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Biological networks catalog the complex web of interactions happening between

different molecules, typically proteins, within a cell. These networks are known to be

highly modular, with groups of proteins associated with specific biological functions.

Human diseases often arise from the dysfunction of one or more such proteins of

the biological functional group. The ability, to identify and automatically extract these

modules has implications for understanding the etiology of different diseases as well as

the functional roles of different protein modules in disease. The recent DREAM challenge

posed the problem of identifying disease modules from six heterogeneous networks of

proteins/genes. There exist many community detection algorithms, but all of them are

not adaptable to the biological context, as these networks are densely connected and

the size of biologically relevant modules is quite small. The contribution of this study

is 3-fold: first, we present a comprehensive assessment of many classic community

detection algorithms for biological networks to identify non-overlapping communities,

and propose heuristics to identify small and structurally well-defined communities—core

modules. We evaluated our performance over 180 GWAS datasets. In comparison

to traditional approaches, with our proposed approach we could identify 50% more

number of disease-relevant modules. Thus, we show that it is important to identify more

compact modules for better performance. Next, we sought to understand the peculiar

characteristics of disease-enriched modules and what causes standard community

detection algorithms to detect so few of them. We performed a comprehensive analysis

of the interaction patterns of known disease genes to understand the structure of

disease modules and show that merely considering the known disease genes set as

a module does not give good quality clusters, as measured by typical metrics such

as modularity and conductance. We go on to present a methodology leveraging these

known disease genes, to also include the neighboring nodes of these genes into
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a module, to form good quality clusters and subsequently extract a “gold-standard

set” of disease modules. Lastly, we demonstrate, with justification, that “overlapping”

community detection algorithms should be the preferred choice for disease module

identification since several genes participate in multiple biological functions.

Keywords: overlapping community detection, non-overlapping community detection, disease module

identification, biological networks, heterogeneous networks

1. INTRODUCTION

Biological networks, such as protein–protein interaction
networks, gene regulatory networks, gene co-expression
networks, metabolic networks, signaling networks provide
a mathematical representation of biological systems. In this
work, we are interested in the study of networks that encode
interactions among proteins. These interactions can be physical,
where proteins bind to one another, or functional, where proteins
are associated with one another for performing a particular task.
Analyzing biological networks is essential for guiding biological
experiments—these experiments could otherwise be very difficult
to perform, or even intractable, if every gene or protein were to
be characterized individually.

Biological networks have been observed to be highly
modular (Hartwell et al., 1999), where a tightly connected
group of genes (nodes) are involved in similar biological
functions. These groups are referred to as communities, modules,
or clusters. Modules detected from biological networks are
usually responsible for a common phenotype and are useful in
providing insights pertaining to biological functionality. Module
identification methods (also known as community detection
methods) play a crucial role in obtaining these functional
modules.

Disease phenotypes are usually caused by the malfunctioning
of certain genes, these group of genes is referred to as disease
module. As genes responsible for a phenotype often possess
common functionality, there exists a strong association between
disease modules and functional modules (Goh et al., 2007;
Zanzoni et al., 2009; Barabási et al., 2011). We know that the
modular structure of the biological network is often useful
in identifying functional modules; so, we proceed with the
assumption that the same would be useful to identify disease
modules. It is essential to identify these disease modules,
as it could be helpful for various applications, such as
the comprehensive molecular understanding of the disease,
identification of co-occurring diseases, or the identification of
extensive set of genes for targeted therapies.

Present Work. Various algorithms exist in the literature
for community detection (module identification). Many are
evaluated on in silico generated benchmark networks (Friedman
et al., 2001; Girvan and Newman, 2002; Newman, 2006).
However, performance of these multitude of community
detection approaches across variety of these biological networks
to discover biologically relevant modules (disease modules or
functional modules) remains poorly understood. Such a diverse
set of biological networks are fundamentally different owing
to the generative processes underpinning their structure, it is

important to evaluate performance of different approaches across
them. In this work, we study the adaptability of these community
detection approaches for disease module identification, notably
in the context of the recent an open-community challenge called
as the DREAM challenge (Dialogue for Reverse Engineering
Assessments and Methods) on Disease Module Identification
(DMI)1. The challenge posed the problem of predicting “non-
overlapping” and small modules of size ranging from 3 to
100 nodes, across six different networks. The set of predicted
modules from a community detection method were evaluated
against 180 GWAS datasets to find out any significant association
of modules with complex trait or disease, to identify disease
modules amongst them.

We comprehensively assessed various existing module
identification algorithms across diverse biological networks and
propose novel algorithms with the notion of core communities,
to identify small and structurally well-defined communities.
We obtained a substantial improvement over the traditional
approaches. To our concern, a common problem existed for
all the non-overlapping clustering approaches—the number
of enriched modules were quite less in comparison to the
number of modules predicted. Also, the number of diseases
enriching the modules were very less in comparison to the
number of different GWAS datasets (180 GWAS datasets)
available for testing. These observations beg multiple questions:
(1) Does the disease module possess a community structure
at all? (2) Could we build “ground-truth disease modules”
whose structural properties could be analyzed? (3) Do all of
the diseases have structurally well-defined modules associated
with them? (4) Most importantly, is “non-overlapping”
community detection suitable for disease module identification
as in this challenge? (5) Lastly, is there any association
between the diseases, in terms of common nodes in the
community structure?

We address all of these questions in the present study. In
summary, our main contributions are as follows:

• We have introduced a framework for core module
identification, to identify small and structurally well-defined
communities. We show that this is important to identify
compact modules from biological networks, and to achieve a
better performance in identifying disease-relevant modules.

• We report a comprehensive assessment of many classic
community detection algorithms across 6 different types
of biological networks, evaluated over 180 GWAS datasets.
With our proposed approach, we achieved 50% performance

1https://www.synapse.org/#!Synapse:syn6156761/wiki/400645
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improvement in identifying disease-relevant modules over
classical approaches.

• We have also analyzed the patterns of connectivity in a disease
module to better understand the properties of diseasemodules.
We propose amethod to identify gold standard disease modules
based on the genes already shown to be associated with a
particular disease.

• We show that overlapping community detection is a better
approach for the identification of disease-relevant modules.
Overlapping community detection is a preferred solution as
a gene could be responsible for multiple diseases, and hence
should be part of various disease modules.

• We have utilized overlaps of the disease modules, which
are genes that are involved in multiple diseases (or
disease module), to identify diseases that occur together,
i.e., co-morbid diseases.

2. MATERIALS AND METHODS

2.1. Data
In this section, we summarize the six different biological
networks that were made available as part of the DREAM
challenge. We have identified disease modules in each of these
networks. We also introduce the Genome-Wide Association
Study (GWAS) dataset that is central for evaluating the modules
predicted by the community detection algorithms.

2.1.1. DREAM Challenge Biological Networks
The organizers of the DMI DREAM challenge provided a
unique collection of biological networks for humans. This
collection included multiple physical interaction networks
(protein interaction networks, signaling network) and functional
gene networks (co-expression, homology, and cancer). The
statistics on the number of nodes and edges in these networks
are presented in Table 1. In this section, we will briefly describe
these networks.
Protein-Protein Interaction Network-1: The human protein-
protein interaction network-1 (PPI-1) data were obtained from
STRING version 10.0 (Szklarczyk et al., 2014) after removing the
interactions derived from text mining. In this network, the nodes
represent proteins, and the edges represent interactions, with the
weights representing confidence scores.
Protein-Protein Interaction Network-2: Similar to PPI-1, this
is also a protein interaction network, obtained from InWeb (Li
et al., 2017), where the interactions are aggregated from primary
databases and literature. Again, the proteins are the nodes in the
network, and their reported physical interactions are the edges.
The edge weights represent the confidence in each interaction.
Signaling Network: Türei et al. (2016) have provided the
signaling network, which represents signaling pathways. In this
case, the nodes are the genes, and the directed edges between
them represent the gene interactions responsible for a cellular
function. The weights represent the confidence scores from
the experiments that have reported the interaction. Genes in
this network can be mapped to corresponding proteins in the
other networks.

Co-expression Network: Co-expression network was obtained
from Gene Expression Omnibus (Barrett et al., 2010) and
captures the correlation between the expression patterns of
genes. These expression patterns of genes are observed across
various samples of the experiments performed under different
experimental conditions. The network is created with genes as
nodes and co-expression as the edge between them.
Cancer Network: The cancer network is derived from Project
Achilles (Cowley et al., 2014), which performed experiments
to determine tumor-wise essential genes that are critical for
the survival of that tumor. Those genes that are essential and
are absolutely necessary for a tumor to function are connected
through an edge in the cancer network. These correlations
between the gene expression patterns with respect to a tumor
are studied across various tumor samples. The correlation
scores obtained through these experiments are represented
as edge weights.
Homology Network: The homology network is constructed by
connecting genes which are evolutionarily related. Evolutionarily
related genes were identified using the Clustering by Inferred
Models of Evolution (CLIME) (Li et al., 2014) algorithm.
The algorithm partitions the genes into sets of evolutionarily
conserved module. The algorithm also provides the confidence
scores based on the evolutionary evidence, which are represented
as weights of the edges connecting the evolutionarily connected
genes in the homology network.

2.1.2. Pre-processing
Biological networks being noisy, pre-processing these networks
plays an important role. We sparsified the networks by removing
the edges with low weights. We removed edges having weights
lesser than two standard deviations from the mean. This not only
reduces computation time for the various approaches but also
improves the performance of methods by reducing noise.

2.1.3. Genome-Wide Association Study (GWAS)
A Genome-Wide Association Study is an observational study
conducted across different individuals. The objective of the study
is to investigate the association between genetic variants across
the whole genome and traits. The genetic variants refer to the
variations that occur in a nucleotide at any specific position in
a genome. We have a comprehensive set of 180 GWAS datasets
associated with various complex traits and diseases, which belong
to broader categories of 15 diseases, as shown in Table S1.
Modules predicted by the community detection algorithms are
tested against each of these GWAS datasets.

2.2. Methods for Module Identification
This section details the various approaches that have been
used in our experiments. Methods discussed under “Module
identification using non-overlapping community detection”
form the basis for our proposed framework, as we detail in
section 2.3. Methods discussed under “Overlapping community
detection” are primarily used to analyse the properties of
disease modules, as discussed in section 3. The purpose of this
section is to give an overview of the methods available for
module identification in networks, which are leveraged by us to
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TABLE 1 | Network statistics of different biological networks.

Network

type

#Nodes #Edges Edge

Weight

Density Clustering

coefficient

PPI-1 17,397 2,232,405 Confidence 0.01475 0.13759

PPI-2 12,420 397,309 Confidence 0.00515 0.12421

Signaling 5,254 21,826 Confidence 0.00133 0.00227

Co-expression 12,588 1,000,000 Correlation 0.01262 0.05209

Cancer 14,679 1,000,000 Correlation 0.00928 0.14288

Homology 10,405 4,223,606 Confidence 0.07803 0.04153

improve module identification in biological networks to identify
disease modules.

2.2.1. Module Identification Using Non-overlapping

Community Detection
Non-overlapping community detection methods are frequently
adopted in the biomedical research (Choobdar et al., 2018).
However, such methods restricts every node in a network to
belong to a single community, and due to extensive cross talk
among various genes and pathways, this restriction in biological
networks is untenable. To understand the performance of
different module identification methods with such restrictions,
we tried some of the most commonly accepted approaches in
the field of biology such as modularity maximization (Newman,
2004; Blondel et al., 2008), Markov chain CLustering
(MCL) (Dongen, 2000), and Community detection using
External and Internal scores in Large networks (CEIL) (Sankar
et al., 2015) across various biological networks. We now
discuss various state-of-the-art approaches based on (1) quality
measures to define community structure, and (2) random-walk
based methods to identify community structure.

2.2.1.1. Community quality measures
A network can be defined as G = {V , E}, where V is a set of
n nodes and E ⊆ V × V , is a set of e edges. The network are
represented using an adjacency matrix A, which is square matrix
of dimension |V| × |V|. The element Aij in the matrix is zero
when there is no edge between node i and node j, and non-zero
representing the weight of the edges connecting the nodes; for
unweighted networks the value is one. The degree of a node i
in the network denoted as di, is the number of edges from a
node to the other nodes, i.e., di =

∑

j∈V Aij. Next, we define

some important network parameters that enable measurement of
community quality.
Modularity: Modularity is defined for a group of nodes, as
the difference between the number of edges between those
nodes in the original network and a null model, which
is essentially a random rewiring of the original network,
retaining degree distribution. The higher the difference, the
better is the connectivity between the nodes. For a good
community the modularity score should be high. The highest
value is one. Modularity for a community c is defined

as follows:

Modularity(c) =
1

2e

∑

i,j i6=j

(

Ai,j −
didj

2e

)

δc(i)c(j) (1)

where
didj
2e represents the expected number of edges between

nodes i and j, c(i) represents the community to which node i
belongs and

δc(i)c(j) =

{

1 if c(i) = c(j)

0 otherwise
(2)

Modularity based method for community detection prefers
group of nodes with higher concentration of edges than expected
as communities.
Conductance: Conductance is a measure to define the quality of
the community, based on how well-separated the nodes in the
community are to the rest of the network. It measures the cut of
the community concerning the internal connectivity of the nodes
in the network. A good community is isolated from rest of the
networks thus have low conductance. The conductance of the
community c is defined as:

Conductance(c) =

∑

i∈c,j∈c̄ Ai,j

min(InternalEdge(c), InternalEdge(c̄))
(3)

where c̄i comprises of the rest of the network other than the nodes
in ci and,

InternalEdge(c) =
∑

i∈c

∑

j∈V

Ai,j (4)

CEIL: Community detection using External and Internal scores
in Large networks (CEIL) (Sankar et al., 2015) is another way of
measuring the quality of the community. CEIL strikes the middle
ground between modularity and conductance which takes into
account: (1) the internal density of the community, and (2) the
separability of the community from the rest of the network,
measured by internal and external score respectively.

The density of the community is the ratio of internal
community edges and possible edges inside the community. The
separability of the community from the rest of the network is
measured as the ratio of internal community edges and edges that
are incident on that community. CEIL Score for a community c
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with nc nodes is the product of internal and external score which
are defined below.

InternalScore(c) =

{

InternalEdge(c)

(nc2 )
if nc > 1

0 if nc = 0
(5)

ExternalScore(c) =
InternalEdge(c)

InternalEdge(c)+
∑

i∈c,j∈c̄ Ai,j
(6)

CEIL(c) = InternalScore(c)× ExternalScore(c) (7)

2.2.1.2. Markov Chain Clustering
Markov Chain Clustering (MCL) (Dongen, 2000) is a random
walk-based approach. With the help of random walks, the flow of
the network is analyzed and communities are located where the
flow tends to gather. For MCL, two processes are alternated on
the network, (1) expansion, which involves taking powers of the
transition matrix to determine the flow of the network, and (2)
inflation, which involves re-scaling and normalizing the columns
and then taking the power of the column.

The application on real-world network of thesemethods could
be found in the work of Fortunato (2010).

2.2.2. Module Identification Using Overlapping

Community Detection
Overlapping community detection allows a node to be part
of multiple communities thus resulting in overlapping
communities. As genes are commonly involved in multiple
functionalities, we have explored overlapping clustering
to identify disease modules. The overlapping clustering
approaches that we have explored involve two phases to identify
communities: (1) “seed node” selection and (2) seed expansion.
Since seed node selection is the most critical step to initialize the
communities, we have explored multiple strategies to identify
nodes that are likely to be “disease nodes.” The phases of
community detection are discussed below.

2.2.2.1. Seed node selection
We now describe our approach to identify seed nodes,
which forms the basis for our algorithm to predict
overlapping communities.
Disease seed nodes: Considering the genome-wide significance
threshold of 10−4 as defined by Choobdar et al. (2018), the genes
having a p-value below this threshold were considered as disease
seed genes. We also considered 10−6 as a threshold to keep a
stricter constraint. We defined disease seed nodes as the set of
genes that pass the threshold across the 180 GWAS datasets.
Unsupervised seed nodes: In the absence of information about
known disease nodes, we find a correlation between disease
genes and network centrality measures like degree centrality and
clustering coefficient of nodes. We observed that disease genes
have a higher degree in comparison to the non-disease genes.
Consequently, we used HITS (Schütze et al., 2008) and spread
hubs (Whang et al., 2016), which are based on the degree of a
node, as a seed selection mechanism, to select some important
nodes from the network. We grow the communities using PPR
scores as described in Andersen et al. (2006). As there is no

information involved about the disease seed nodes, we call this
process as unsupervised seed node.

2.2.2.2. Seed expansion
The seed expansion is done based on the Personalized PageRank
(PPR) scores as described in Andersen et al. (2006). PPR
scores are used to rank the nodes in the neighborhood of a
seed node. The nodes, in the order of their ranking based on
PPR scores, are added to the module one by one till the size
of the set reaches a particular value (100 for us) as shown in
Figure 1. The modularity score of the group is computed after
the addition of every node. The group of nodes that has the
maximummodularity among the different groups, obtained after
each addition, forms a module. This seed node expansion process
is done for all the seed nodes.
From next section onwards we will discuss about our
proposed work.

2.3. Proposed Framework—Core Module
Identification
Biological networks exhibit a power-law (Barabási and Albert,
1999) degree distribution, where a few nodes have very
high degrees whereas most of the nodes have small degrees.
Performing community detection on these networks results in a
few giant communities corresponding to the high degree nodes,
along withmultiple small communities. These giant communities
cover most of the network and are least informative to derive
any biological insights. Thus, there exists a need to improve the
setup to perform community detection. Works in the past, such
as those done by Berger and co-workers Singh et al. (2006),
take into account the domain knowledge for generating finer
clusters. However, identifying finer clusters without any domain
knowledge is an interesting problem to be studied. We have
proposed few approaches in this section to obtain finer clusters.

We introduce the term core of the module to represent finer
modules. A core is structurally the strongest part of the module.
We have designed four different frameworks to extract the core
module, which are explained below:

2.3.1. Ensemble Approach to Clustering
There exist multiple topological definitions of communities
and multiple metrics like modularity, conductance, etc. to
identify them. However, which topological definition suits a
“biologically meaningful” community, is not well-studied. It
would be interesting to incorporate multiple topological aspects
to generate biologically meaningful modules.

Asur et al. (2007) and subsequent followup (See surveys Ghosh
and Acharya, 2013; Ji et al., 2014), suggest ensemble frameworks
to combine different clustering algorithms on biological data.
Many approaches are suitable for base clustering approaches,
that have a fixed number of predicted clusters. Working with a
fixed number of clusters might not be the best way of identifying
communities from a network, as we do not know a priori the
desired number of clusters. We develop a simple yet novel
approach to compute a consensus from the approaches that do
not require the number of clusters to be fixed.
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FIGURE 1 | Red nodes represent the module formed by disease seed genes; the set of potential candidate nodes in the local neighborhood of the module is shown

in gray; the green node represents the detected gene based on the personalized page rank score and will be included in the module at the next step. This is adapted

from the image licensed under the CC BY 4.0 license and attributed to Ghiassian et al. (2015). A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a

Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome. PLoS Comput Biol 11(4): e1004120. https://doi.org/10.1371/journal.

pcbi.1004120.

We have built an ensemble framework that takes consensus
across various approaches, like modularity maximization (with
different resistance parameter settings to obtain modules of
different sizes), MCL and CEIL. These approaches captures
varied aspects of the network structure without fixing the number
of clusters to be predicted. We consider r base clustering
approaches for a network with a set of nodes V = {vi}

n
i=1. We

build a vector for each node, v, {[v]q| q = 1, 2, ..r}, where each
element corresponds to the community assignment of that node
in the qth clustering algorithm (see Figure 2A left).

The pairwise Jaccard similarity (Jaccard, 1901) between nodes,

represented as Jsim{vi, vj} =
‖{vi∩vj}‖

‖{vi∪vj}‖
, is computed to obtain the

similarity between the community assignments across all the
nodes (as demonstrated in Figure 2A right). For example,
if the similarity between a given pair of nodes is unity, it
means that the nodes co-occurred in the communities predicted
by all the algorithms. We then built a similarity matrix out
of these pairwise Jaccard similarity values, and subsequently
constructed a network from this similarity matrix by linking
the nodes having a similarity greater than 0.5. Finally, we use
modularity maximization to perform module identification on
the resultant network.

2.3.2. Perturbations to Identify Robust Communities
Biological networks have a lot of inherent noise (Bader
and Hogue, 2002), caused by the incompleteness of data or
experimental biases. Therefore, it is important to identify
communities that are robust to noise in the network. To identify
robust communities, we follow a setup of perturbing the network
multiple times and then performing a community detection on
the perturbed networks.

We perturbed the network by randomly dropping 1% of edges.
We repeated this for 100 iterations as indicated in Figures 2B,C.
To detect communities on all the perturbed networks, we follow

a setup similar to the ensemble approach described earlier,
performing modularity maximization on the similarity network.
This enabled us to identify modules persistent across perturbed
networks. The process is explained in the Figure 2D.

2.3.3. Core With Minimum Outgoing Edges
A community should have a higher number of edges connecting
the nodes within a community (“internal edges”) (Newman,
2004) and a fewer number of edges connecting nodes outside the
community (“outgoing edges”) (Kannan et al., 2004). For large
communities, we identify a core that consists of the nodes that
satisfy the property of a good community. These are the nodes
that have a higher number of internal edges and a fewer number
of outgoing edges. To this end, we have computed a core score
for each node n, which considers the ratio of outgoing edges to
internal edges from that node as follows:

CoreScore(n) =
OutgoingEdges(n)

InternalEdges(n)
(8)

We rank the nodes in a module on the basis of their core
score, i.e., nodes with lower scores get better ranks. In the
case of larger communities of size more than 100, we consider
the top 60 nodes as the core and ignore the remaining nodes
(Figure 2F). We consider only top 60 nodes as we figured out
through empirical studies by running multiple experiments that
the average size of a disease module is 60. Figure 3 shows the
size distribution of the disease modules obtained using multiple
approaches. This approach helped in pruning the least important
nodes from modules.

2.3.4. Multiple Core Identification
We defined an iterative way of performing community
refinement. In the first step, we used modularity maximization
to identify modules in the network. Some of the resulting
modules can be quite large due to the high connectivity of
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FIGURE 2 | Core module identification methods (A) The process of ensemble clustering, which uses the power of multiple community detection approaches. A vector

of community assignment is created for each node (left). The consensus is taken by computing the Jaccard similarity between the community assignment vectors, for

every pair of nodes (right). (B–D) Perturbation, the process of perturbing the network and finding consensus module across the set of perturbed networks: (B,C) are

examples of perturbed network after randomly dropping 1% of the edges (dashed lines), (D) community detected across the set of 100 perturbed networks.

(E) Multiple Core Identification breaks the large module identified by a community detection algorithm into smaller modules as shown in the example where the dotted

circle represents a large module and the colored circles represent the multiple cores obtained, by breaking down the larger modules. (F) From a large module min

outgoing edges selects the group of nodes with minimum outgoing edges and maximum internal connection as in the example where dotted circle represents the

large module and colored circle represents the core.

FIGURE 3 | Size distribution of disease-enriched modules identified by various

methods across networks. The X-axis represent different network and Y-axis

represents the size distribution of disease enriched modules. The orange line

in the box-plot represents the mean of the distribution and bubbles represents

the outlier data points.

few of the nodes. There is a higher chance of occurrence
of multiple well-connected cores in a single large module, as
depicted in Figure 2E. However, it is difficult to avoid merging

of these modules at the time of module formation process
during the modularity maximization step. Generally, modules
grow quickly around a high-degree node due to the frequent
merging of communities around it, whereas modules grow slowly
around the section of a network having low-degree nodes. If
we stop the iterative module formation early, to capture smaller
communities, it often compromises on the module lying in
the sparser regions of the network. Therefore, we allow the
module formation step to progress until there is no change in the
modularity score of the entire network. Thereafter, we perform
an iterative partitioning of larger modules into multiple smaller
modules. This re-clustering resulted in many smaller modules
fitting the size requirements of the challenge.

2.4. Overlapping to Non-overlapping
Community Assignment
For understanding the sensitivity of the overlapping and non-
overlapping clustering approaches, we convert the overlapping
communities to non-overlapping communities and compare
their performance. Initially, we form a base community, which
is comprised of only those nodes that got a single community
assignment. To obtain non-overlapping communities the nodes
that are part of multiple communities, i.e., the overlaps of the
communities, needs to be assigned to one of the base community.
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We have suggested the following three ways of assigning the
overlap to the base community:
Random Allocation: Random allocation involves assigning the
nodes in the overlap randomly to one of the base communities.
The drawback of this method is that the community structure is
not well-defined after the assignment.
Conductance Assignment: In order to maintain the structure
of a community, the node assignment should be based on some
quality measure for the community. We have used conductance.
We assign nodes in the overlap to the base community with
which it has the minimum conductance score.

However, while assigning a node to a base community, the
conductance score for each node is independently checked
against each base community. This means that, toward the end
of the node assignment, the community structure need not be
preserved, as all the nodes were independently assigned and
the inclusion of even a single node can drastically change the
community structure.
Iterative Conductance Assignment: To resolve the problem
addressed in the previous approach, we follow an iterative way
of assigning the node to the base community. Each node in the
overlap is assigned to the base community with the minimum
conductance, one after the other, and the conductance score is
re-computed for the base community. This a called as a phase of
community assignment.

After completion of a community assignment phase, the nodes
which were part of the overlap are extracted from the base
community one by one and reassigned to the community with
which it has the best conductance score. This is done to avoid
any bias due to the order in which the nodes were assigned.
Thus, the phases are repeated iteratively till convergence, when
no node changes its community. Though we do not give a proof
of convergence, we have empirically observed that this approach
converges after a few (typically 3–5) iterations.

2.5. Evaluating Disease Modules
The DREAM challenge organizers provided a novel framework
for assessing the methods based on the number of predicted
modules that are significantly associated with complex traits
and diseases (with the help of GWAS data). Instead of using
traditional methods that take into consideration the functional
annotation or pathway databases, they used GWAS datasets. This
methodology of scoring is better, unlike functional annotations
that originate from a similar type of functional genomics as the
networks themselves. GWAS provides an entirely orthogonal
view, for validation.

2.5.1. Module Scoring Using PASCAL
PASCAL (Lamparter et al., 2016) stands for PAthway SCoring
ALgorithm, which is a tool used to integrate SNP-trait
associated p-values to incorporate gene-score and module score
as illustrated in Figure S1. The gene score is computed by
aggregating SNP-p-values for a GWAS dataset while correcting
for confounders such as Linkage Disequilibrium (LD) correlation
structure as explained in Figure S1A. For the module genes
which are in LD and cannot be treated independently, this fast
gene scoring method fuses the genes and recomputes the gene
score as in Figure S1B. Modified Fisher method is used for

computing enrichment in high scoring genes, where genes in
the network become the “background gene set”. The enrichment

score is defined as the number of modules with the significant
score at 5% FDR (false discovery rate) cut-off for at least one of
the GWAS dataset. The final score of the method is the number
of disease enriched modules it discovers.

2.6. Implementation
All the approaches in core module identification, module
identification using non-overlapping community detection and
overlapping to non-overlapping community assignment were
implemented in Python. For modularity maximization, we
have used the implementation from the NetworkX package for
Python (Hagberg et al., 2008). The MCL-edge software provided
by Enright et al. (2002) was used for finding clusters using
MCL. The implementation of CEIL algorithm was taken from
the source code provided by Sankar et al. (2015). The evaluation
script was provided by DREAM challenge organizers.

3. RESULTS

Next, we study the community structure of the networks, to
investigate if the disease modules are indeed clusterable, and
proceed to answer the questions posed in section 1. We then
show the importance of performing an overlapping community
detection, and how it captures far more relevant modules. We
further go on to illustrate how some knowledge of communities,
in terms of “seed nodes” can positively impact the quality of
clusters. Lastly, we show that overlaps of the disease modules
helps in identifying comorbid diseases.

3.1. Core Module Identification Captures a
Higher Number of Disease-Relevant
Modules Than Traditional Community
Detection Approaches
The well-known non-overlapping clustering approaches like
MCL, modularity maximization and CEIL, tend to identify
communities that are large and their size is dependent on the size
of the network. However, disease modules are generally small.
Wilber et al. (2009) have shown that small communities in these
networks are biologically homogeneous. Biological homogeneity
is evaluated from the functional similarity between pairs of
genes, which is available from resources such as the Gene
Ontology Database (Ashburner et al., 2000). They have shown
that the functional similarity between pairs of genes in a small
module is significantly higher than the functional similarity
between all possible pairs. Core module identification methods
identify smaller and structurally better communities. The size
distribution of the traditional and core module based methods
can be seen in the Figure S2.

Most of the methods that are considered have hyper-
parameters; varying them could control the size and the number
of modules detected. We have evaluated all the methods
through an extensive grid search (parameter tuning) and report
the best result for each method; the corresponding hyper-
parameters are mentioned in the Table S2. For MCL, we vary
the inflation (I) parameter in the range [2, 9] at intervals of 1
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TABLE 2 | Results of module identification approaches on simple networks, using off-the-shelf approaches mentioned as baselines, core module identification proposed

by us and Diffusion State Distance (DSD) which is the winning method of DREAM challenge.

Network Baselines Core module based methods DSD

MCL Modularity

maximization

CEIL Perturbation Ensemble Recluster Min

outgoing

(A)

PPI 1 16 (872) 8 (262) 12 (1398) 18 (260) 16 (250) 20 (460) 22 (462) 24 (1020)

PPI 2 18 (1125) 9 (209) 11 (1696) 17 (284) 17 (601) 19 (1311) 21 (1311) 19 (445)

Signaling 9 (268) 10 (111) 6 (320) 9(180) 8 (191) 11 (144) 14 (77) 17 (194)

Co-expression 9 (463) 10 (194) 5 (1336) 13 (126) 12 (202) 17 (145) 20 (205) 24 (207)

Cancer 4 (598) 4 (164) 5 (831) 6(598) 5(249) 3(518) 9 (114) 7 (329)

Homology 8 (180) 6 (177) 7 (320) 7 (168) 7 (87) 7 (212) 10 (149) 11 (212)

Score 64 47 46 70 65 77 96 102

(B)

PPI-1 0.0183 0.0305 0.0086 0.0692 0.064 0.0435 0.0476 0.0235

PPI-2 0.016 0.0431 0.0065 0.0599 0.0283 0.0176 0.0195 0.0427

Signaling 0.0336 0.0901 0.0188 0.05 0.0419 0.0764 0.1818 0.0876

Co-expression 0.0194 0.0515 0.0037 0.1032 0.0594 0.1172 0.0976 0.1159

Cancer 0.0067 0.0244 0.006 0.01 0.0201 0.0058 0.0789 0.0212

Homology 0.0444 0.0339 0.0219 0.0417 0.0805 0.033 0.0671 0.0519

The result contains, for different methods, (A) the number of enriched modules out of the total number of predicted modules in brackets. The score in the last row represents the sum

of disease modules predicted across the six different networks, and (B) “hit ratio”, illustrating the fraction of predicted modules that are enriched.

The numbers in bold highlight the best approach for each of the 6 networks. The results show that DSD approach predicts more enriched modules, while core-module based approaches

give higher hit-ratio (ratio of enriched to total predicted modules).

and the expansion is fixed at 2. The resistance (R) parameter
for modularity is varied in the range [0.1, 1] at intervals of
0.1. CEIL does not have any hyper-parameter to be tuned.
Table S3 presents the detailed results at each parameter setting.
Core module identification methods are frameworks to extract
compact modules and are built on top of the baseline methods.
For core module identification, we have experimented with all
the baseline methods and have reported the one’s giving the
best performance along with its hyper-parameter. The winners
of DREAM challenge used Diffusion State Distance (DSD) (Cao
et al., 2013, 2014) as a distance measure to perform kernel-based
clustering. We have compared against their winning results. For
the perturbation method, modularity maximization (with R as
0.1) is applied on all the perturbed networks; then consensus
is taken over the modules predicted across perturbed networks.
Ensemble uses all the baseline methods with all possible hyper-
parameters. Recluster was done on the giant modules obtained
from the best reported baseline method for that network.

Therefore, the baseline method along with their hyper-parameter
are reported in the table. The method for selecting nodes with

minimum outgoing edges was applied after recluster method.
The results denote the number of enriched modules out of

the predicted modules from the methods. The enrichment of a
module is tested using PASCAL tool across 180 GWAS datasets.
The results with best hyper-parameter setting are given in the
Table 2; the number of disease-enriched modules identified by
core module-based methods is much higher than those identified
by the baseline approaches (Table 2A). In addition, we also show
the “hit ratio” (Table 2B), illustrating the fraction of predicted
modules that are enriched. Some methods, such as CEIL predict
a large number of modules, but not many of them are enriched.

On the other hand, our method, although it predicts marginally
fewer modules, shows a much higher hit ratio. The reason for
performance improvement on applying the proposed heuristics
is due to the identification of coremodules, which are smaller and
structurally better, as discussed in section 2.3. From our proposed
methods, min outgoing edges has the best performance with
respect to number of disease-enriched modules identified, as it
is a two-way refinement process (1) reclusters the giant modules
obtained from baseline methods; therefore making the modules
small with better internal connectivity (2) selects the nodes based
on core score thus pruning away the less important nodes.
The performance of our model is comparable to the winning
team’s performance, and in networks like PPI and Cancer, our
method even outperforms the winning team’s method, showing
the strength of our model.

3.2. Clusterability of Disease Modules: An
Analysis of Non-overlapping Community
Detection
On analyzing the results of non-overlapping clustering
approaches a common problem existed for all the methods,
the number of enriched modules was quite less in comparison to
the number of modules predicted. Also, the number of diseases
enriching the modules were very less in comparison to the
number of different (180) GWAS datasets available for testing.

To understand the network structure of disease module
we studied the “clusterability” of disease modules. We define
clusterability as the connectivity strength or the quality of the
module. The ground truth disease modules are readily not
available. To analyse the clusterability of a disease module, we
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try to understand the connectivity between the genes that are
known to have an association with the same phenotype. These
disease genes need not be highly interconnected to possess the
graph-theoretic community structure. This phenomenon could
be explained with the help of the Figure 4, where, the same
colored nodes represents genes associated with a disease. As is
evident from the figure, there are two possibilities: (1) genes
associated to disease are in the neighborhood but are not so
strongly connected to qualify the definition of community, or
(2) structurally well-defined community need not be associated
with a particular phenotype.

To understand clusterability, we examined the cluster quality
of the largest connected component (LCC) of genes (nodes)
in the network associated with the same GWAS dataset. Here,
the cluster quality is defined on the structural properties of
the cluster. We obtain cluster quality based on modularity and
conductance scores. Modularity score is the difference between
the number of edges that fall within the given clusters and
the expected number of edges if edges were distributed at
random (Newman, 2004). Whereas, conductance is indicative of
dense connections within the group, and fewer links to the rest of
the network. For good quality clusters, a higher modularity score
(best is 1.0) and a lower conductance (best is 0.0) are preferred.

We observed that the cluster quality of the LCC of trait-
associated genes is quite poor. The cluster quality of the LCC
is depicted by the heatmaps representing as shown in Figure 5:
the X-axis represents cluster quality across 180 GWAS datasets,
which are stacked one above the other in groups of 30 datasets
(stacking was done to aid visualization). The Y-axis represents the
six networks. All the LCC have poor modularity scores, which are
close to 0 as in Figure 5A. The conductance score is also poor for
most of the LCCs, as shown in Figure 5B.

Community detection methods based on optimizing cluster
quality measures fail to identify disease modules because of poor

FIGURE 4 | Group of genes associated with a disease do not necessarily

possess graph-theoretic community structure. Nodes with the same color

represent genes associated with the same phenotype. The shaded circle over

the colored nodes represents the possible disease module while a “structurally

well-defined community” need not be enriched with a specific disease.

modularity and conductance scores of these modules. Therefore,
it is hard to identify disease modules using community detection
approaches based on optimizing these cluster quality measures.
However, it would be interesting to study the structurally well-
defined community that could be obtained from these LCC.

3.3. Approximating Gold Standard Disease
Modules
The ground truth disease module are readily not available in
order to substitute we identify structurally well-defined modules
initiated from known disease-associated gene and define it as
gold-standard disease module. We obtain the trait-associated
genes from the 180 GWAS datasets and call them as disease seed
nodes. We explicitly try to enforce the community structure into
these groups by adding the neighborhood nodes using the seed
expansion process.

3.3.1. Gold Standard Modules Exhibit Clusterability
The modules obtained after this disease seed node expansion
procedure were checked for enrichment using the PASCAL
tool as described in section 2.5.1. The enriched communities
so obtained are called as the gold-standard disease modules.
Thesemodules have proper community structure and are curated
from the significant disease nodes. The statistics pertaining to
the number of disease seed nodes obtained and the number
of gold-standard modules identified are shown in Table 3.
The percentage of the seed nodes covered in the enriched
communities represents that these seed nodes have a well-
structured disease neighborhood around them. “Disease spread”
represents the number of GWAS datasets from out of 180
of them that could be identified in a particular network. The
empirical results as in Table 3 suggest that many diseases have
a good community structure in the PPI-1 network. These
results also show that prior knowledge of disease seed nodes
improves the performance of community identification by ten
times as opposed to purely network driven community detection
(Table 2). For example, in the case of PPI-1, we find 337
disease-enriched modules with this approach, compared to 22
from section 2.3.

The disease seed node expansion procedure is helpful in
identifying many disease enriched modules in comparison to
the methods described in section 2.3. However, along with the
increase in the number of enriched modules, there is also an
increase in the number of non-enriched modules. We now study
the difference in cluster quality of the enriched and the non-
enriched modules.

We calculate the cluster quality of all the modules, predicted
by the gold standard module identification process, using
modularity and conductance scores. The predicted modules are
divided into two sets—enriched and non-enriched modules—
based on the enrichment predicted by the PASCAL tool (section
2.5.1). The distributions of cluster quality scores for the enriched
and non-enriched modules across the six networks were then
compared using notched box plots.

The distributions of the modularity and conductance scores
of enriched and non-enriched modules can be visualized in the
Figure 6. The notch represents the confidence interval around
the median. The visual interpretation of these notches is that,
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FIGURE 5 | Heatmap for measuring the quality of the largest connected component of genes associated with a single disease using: (A) modularity score, where

higher score is preferable and (B) conductance score, where lower score is preferable. The X-axis represents the 180 GWAS datasets and Y-axis represents the six

networks. The color bar on the right represents the color coding for values marked in the heat map.

if notches of box plot of two distributions do not overlap,
then their medians differ with 95% confidence. The mean
of the distributions of scores for enriched and non-enriched
counterparts vary significantly as there is no overlap between the
notches of the two distributions. This variation is quite significant
for PPI-2 and signaling networks.

We can conclude from the study that disease-enriched
modules in all the networks have better clusterability properties.
So the predicted modules could be ranked on the basis of
modularity or conductance scores, and the higher ranked
modules are more likely to be disease modules.

3.3.2. Amount of Disease Seed Nodes Required for

Expansion
We took 10−4 and 10−6 as p-value thresholds, to identify disease
seed nodes. The identified disease seed nodes across the set of 180
GWAS dataset is quite large in comparison to the total number
of genes in the network as can be seen in Table 3. For example, in
the case of PPI-1, 5436 disease seed nodes are identified, whereas
there were 17397 genes in the network (from section 2.1), which
means 30% of the network is a part of disease seed nodes.

The percentage of genes covered in the disease modules
indicate that not all disease seed nodes are required for disease
module identification. Here, we proceeded to analyse the amount
of known disease seed nodes required for expansion, and how the
performance is impacted knowing a fewer number of disease seed
nodes. We randomly selected 10, 50, and 80% of the known seed
nodes (with a p-value cutoff of 10−6) and performed disease seed
node expansion from these and observed the enriched modules
obtained. This step of randomly selecting k% nodes was repeated
five times to avoid any bias due to a single run. The enriched
modules reported in Table 4 shows the average of the modules
predicted in five runs. It is observed that for some networks like

PPI-1, PPI-2, and signaling, increasing the number of known
seed nodes improves the number of disease modules recovered.
In other networks, namely, homology, cancer and co-expression,
the number of known seed nodes did not substantially change the
number of disease modules identified.

3.4. Disease Modules Are Naturally
Overlapping and Transcription Factors
Mostly Lie in the Overlaps of Disease
Modules
From the gold standard module identification procedure we
obtain overlapping communities and the drastic increase of
almost 10 times in the number disease modules identified in
comparison to non-overlapping methods (Tables 2, 3) suggests
that “overlapping methods” should be a preferred choice for
disease module identification. We also try to find out the
biological relevance for the nodes that are part of multiple
communities. An overlap is defined as the nodes that are shared
by a pair of overlapping modules. We find that nodes that lie
in the overlap of the gold standard disease modules are mostly
transcription factors (TF). Figure 7 shows the box plot of the
distribution of the number of enriched modules the TFs are part
of. Transcription factors regulate the expression of multiple genes
and hence affect multiple pathways of varying functions. Since
TFs control different functions, they are expected to be found in
overlapping regions of the disease modules.

3.5. Overlapping Community Detection in
the Absence of Known Disease Seed
Nodes
As we established the importance of overlapping community
detection for disease module identification it is also necessary to
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TABLE 3 | Gold standard disease modules identified from disease seed node expansion, keeping p-value threshold as 10−4 and 10−6 across 180 GWAS datasets.

Network Significance threshold 10−4 Significance threshold 10−6

# Seed

nodes

Enriched Disease

spread

Seed nodes in

enriched (%)

# Seed

nodes

Enriched Disease

spread

Seed nodes in

enriched (%)

PPI 1 5436 337 (5433) 52 39.09 3103 266 (3101) 57 37.12

PPI 2 3876 130 (3844) 28 21.05 2267 103 (2250) 32 21.53

Signaling 1893 158 (1840) 36 31.80 1174 126 (1139) 44 37.39

Co-expression 4099 174 (4094) 34 53.86 2406 152 (2404) 38 54.61

Cancer 4507 6 (4429) 5 2.37 2555 2 (2522) 2 1.76

Homology 3227 28 (3154) 7 13.39 1861 14 (1826) 6 10.31

The number of seed nodes obtained is mentioned in the 2nd and 6th column. The 3rd and 7th columns show the number of enriched modules against the predicted ones mentioned

in the brackets. Disease spread represents the number of unique GWAS datasets identified across all the predicted modules. Percentage of seed nodes covered in the module is

also tabulated.

FIGURE 6 | Notched box-plot representing (A) modularity and (B) conductance of enriched modules (pink) compared to non-enriched modules (blue) across the six

networks. High modularity and low conductance is preferred for better quality clusters. Owing to the lack of overlap between the notches of the two distribution, the

enriched modules have a significantly higher modularity and lower conductance score in comparison to non-enriched modules. A notched box plot is a graphical

way of representing data. The box represents the interquartile range (IQR) of the data, where 50% of the data fall. The middle line denotes the median of the data. The

top whisker is 1.5 times more than 75 percentile (Q3), and bottom whisker is 1.5 times lesser than 25 percentile. The notch represents the confidence interval around

the median. The visual interpretation of these notches is that, if notches of box plot of two distributions do not overlap, then their medians differ with 95% confidence.
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TABLE 4 | The number of modules predicted when starting with different fraction of initial known seed nodes (10−6).

Disease Seed PPI 1 PPI 2 Signaling Co-expression Cancer Homology

100% 10−6 266 (3101) 103 (2250) 126 (1139) 152 (2404) 2 (2522) 14 (1826)

80% 10−6 165.8 (2147.6) 90 (1357.2) 53.4 (597.6) 152.2 (1859.4) 5 (1484.2) 14 (1221.8)

50% 10−6 111 (1378.4) 60.6 (897.4) 35.2 (407.6) 105.8 (1167.4) 5.2 (979.6) 13 (793.8)

10% 10−6 40 (292.8) 20.6 (202.6) 16.8 (98.2) 29 (236) 8.4 (216.8) 12 (174.2)

Here, the value represents the number of enriched modules out of the total number of modules predicted mentioned in brackets.

explore this approach in the absence of known disease seed nodes.
We have selected HITS and spread hubs, which selects nodes
based on their degree, to identify seed nodes. For each network,
we kept the number of seed nodes fixed as for gold-standard
disease module, and selected those many seed nodes using HITS
and spread hub. The enriched and predicted modules obtained
after seed node expansion can be found in theTable S4. This table
also compares against the gold standard disease module results.
It is observed that the best results in terms of the number of
enriched modules predicted, is obtained for the PPI-1 network.

The performance of unsupervised seed node expansion is
visually compared with the gold standard module identification
process with the help of scatter-plots as in Figure 8. The X-axis
and the Y-axis of the plot represent the number of enriched
modules as predicted by gold-standard module identification
and unsupervised seed node expansion respectively. Different
colors in the plots correspond to different networks as mentioned
in the legend. For the same network, the plot shows multiple
bubbles; those are with respect to the different number of seed
nodes used for expansion. The line in the plot is for x = y,
where the performance of disease seed node expansion is similar
to unsupervised seed node expansion. As is quite intuitive,
all the bubbles are below the partition line which means that
the performance of disease seed node expansion is consistently
better. It is observed that the performance of unsupervised seed
node expansion on PPI-2 is comparable to its gold-standard
disease module counterpart. Also, Figure 8B shows that the
performance of spread hub as seed node selection is quite close
to the disease seed node expansion as all the bubbles are much
closer to the partition line.

3.5.1. Sensitivity Analysis of Non-overlapping and

Overlapping Clustering Approaches
The methods based on optimizing a “quality function,” such
as conductance or modularity, non-overlapping communities,
which means a node is part of a single module. The other class
of methods we concern ourselves with are the non-overlapping
clustering approaches using seed node based expansion methods.
Below, we perform a detailed comparison of both classes of
methods.We compare the number of enrichedmodules obtained
from seed node based expansion methods with the quality
function based approaches to understand the superiority of one
over the other.

However, for a fair comparison between the approaches
all of them should have a similar setup that is they should
have either overlapping or non-overlapping communities.

FIGURE 7 | Box-plot representing transcription factors involved in multiple

diseases. The X-axis represent different network and Y-axis represents

distribution of number of disease module a TF is involved. The notches in the

box-plot represents the mean of the distribution.

Therefore, we convert overlapping communities to non-
overlapping communities using methods defined in section 2.4

The performance of the quality function-based community
detection and seed node expansion methods are compared
in the Table 5. The results suggest that identifying important
nodes in the network and localizing communities around
them is a better way of performing disease module
identification, where compared to growing and merging
communities from all possible nodes as done in quality function
based approaches.

3.6. Overlapping Disease Modules Helps in
Identifying Comorbid Diseases
We proceeded to derive useful insights from gold standard
modules by studying comorbidity among diseases, i.e.,
those disease which have chances of co-occurring together.
Comorbidity study is done by identifying diseases associated
with the same disease enriched modules. Figure 9 shows a box-
plot, representative of the distribution of the number of diseases
that are associated with an enriched module; these modules are
identified by various approaches which are already discussed in
this and previous chapters. The distribution shows that there are
multiple diseases associated with a disease enriched modules,
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FIGURE 8 | Scatter plot comparing number of enriched module predicted by (A) HITS (B) Spread hub seed node expansion against disease seed node expansion.

The X and the Y axis represents the number of enriched modules disease seed node and unsupervised seed node expansion respectively. Different colored bubbles

represents different network as mentioned in the legend. The partition line in the plot is x=y where performance of disease seed node expansion is similar to

unsupervised seed node expansion.

TABLE 5 | Comparing quality function-based community detection with seed nodes expansion method after converting overlapping to non-overlapping communities for

fair comparison.

Network Quality function based Seed expansion based

Modularity CEIL Disease HITS Spread hub

PPI 1 8 (262) 12 (1398) 26 (283) 24 (921) 28 (888)

PPI 2 9 (209) 11 (1696) 16 (191) 11 (659) 16 (207)

Signaling 10 (111) 6 (320) 15 (219) 10 (192) 12 (183)

Co-expression 10 (194) 5 (1336) 24 (234) 15 (743) 11 (240)

Cancer 4 (164) 5 (831) 11 (209) 6 (239) 7 (962)

Homology 6 (177) 7 (320) 9 (159) 3 (172) 9 (185)

Total 47 46 101 69 83

The values in the table represent the number of enriched modules along with the predicted modules in the bracket.

especially in PPI-1. Modules enriched for multiple diseases are
helpful in finding the association between the diseases. A module
represents a group of genes responsible for diseases. Thus, if a
person gets a particular disease due to improper functioning
of few genes, then (s)he is likely to get another disease whose
underlying responsible genes are the same. This study can help in
answering questions such as, if a person has a particular disease,
then how likely he can have another disease. As PPI-1 has the
highest number of comorbid associations, we choose modules
identified on this network for co-morbidity study.

We formed a comorbid network where the nodes are different
diseases as shown in Table S1 and the edges are indicative of a
module being enriched with the connected disease nodes. We
consider the modules that are getting enriched with multiple
diseases and connect all these diseases with an edge, and we also
keep an edge count as to how many times those two diseases

occurred together. Figure 10 shows the comorbid network
created from the association between diseases of enriched
modules on PPI-1, here we have kept top 50% associations based
on the edge count.

The top associations represent the most frequently
co-occurring diseases identified, based on the modules
enriched with multiple diseases. Higher association between
two disease means that there is more evidence for their
correlation, as they have been grouped together more
number of times. From Figure 10, anthropomorphic
disease are seen to be connected with most of the other
diseases suggesting that it is linked with many of the
diseases. Further, the links between Glucose Metabolism
and Lipid/Heart are also not very surprising, given the
remarkable co-ocurrences of diabetes, coronary heart diseases,
and hypercholesterolemia etc.
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FIGURE 9 | Distribution of number of GWAS datasets associated with the

disease enriched module identified by various approaches. The X-axis

represents different networks and Y-axis represents number of GWAS

datasets associated with the disease module. The orange line represents the

mean of the distribution.

FIGURE 10 | Comorbidity network showing associations between different

diseases, created on the basis of number of GWAS datasets associated with

enriched modules. The nodes are sized based on the number of GWAS

datasets associated with the disease. AMD stands for Advanced Macular

Disorder and BMD stands for Bone Mineral Density. These diseases are the

same as those in Table S1. Hepatitis-C mentioned in the table is not in the

comorbid network as there is minimal evidence of it being associated with any

other disease.

4. DISCUSSION

The identification of communities in networks is a well-
studied problem in computer science. In this DREAM challenge,
the goal was to identify such modules, or communities,
in various biological networks, and study their association
with diseases. In the present study, we examined various
approaches for community detection, and their applicability
to biological networks, to identify disease-relevant modules.

Notably, we illustrate the importance of identifying smaller
“core” communities compared to standard non-overlapping
clustering algorithms. Further, we analyse the need and
importance of overlapping communities and the utility of seed
nodes or partial knowledge in greatly improving the prediction
of biological relevant disease modules from diverse networks.

We have three key results. First, we show that well-known
non-overlapping clustering approaches fail to identify sufficient
number of relevant disease modules. Our core-module based
identification methods, which identify smaller and structurally
better communities, could identify larger number of disease-
enriched modules than those identified by well-known non-
overlapping community detection approaches. The state-of-
the-art non-overlapping clustering approaches detect large
communities and the core module identification approaches
detect small communities as can be seen in the Figure S2.
In almost all the cases, we saw an improvement in the
performance on downsizing the size of the communities. It is
important to note that this was also affected by the DREAM
challenge evaluation, which mandated the identification of
smaller communities ranging from 3–100 nodes. Nevertheless,
such smaller communities are more common in biological
networks (Wilber et al., 2009), and can indeed capture more
disease-relevant communities as observed in the results. Another
important observation was that the different networks provided
in the challenge present diverse views of the interactions
happening in the cell. Therefore, each network has different
network properties and consequently need different approaches
to identify disease modules in them. For example, PPI-1 had
smaller-sized disease modules than PPI-2 as can be observed
in Figure 9, and hence Multiple Core Identification was able to
perform better than MCL as the former method downsizes the
size of the community. Min Outgoing edges further reduced the
size of the module thus improving on the number of modules
identified. For signaling and co-expression network we know
that genes interacting with more number of other genes are
biologically more active (Vidal et al., 2011) and this could be seen
in the results – method min outgoing edges which gives more
importance to nodes with higher degree showed a remarkable
improvement overmodularity maximizationmethod. It was hard
to achieve good performance for cancer network as despite
using known disease nodes in Table 3, module identification
gave very poor number of disease enriched modules. For
the homology network, ensemble with min outgoing edges
was useful. Overall, the number of disease-enriched modules
identified by core module-based methods was higher than
those identified by the baseline approaches. The reason for
performance improvement on applying the proposed heuristics
is due to the identification of core modules, which are smaller
and structurally more informative.

Second, we investigated the clusterability properties of
disease modules and illustrated that there do exist well-
defined communities, but a overlapping clustering approach
was important to capture them, particularly in face of the
fact that most proteins have multiple functionalities or cause
different diseases. Owing to the lack of ground truth disease
module, the enriched modules identified after exploiting domain
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knowledge—the “gold standard modules”—have better cluster
quality than their non-enriched counterparts. This indicates that
disease modules, when carefully identified with the help of some
known disease nodes, possess good clusterability.

Third, we showed that information on “seed nodes”
underlying these modules can substantially improve the
identification of disease-relevant modules. As the fraction of
disease seed node increases number of identified disease enriched
modules increases (Table 4). Interestingly when disease nodes
are not known identifying seed nodes using spread-hubs and
doing seed expansion on it perform equally well especially for
lower fraction of seed nodes as can be seen in Table S4. Thus
further supporting the fact, overlapping community detection
is a better way to identify disease modules. Also, the overlaps
between gold standard module identification are also useful
for identifying co-occurring diseases, such that occurrence of
one disease results is a signal that the other one can also occur.
We also show that localizing community discovery around a
network-centric, biologically relevant node (seed node) offers a
clear advantage for disease module identification in comparison
with a completely unsupervised approach. Domain guidance is
essential and should be leveraged upon whenever possible. We
observe this when one compares the performance of quality
function based methods with the seed expansion strategy than
extant approaches as in Table 5.

Our study underlines the need to develop biologically
motivated clustering algorithms that are able to better capture
“disease community structure” and notably, emphasizes
the importance of overlapping clustering approaches to
reliably identify disease-relevant modules and comorbidity
networks from diverse biological datasets. Notably, our results
underline the importance of overlapping community detection
and makes the case for further investigation into such methods,
rather than non-overlapping community identification, in the
case of biological networks.
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