 mg of C/liter at stationary
phase. Reducing sugars could potentially explain a large portion of C assimilated from
SESOM medium (up to 31% of total C assimilated [Table 2]). Similarly, nitrogen was
assimilated from SESOM medium during growth (Fig. 2B). Initially, amino acid N
concentrations decreased, followed by a switch to predominantly NH4

� before a return
to amino acid N depletion as NH4

� concentrations dropped below detection (Fig. 2B).
Approximately 6.7 mg of N/liter was removed from solution and incorporated in the
biomass of Paraburkholderia sp. 1N. Total amino acid N (4.05 mg of N/liter) and total
NH4

� N depletion (1.79 mg of N/liter) accounted for all but 0.86 mg of N/liter removed
from solution, indicating a smaller contribution of alternative N sources to microbial
uptake (Fig. 2B). There was no significant loss of N from the system.

Estimates of cumulative CUE show an increase through the growth curve to a
plateau of 0.43 (Fig. 3). Instantaneous estimates were calculated over each measure-
ment period to determine if higher instantaneous rates were achieved. A maximum of
0.54 was estimated over the 19- to 22-h portion of the experiment, which encompasses
the inflection point of the growth curve. Instantaneous CUE rapidly declined after the
inflection point as growth slowed and the population entered stationary phase.

Time-resolved exometabolomic footprinting provides information on com-
pound depletion and appearance patterns. LC-HRMS and 1H NMR were used for the

TABLE 1 SESOM initial solution characteristics

Component Value Unit

pH 3.55
EC 164 �S/cm

TOC 183.1 mg of C/liter
TN 11.3 mg of N/liter
NH4

� 1.79 mg of N/liter
Ninhydrin-N 4.59 mg of N/liter
Reducing sugars, C 30.7 mg of C/liter
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direct quantification of 31 targeted compounds at each time point sampled during the
growth of Paraburkholderia sp. 1N in SESOM (Table 2). Depletion patterns were ana-
lyzed by overlaying the t50 and 90% usage window of each substrate onto the growth
curve of the organism (Fig. 4) (17, 31). Concentrations of all of the 31 targeted
compounds decreased during the course of growth. It is important to note that the
technique does not independently confirm the presence of these compounds intracel-
lularly, and the terms depletion and usage are employed throughout this paper instead
of uptake and assimilation. There is a possibility of extracellular transformation without
uptake or even uptake without subsequent usage (38).

Substrate depletion from the media occurred in three distinct clusters, as deter-
mined by usage window plotting (Fig. 4) (17). The first cluster, containing 20 of the 31
substrates, occurred predominantly before the first sampling event and the substrate
depletion pattern was either entirely or almost entirely missed, making them type 1
substrates (Fig. 4, inset, and Fig. S4; see Materials and Methods). The first cluster of
compounds consisted of a mixture organic acids and amino acids (Table 2 and Fig. 4).
There was a slightly higher abundance of compounds with NOSC greater than 0 in this
earlier phase of depletion (Fig. 4, inset). The remaining 11 substrates were removed
from the media during the sampling period and could be fit to a sigmoidal uptake
curve (type 2 substrates [Fig. S5]). Type 2 substrates fell into two separate clusters of
overlapping usage, one before the inflection point of growth and one occurring
afterwards (Fig. 4). The second cluster contained mainly amino acids (proline, isoleu-

TABLE 2 Targeted substrate initial concentrations and depletion dynamics

Compound Symbol Units Sourcea Typeb Initial concn a o t50 w %c NOSC

Pyruvate pyr �M M 1 0.37 0.37 0.00 0.03 0.67
�-Ketoglutarate akg �M M 1 0.59 0.43 0.16 0.05 0.80
Ornithine orn �M A 1 0.96 0.43 0.53 0.05 �0.40
Methionine met �M A 1 1.03 0.75 0.28 0.09 �0.40
Phenylalanine phe �M A 1 1.08 0.57 0.51 0.12 �0.33
Malate mal �M M 1 1.21 0.93 0.28 0.09 1.00
Histidine his �M A 1 1.65 1.27 0.37 0.18 0.67
Lysine lys �M A 1 1.67 1.19 0.48 0.17 �0.67
Citrulline cit �M A 1 2.24 1.57 0.67 0.36 �0.80
Arginine arg �M A 1 3.00 2.70 0.31 0.38 0.33
2-Keto-D-gluconate 2kg �M M 1 3.20 3.04 0.16 0.42 0.67
Asparagine asn �M A 1 4.24 4.24 0.00 0.39 1.00
Serine ser �M A 1 6.00 6.00 0.00 0.42 0.67
Succinate succ �M M 1 6.57 6.57 0.00 0.61 0.50
Glutamine gln �M A 1 9.05 8.53 0.71 0.97 0.40
Aspartate asp �M A 1 11.50 11.50 0.00 1.07 0.75
Gluconate glucon �M M 1 17.63 17.26 0.37 2.37 0.33
Glutamate glu �M A 1 54.92 54.92 0.00 6.23 0.40
Alanine ala �M H 1 70.00 44.00 26.00 3.06 0.00
Acetate ace �M H 1 95.60 72.53 23.07 3.37 0.00
Proline pro �M A 2 0.83 0.43 0.40 16.29 0.57 0.05 �0.40
Isoleucine ile �M M 2 1.94 1.92 0.02 16.79 0.99 0.27 �1.00
Leucine leu �M M 2 9.55 9.51 0.04 16.93 0.52 1.33 �1.00
Tryptophan trp �M A 2 0.62 0.62 0.00 17.06 0.19 0.16 �0.18
Tyrosine tyr �M A 2 0.65 0.65 0.00 17.08 0.08 0.14 �0.22
Citrate citr �M M 2 2.59 2.55 0.04 17.33 0.36 0.18 1.00
Lactate lac �M H 2 24.94 7.34 17.60 17.90 1.09 0.65 0.00
Threonine thr �M A 2 6.40 5.91 0.49 17.93 0.62 0.55 0.00
Ammonium NH4

� mg N/liter C 2 2.07 2.07 0.00 20.32 0.78
Reducing sugarsd �M C 2 430.42 248.35 182.07 20.42 1.47 31.29 0.00
Valine val �M A 2 168.29 168.29 0.00 20.52 0.72 19.96 �0.80
Glucose glc �M H 2 192.01 134.82 57.19 21.06 1.15 17.82 0.00
Unidentified Unknown aromatic AUC H 2 1.00 0.62 0.38 21.82 0.14
a“Source” refers to the analytical technique used (M, LC-HRMS-Metabo method; A, LC-HRMS-AA method; H, 1H NMR; C, colorimetric).

bType 1 refers to substrates depleted before the first sampling point, while type 2 substrates have been fit to a sigmoidal depletion curve: y �
a

1�e
x�t50

w

� o

cRefers to percentage of total C assimilated (51.8 mg of C/liter) that could be attributable to the targeted substrate.
dReducing sugars method includes glucose values.
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cine, leucine, tryptophan, and tyrosine) as well as two organic acids (citrate and lactate)
(Table 2 and Fig. S5). The third cluster consisted of glucose and valine disappearance
as well as the removal of unidentified aromatic peaks (identified via 1H NMR and
assumed to be attributed to tannin-like molecules) coupled with NH4

� uptake (Fig. 4

FIG 1 Growth curve of Paraburkholderia sp. 1N on SESOM. Data were collected from experimental
replicates (n � 3), a mimic flask (n � 1), and a starter flask (n � 1) used in the experiment. The y axes
display optical density measured photometrically at 600 nm as well as a biomass conversion (biomass
[milligrams per liter] � 343.09 OD600 – 5.38) and cellular protein content (protein [milligrams per liter BSA
equivalents] � 67.19 OD600 � 2.78). Biomass was measured only on experimental replicates via 0.2-�m
filtration and protein content using a Bradford assay after cell lysis using dual analytical replicates. The
starter flask was used for initial inoculation (OD600 � 0.0658) and is pictured to provide support for
forcing the model fit.

FIG 2 Carbon and nitrogen dynamics during Paraburkholderia sp. 1N growth on SESOM. Panel A displays
changes to carbon pools, and panel B displays nitrogen pools. All points represent means (n � 3) with
standard error bars (smaller than point size in all cases).
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and Fig. S5). Total reducing sugars had an earlier t50, indicating that the multiple other,
lower-concentration, sugars had a slightly earlier removal. This later cohort of com-
pounds comprise the largest concentrations of available C and N in solution out of the
substrates quantified. Targeted substrates, overall, represented 74.9% and 74.4% of
total C and N depletion, respectively (Table 2).

An untargeted approach was then employed to look for compounds beyond those
targeted previously. In total, 135 significant features were detected and the area under
the curve was quantified. Of the 135 detected features, 99 decreased and 36 increased
during the growth of Paraburkholderia sp. 1N (Fig. S6 to S12). Only 21 of the decreasing
features could be fit using equation 2 in Materials and Methods (Fig. S7), and only 15
of increasing features could be fit with the modified version of the same equation (Fig.
S11). A combined plot was used to visualize the depletion and appearance of these
features (Fig. 5A). There was a clear distinction between the t50 of decreasing and
increasing features, with the mean t50 of decreasing features occurring 2.4 h before that
of the increasing features [two-sample t(34) � �6.3742; P � 0.001]. Compound appear-
ance tended to occur over smaller intervals (90% usage window) than substrate
depletion, with a 3.3-h-longer usage window estimate for decreasing features [Wil-
coxon rank sum W(34) � 279; P � 0.001].

Inclusion of untargeted features show that Paraburkholderia sp. 1N exhibited met-
abolic diversity in the variety of compounds that could be depleted from SESOM media.
Similar levels of superclass diversity were removed from the extracellular matrix as were
transformed or released as metabolites or upon cell death (n � 8) (Fig. 5B and C).
Alkaloids and phenylpropanoids and polyketides were only removed from SESOM
media, and both superclasses showed late disappearance (Fig. 5B, type 4). Benzenoids
and nucleosides, nucleotides, and analogues were only released into the SESOM media,
and both superclass categories of compounds showed irregular appearance profiles
(Fig. 5C, type 3). Of the untargeted features that could be fit to a sigmoidal usage
pattern (Fig. 5B and C, type 2), similar ranges of superclasses were involved (lipids,
organic acids, organic nitrogen compounds, organic oxygen compounds, and organo-
heterocyclic compounds).

FIG 3 Carbon use efficiency (CUE) during microbial growth of Paraburkholderia sp. 1N on SESOM. All
points represent means with standard error bars (n � 3). Instantaneous CUE was calculated from growth
in between biomass sampling points, so estimated values are displayed at the center of the measure-

ment period. A similar 4-point sigmoidal curve was fit for cumulative CUE, y �
a

1�e
��x�t50�

w

� o, where

a � 0.43, t50 � 20.09, w � 1.40, and o � 0.
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Relationships between substrate depletion and hypothesized predictor vari-
ables (NOSC, specific �max, and concentration). We did not find NOSC or the sole C
source growth rates, specific �max, to be reliable predictors of preferential substrate
depletion, t50 (Fig. 6). The inclusion of untargeted, putatively characterized NOSC values
(Fig. 6A) did not help build any relationship between the two variables. Specific �max

was determined by growing Paraburkholderia sp. 1N on each substrate individually to
determine maximal potential growth. While there was an upward trend between
maximal growth rate (specific �max) and t50, it is clear that inclusion of any of the type
1 substrates would invalidate that relationship (Fig. 6B). Similarly, there appears to have
been an upward trend between initial compound concentration and substrate deple-
tion preferences (t50 [Fig. 7A]), yet inclusion of three of the type 1 substrates, acetate,
alanine, and glutamate, is not possible in such a relationship. Compounds at higher
initial concentrations appear to have been used at higher rates (Fig. 7B) and for a longer
window (Fig. 7C). Inclusion of type 1 substrates could maintain a nonlinear relationship,
yet at this time only two points, glucose and valine, were driving the trend. More data
from earlier in the growth curve would be necessary to confirm these relationships.

DISCUSSION

Three broad clusters of substrate depletion could be outlined during growth (Fig. 3).
Many substrates belonging to the first cluster were depleted to their maximum
potential before subsequent depletion of the second cluster began (Table 2 and Fig.
S4). Distinct clustering of time-dependent substrate depletion implies multiauxic
growth behavior of Paraburkholderia sp. 1N on SESOM. Within each phase of substrate
use, there was coutilization of multiple substrates, which is similar to observations for
other fast-growing Bacillus and Pseudomonas species (17, 31). The coexistence of
sequential (multiauxic) and simultaneous (coutilization) substrate use as a metabolic
strategy is more common than previously thought from investigation of the growth of

FIG 4 Usage window plot of Paraburkholderia sp. 1N growth on SESOM. Modeled depletion patterns of
targeted carbon substrates are overlaid on the growth curve. Only substrates for which sufficient data
allowed the fitting of a sigmoidal curve are depicted in the plot (type 2). The points represent the
inflection point of depletion (t50), and the horizontal bars represent the 90% usage window (modification
of the fit window, w). The inflection point of the growth curve is also overlaid on the figure (�). Many
substrates were depleted substantially before the first sampling point (type 1 [Fig. S3]), and therefore, no
kinetic data are available. A histogram of the targeted type 1 substrates is shown in the early portion of
the growth curve for this reason. All depicted substrates are colored by their oxidation state (NOSC) and
listed in order of increasing t50 in the key. Lactate is mostly obscured by threonine, which has a slightly
later t50.
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heterotrophs in diverse, low-concentration media (48, 49). We observed that acetate,
alanine, and glutamate likely provided the majority of carbon from SESOM for Paraburk-
holderia sp. 1N’s biomass production in the first phase, lactate in the second, and
reducing sugars coupled with valine in the final phase (Table 2 and Fig. 6). Inclusion of
untargeted data indicates that there may have been many more compounds being
used over longer periods within this multiphasic substrate removal pattern (Fig. 4A).
Unfortunately, the inability to quantify putatively identified compounds leaves their
potential contribution to biomass production unknown for this experiment.

In complex media, such as SESOM, translation and expression of all transporter

FIG 5 Untargeted features detected split by directionality of change. Type 2 features whose depletion or
appearance could be modeled using a sigmoidal fit are depicted in a usage window plot (A). Points are overlaid
over the growth curve at the inflection point of their depletion or appearance (t50), while the horizontal bars
represent the 90% usage window (modification of the fit window, width) of the feature. Decreasing and increasing
features were sorted based on the kinetics and shape of their curve and sorted by superclass (B and C; type 1, early
depletion or appearance/insufficient data for fit; type 2, sigmoidal curve fit; type 3, nonsigmoidal depletion or
appearance; type 4, late depletion or appearance/insufficient data for fit).
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systems and metabolic pathways present too high a cost (50), requiring a complex
regulatory network to shift uptake dynamics. The observed clustering of substrate
depletion is indicative of a metabolic network shift, though higher-resolution growth
measurements are needed to determine whether Paraburkholderia sp. 1N is able to
make these types of metabolic shifts with or without a slowdown in growth rate (51,
52). Paraburkholderia sp. 1N has a putative phosphoenolpyruvate protein of the phos-
photransferase system (PTS), which is implicated in carbon catabolite repression in
Escherichia coli as well as Bacillus subtilis and the selective use of sugars (33). Though a
PTS system is present, there was no significant difference in the mean uptake of
reducing sugars and glucose to suggest carbon catabolite repression. Paraburkholderia
sp. 1N also has the Liv (leucine-isoleucine-valine) system, which is an ATP-binding
cassette (ABC) transporter found in E. coli (53). It may be possible that Paraburkholderia
sp. 1N can up- and downregulate one of the six annotated, amino acid-binding proteins
(TC 3.A.1.4.1). These have been shown to be paralogues in other organisms and differ
in amino acid specificity and affinity (53). Up- and downregulation of transporters with
different affinities could explain the observed clustering of amino acid uptake patterns.
Alternatively, similar ABC transporter systems have been found to have broad speci-
ficity (54), so another possibility is that the uptake of amino acids may not be under
strict control at all. The predominance of increasing features in the exometabolome
after the inflection point of growth (Fig. 5A), at timing similar to that of the switch to
multiple sugar and valine metabolism, is indicative of a regulated metabolic shift. This
may be due to changing nutrient availability or other stress encountered during batch
growth and a resulting release of metabolites (55).

Paraburkholderia sp. 1N exhibits a growth strategy that falls outside traditional
paradigms. While this isolate did show metabolic diversity that is in accordance with
that of other fast-growing soil bacteria, it did not selectively use those substrates
(glucose, histidine, phenylalanine, pyruvate, and lactate) that connote optimal growth
rates (Fig. 7B). Coutilization of carbon sources is expected to boost microbial growth
rate (33, 56), though at the expense of individual substrate uptake rates (57). While it
is possible that clustered substrate usage may offer the advantage of an increased
growth rate in a way not observed in individual specific �max estimates (Fig. 5B), this
seems unlikely, as substantially lower biomass normalized depletion rates (millimoles
per hour per gram of cells [dry weight]) were observed earlier during growth (Fig. 6B).

FIG 6 Model fit t50 values for substrates as a function of hypothesized predictor variables. (A) The
midpoint of depletion, t50, as a function of substrate nominal oxidation state of carbon. (B) t50 as a
function of the specific growth rate (�max) of Paraburkholderia sp. 1N growing on that substrate as the
sole C source. Error bars represent standard errors (n � 3). Both panels share the same key, though
untargeted features are displayed only in Panel A. For both panels, type 1 substrates are depicted below
the horizontal line and grayed out, as they have an x axis value (NOSC, specific �max) but could not be
fit to a 4-point sigmoidal depletion curve.
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The lower depletion rates of earlier type 2 substrates may indicate a strategy of
maximizing growth efficiency using these lower-concentration substrates even though
they do not support higher growth rates. Either Paraburkholderia sp. 1N does not group
with other copiotrophs or not all copiotrophs maximize growth rate at the expense of
efficiency (10). Other observations of the coexistence of multiauxic and simultaneous
substrate use tend to reinforce the idea that substrate selection is still based on
affording the highest growth rate possible (31, 49). Bacillus cereus is one other example
of a fast-growing, r-selected organism that has been observed to selectively take up
substrates based on a mechanism outside maximizing growth rate (31).

Our results did not show that Paraburkholderia sp. 1N had any predilection for
depleting more oxidized substrates first, contrary to observations from whole-soil
communities (24). There was a slightly higher number of oxidized type 1 substrates (Fig.
3, inset), yet overall, there was no relationship between these parameters (Fig. 5). The
form of regulation that best fits our observations is the multiauxic usage of substrate
groups representing a mix of divergent oxidized and reduced compounds. This use of
a more oxidized compound for energy generation, resulting in increased growth yield,
has been frequently observed in simple, two-substrate mixtures (12). Increasingly, the
coutilization of substrates is thought to be the result of optimal enzyme allocation (58),
suggesting an advantage to the simultaneous use of glycolytic and gluconeogenic
substrates (59, 60). Indeed, recent 13C labeling experiments with a marine heterotroph
have shown the “different and complementary roles” of simultaneously used amino
acids (49). There is some evidence for this in the second grouping of substrates in which
growth on citrate (NOSC � 1.00) was coupled with isoleucine and leucine (NOSC �

�1.00), among others. This pattern of C utilization was observed in our data because

FIG 7 Model fit t50 values for substrates (A), depletion rate (B), and usage window (C) as a function of
initial concentration. Depletion rate is depicted normalized to biomass (millimoles per hour per gram of
cells [dry weight]). The window depicted (Panel C) is the estimated 90% usage window. Type 1 substrates
are depicted below the horizontal line and grayed, as they have x axis value (initial concentration) but
could not be fit to a 4-point sigmoidal depletion curve.
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of our comprehensive tracking of multiple metabolites through time and grouping by
metabolite use stage. This phenomenon may be missed if the reduced compound in
the coupled pair or group is not also tracked, which is a possibility in many whole-soil
data sets probing a small subset of isotopically labeled substrates (20, 22, 24).

The efficiency of biomass production of Paraburkholderia sp. 1N (CUE) was observed
to be within reported ranges of in situ soil communities and soil isolates. The estimated
CUE of 0.43 is well within those reported for other bacterial pure cultures (CUEP, 0.2 to
0.8) as well as those reported for in situ soil communities (CUEE, 0 to 0.85) (28, 61). This
value is close to those reported for chemostat cultures of Klebsiella aerogenes NCTC 418
(�0.4) growing on limited glycerol concentrations in the �20 �M range, similar to
many of the substrate concentration ranges in this medium (10). Paraburkholderia sp.
1N’s cumulative CUE also aligns well with the proposed relationship between maximal
growth rate and carbon use efficiency and puts its CUE alongside that of a considered
oligotroph, Rhodospirillaceae sp. PX3.14 (�max � 0.126 to 0.144; CUE � 0.38) (62, 63). As
mentioned previously, this high CUE and slow maximal growth rate, compared to those
of other bacteria, may indicate that Paraburkholderia sp. 1N is on the boundary
between the copiotrophic and oligotrophic ecological distinctions (62). Interestingly,
predictions of CUE based on genome size alone show that Paraburkholderia sp. 1N’s
estimated CUE of 0.43 is around the potential CUE of 0.4 predicted for its genome size
of 11.1 Mb (64). Thus, while this organism may require greater maintenance resource
allocation than others with smaller genomes, it is able to grow at an efficiency near its
predicted potential in a highly diverse and carbon-limiting medium.

Predicting the use efficiency of individual substrates (65), based on temporal
alignment between uptake and overall CUE, is a tempting next step but one that has
many potential pitfalls. For instance, the second cluster of substrate utilization (Fig. 4)
temporally aligns with the highest estimate of instantaneous CUE (Fig. 3). It might be
reasonable to infer that this cluster of amino acids and organic acids is used most
efficiently during this time of high biomass production, yet there is a possibility for a
disconnect between assimilation and actual metabolic use. The population may employ
a strategy of transforming the molecule to protect it from potential use by other
microorganisms or for intracellular storage (66). The simultaneous assimilation of
multiple substrates in distinct groups, which we observed (Fig. 3), could result in the
microbial population preferentially routing one substrate to dissimilatory pathways and
the other to assimilation (59). This would result in substrates with disparate individual
use efficiencies that produce the observed average CUE.

Substrate concentration differences were up to 2 orders of magnitude in some cases
for the SESOM used in this experiment (Table 2) and may have overwhelmed any
influence of substrate energy content (NOSC) on utilization preference. Studies with
equimolar initial substrate concentrations are needed for quantitation and identifica-
tion of substrate uptake preferences. The application of isotopic substrate labeling in
such studies could further probe hypothetical relationships between substrate groups
and individual substrate use efficiencies. Understanding the effects of both compound
identity and compound concentration is instrumental to the implementation of sub-
strate uptake framework in environmental prediction models.

Paraburkholderia sp. 1N belongs to a clade of bacteria abundant in forest soils which
broadly influence C cycling via phenolic acid-induced priming (46). We have shown that
Paraburkholderia sp. 1N preferentially uses LMW substrates in SESOM in three distinct
phases (Fig. 5). Lower-concentration amino acids and organic acids were used earlier on
in the growth curve, followed by higher-concentration sugars and an amino acid
coupled with NH4

� uptake (Fig. 5 and Fig. S5). Moving forward, time-resolved exo-
metabolomic footprinting studies of key species in soil microbial communities of
interest could aid our understanding of net observations of LMW cycling and the
underlying mechanisms. To evaluate the physiological profile exhibited by Paraburk-
holderia sp. 1N as representative of other r-selected populations, further investigations
of other species are needed, based on community dominance or ranging in phyloge-
netic or physiological differences.
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MATERIALS AND METHODS
Preparation of SESOM as an undefined medium for isolation and growth. Soil was collected

under a hemlock-dominated stand in Arnot Forest near previous experimental plots (67, 68). Field-moist
soil samples were immediately placed in a cooler and stored at 4°C until further processing (�24 h).
Soil-extracted, solubilized organic matter (SESOM) was prepared using a modified water extraction
procedure (47). Briefly, 40 g of air-dried Oa horizon from Arnot Forest was mixed with 200 ml of 18.2
M�-cm water in 250-ml Nalgene bottles and shaken on an end-to-end shaker for 1 h at room temper-
ature. Bottles were then left to stand for 24 h and then sequentially filtered through 1.6-�m glass
microfiber (GF/A), 0.45-�m polyethersulfone (PES), and then 0.2-�m PES filters to produce a filter-
sterilized solution. Multiple bottles were extracted at once and combined to provide sufficient SESOM for
experimental purposes. The extracted solution was diluted 2-fold for all growth experiments to produce
concentrations that might be more realistically encountered in percolating pore water following a rainfall
event.

Isolation. Paraburkholderia sp. 1N was isolated from field-moist B horizon found at the site. Briefly,
agar plates (15 g/liter) were made with SESOM as the sole C source (10� dilution). For isolate enrichment,
fresh soil was shaken with deionized (DI) water (1:10 ratio) for 1 h and then let sit for 24 h at room
temperature. Serial dilutions were created using Winogradsky salts (69) and 100 �l was spread onto
plates. Plates were incubated at room temperature in the dark for 3 to 14 days, and colonies were chosen
at first appearance and restreaked on fresh SESOM 10�-dilution plates. Three separate plating rounds
were conducted. Cellular morphology was determined microscopically, and growth was checked in
liquid SESOM (2� dilution). Paraburkholderia sp. 1N has circular entire-colony morphology and is rod
shaped. The isolate was stored on SESOM agar plates at 4°C, and single colonies were used to initiate a
starter flask before each experiment of interest.

DNA extraction, genomic analysis, and phylogenetic analysis. Genomic DNA was extracted from
pelleted cells from a liquid culture of the isolate on 10 ml of SESOM (2� dilution) (70) and submitted to
the Cornell University Sequencing Facility for sequencing using three multiplexed runs of Illumina MiSeq
Nano (2 � 250 bp). Raw sequencing data were quality preprocessed with Trimmomatic (v.0.32) (71) and
FastX Toolkit (v.0.7) (72) and then assembled with SPAdes (v.3.10.1) (73). Open reading frames were
predicted using Prodigal (v.2.6.2) (74). The assembly was then uploaded to the KBase web server (75) for
further processing. A phylogenetic tree was constructed using the KBase application Insert Set of
Genomes Into Species Tree (v.2.1.10), dependent on Fast-Tree2 (76) to provide context within 50
neighboring genomes. Genomic annotation was then conducted using the KBase application Annotate
Microbial Assembly, which utilizes the RAST toolkit (77).

Growth on SESOM. Acid-washed and autoclaved 125-ml Erlenmeyer flasks were used for all growth
curve experiments. A starter flask containing 50 ml of SESOM was inoculated with a single colony of
Paraburkholderia sp. 1N and grown overnight on a shaker at 150 rpm until reaching log phase. A 0.5-ml
subsample (optical density at 600 nm [OD600] � 0.0658, or �7.64 mg/liter of biomass) was used to
inoculate each experimental flask for the growth curve assessment (starting biomass � 0.0757 mg/liter).
Assessment of the growth curve was conducted using OD600. A growth curve was then fit using a 4-point
sigmoidal function (Fig. 1).

To allow the tracking of substrate depletion during growth, three flasks were destructively harvested
at four points along the growth curve (17, 19, 22, and 24 h). Points were chosen to cover the breadth of
the exponential phase of growth and the beginning of stationary phase. While each flask was indepen-
dent, they were treated as replicates for each time point in subsequent analyses. During each
destructive-sampling event, 10 ml was removed for analyses on unfiltered components (TOC, TN, and
cellular protein content) while the remaining 40 ml was filtered through 0.2-�m PES filters to remove
cellular biomass and stored frozen in separate aliquots for further analyses (pH, TOC, TN, reducing sugars,
NO3

�, NO2
�, NH4

�, ninhydrin-N, 1H NMR, and LC-HRMS). Since all media were from a single extraction
event and of limited volume, all initial medium values were analyzed only once for each analyte of
interest. A Shimadzu TOC-VCPN was used to measure nonpurgeable organic carbon (referred to as total
organic carbon) and total nitrogen using a 2% acidification (0.2 M HCl) and 1.5 min sparge time using
high-temperature (720°C) catalytic (Pt) oxidation. Cellular protein content was measured on dual
analytical replicates using a modified Bradford protein assay using bovine serum albumin (BSA) as the
standard (78). Reducing sugars were measured using a colorimetric alkaline ferricyanide reaction (79).
The colorimetric Griess reaction method was used to measure NO3

� and NO2
� (80, 81). A modified

Berthelot reaction was used to measure NH4
� (82). Total free amino acids were estimated using a

ninhydrin method (referred to as ninhydrin-N) (83–85). All colorimetric samples were analyzed using a
Shimadzu UV-2600 UV-visible (UV-Vis) spectrophotometer.

Estimation of carbon use efficiency determined via cell filtration. Estimates of cumulative CUE
(milligrams of C in biomass per milligrams of C assimilated) could be derived from measurements of
initial SESOM in comparison to sampled time points before and after cell removal via 0.2-�m filtration
(PES),

CUE �
(unfiltered solution C)t � (0.2-�m-filtered solution C)t

(unfiltered solution C)t�1 � (unfiltered solution C)t
(1)

where all values are in milligrams of C per liter. Carbon measurements were made using a Shimadzu
TOC-VCPN as described above. Due to the large size of the injection needle port, measurements of
unfiltered solution contained microbial cells and resulting values represent cellular as well as extracellular
carbon in solution.
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Time-resolved exometabolomic footprinting. (i) Targeted metabolites via 1H NMR. Samples
were analyzed by 1H NMR using modified methods previously reported for extracted soil solutions (47,
86). Briefly 30 ml of filtered SESOM medium was immediately frozen and lyophilized. Samples were then
reconstituted with 300 �l of 18.2 M�-cm water. After vortexing, samples were buffered to pH 7.0 with
an addition of 200 �l of sodium hydrogen phosphate (0.1 mM, pH 7.0) made with 25% D2O (vol/vol) to
provide a lock signal and containing 1 mM sodium 3-trimethylsilyl-[2,2,3,3,-D4]-1-propionic acid (TMSP).
Solutions were transferred to 5-mm NMR glass tubes (length, 7 in.; Wilmad “Economy”). Spectral
referencing was conducted in reference to the TMSP (final concentration � 0.4 mM). All NMR spectra
were collected at 500 MHz at room temperature on a Bruker AV 500 operated by Bruker TopSpin 3.5.7
using a 10% D2O and water peak suppression program (one-dimensional [1D] nuclear Overhauser effect
spectroscopy [NOESY] with presaturation and spoil gradients [noesygppr1d]) with 32 scans/sample and
a 5-s relaxation delay for a total of 256 transients. Within MestReNova (v.12.0.0-20080), spectra were
Fourier transformed and zero-filled to 64,000 data points. Spectra were then linearly phase shifted and
apodized using a 0-Hz exponential function. All spectra were manually phase corrected (PH0, �26; PH1,
6) and baseline corrected using the built-in polynomial fit function. All spectra were reference shifted so
TMSP was 0.00 ppm. Lastly, residual water peak was removed using the signal suppression tool with
selectivity at 24 centered on the 4.7-ppm signal. Compound identification was initiated by matching
peaks of interest with suitable references (47, 87) as well as using online spectral data banks (Human
Metabolome Database) to confirm multiplicity and chemical shift. Once identified, integrating regions
were defined and used for integration on all samples (Table S2).

(ii) Targeted metabolites via LC-HRMS. Another set of filtered subsamples were immediately frozen
at –20°C. These samples were thawed and analyzed using LC-HRMS. Samples were run on a Thermo
Scientific Dionex Ultimate 3000 liquid chromatography system coupled to a Q Exactive orbitrap mass
spectrometer. Two separate methods were employed: a reversed-phased approach using a Acquity
ultraperformance liquid chromatography (UPLC) Waters C18 column (2.1 by 100 mm by 1.7 �m) as the
stationary phase and negative electrospray ionization to identify metabolites (88, 89) (Table 2, LC-HRMS-
Metabo method) as well as a hydrophilic interaction approach using a Waters XBridge column
(4.6 by 100 mm by 3.5 �m) and electrospray ionization with polarity switching for amino acids (90) (Table
2, LC-HRMS-AA method). Quality control (QC) checks were run every 10 samples with a 30% standard-
deviation (SD) limit. All data were analyzed using an internally constructed template within the Thermo
Scientific Xcalibur 3.0 Quan browser. The template was built using standards of all identified compounds
and run between 0 and 15 �M.

(iii) Untargeted metabolites via LC-HRMS. Data from the reversed-phase method were alterna-
tively processed using an untargeted approach via XCMS online v.2.3.0 (91). Detailed processing
parameters are included in the supplemental material. XCMS online output with CAMERA annotation was
then imported and further processed using R 3.6.0 (92). Features of interest were further refined based
on the following selection criteria: |ln(fold change)| 	 1, P � 0.05, and maxint 	107). Metabolites already
targeted were removed based on overlapping m/z (
0.001) and retention time (
30 s). The refined
CAMERA output was then used as input for MetaboQuest (http://omicscraft.com/MetaboQuest/), where
m/z was searched against several databases (PubChem, HMDB, LIPID MAPS, KEGG, MMCD, and METLIN)
and the lowest error (parts per million) hit was chosen for putative identification (level 2) (93). Those
returned results containing InChIKeys were then classified using ClassyFire (https://cfb.fiehnlab.ucdavis
.edu/) (94). The superclass level, which includes 26 organic and 5 inorganic categories, was chosen as the
most informative way to present compound differences as determined by this untargeted approach.

Curve fits for substrate depletion. Substrate depletion was modeled using R 3.6.0 (92). Data were
fit using the nls.multstart package (95) to fit sigmoidal uptake curves as described previously (17, 31).
Briefly, a nonlinear modeling approach allows the fitting of a 4-point curve using the following equation:

y �
a

1 � e
x�t50

w

� o (2)

The resulting four parameters produced by the fit relate to the amplitude of the curve (a), the
midpoint of compound depletion from the medium (t50), the width of the concentration decrease (w),
and the offset or predicted final value (o). The width (w) is mathematically defined as the time it takes
for the exponent of e to go from 1 to �1. This parameter has been modified to depict the time from 10%
of substrate utilization [(a � o) � 0.9] to 90% of substrate utilization [(a � o) � 0.1] and is depicted in later
figures as a 90% usage window. For appearance curves, the signs are changed for a portion of the equation,
[�(x � t50)], to invert the model fit. More generally, decreasing and increasing concentrations of compounds
in the media were grouped into four different categories: type 1, early depletion or appearance and
insufficient data for curve fitting; type 2, sigmoidal fit; type 3, sufficient data but nonsigmoidal shape; and type
4, late depletion or appearance and insufficient data for curve fitting (Fig. S4 to S12).

Curves were visually inspected to ensure that measured data were sufficient and appropriate to fit
using this nonlinear function. In some cases, depletion occurred predominantly before or after the
sampling interval (types 1 and 4). In these cases, nonlinear depletion curves were not fit since no data
were available to indicate a suitable t50 or the steepness of the curve around this inflection point.
Parameters of interest (t50) and (width) were extracted and used to construct usage window plots to aid
in the visualization of substrate depletion preferences and overlapping usage windows. A modified
version of the width parameter, 90% usage window, was created by solving the fitted curve for the time
of 10% of usage [(amplitude – offset) � 0.9] as well as 90% of substrate utilization [(amplitude – offset)
� 0.1]. Following the protocol outlined in the work of Erbilgin et al., the differential of the 4-point
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sigmoidal fit was used to solve for the slope of all substrate depletion curves (31). The maximum rate was
then extracted within the time frame of the experiment (0 to 24 h).

Determination of substrate specific growth rates of Paraburkholderia sp. 1N on targeted
substrates. Specific �max was determined by culturing on each targeted substrate as the sole carbon
source. The medium used for these trials consisted of 1� Wolfe’s vitamin supplement (ATCC MD-VS), 1�
Wolfe’s trace mineral solution (ATCC MD-TMS), ammonium chloride (1.5 g/liter), potassium phosphate
(0.5 g/liter), and each substrate supplied at an equivalent C content (200 mg of C/liter). Paraburkholderia
sp. 1N was grown overnight in 10 ml of each sole C medium and then 100 �l was removed into a sterile
2-ml centrifuge tube. Biomass was pelleted at 5,000 � g and washed 3 times using fresh medium. The
sample was then vortexed, 200-�l subsamples were placed into a 96-well plate, and growth was
monitored hourly using a microplate reader at 595 nm (FilterMax F5; Molecular Devices). A total of 3
replicates and an uninoculated blank were used for each sole C medium. Data were imported into R 3.6.0
(92), and the growth rate package (96) was used to fit growth curves for each replicate and extract the
average maximum �max.

Data availability. The genome assembly for Paraburkholderia sp. 1N can be accessed via the NCBI
portal using the BioProject accession number PRJNA590275. Draft genome annotation, along with
associated material, can be found in KBase (https://narrative.kbase.us/narrative/55022). All LC-HRMS and
1H NMR raw data files, associated metadata, as well as processed output have been deposited to the
EMBL-EBI MetaboLights database with the identifier MTBLS1692 (https://www.ebi.ac.uk/metabolights/
MTBLS1692) (97).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 7.3 MB.
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