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Abstract

Background: The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning
and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.

Methodology/Principal Findings: Functional imaging was used to investigate changes in the in vivo responses of the
mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour
stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the
odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded
multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that
the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour
stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after
training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal
odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results
can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus
components, and suppressed by multimodal configurations.

Conclusions: Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific
changes in the in vivo responses of the mushroom body of the hawkmoth.
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Introduction

The mushroom body of insects was first described more than

150 years ago [1]. Some years later a more detailed account of the

honeybee mushroom body architecture was provided [2], and

today we know that the general design is similar in most insects

[3,4]. The mushroom bodies consist of two bilaterally symmetric

neuropils in the insect brain that receive input regarding different

sensory modalities.

Although most knowledge of the mushroom body relates to the

olfactory system [5], it has previously been shown that the activity of

the mushroom body can reflect an interaction between vision and

olfaction [6]. The responses to bimodal stimuli consisting of odour

and colour were recorded using calcium-sensitive optical imaging in

the mushroom body of the hawkmoth Manduca sexta, showing that

the activity in the mushroom body was influenced by both olfaction

and vision. Colour could either enhance or suppress different odour-

induced responses in the mushroom body of these hawkmoths. The

multi-modal signal was also faster to influence the mushroom body

than uni-modal stimuli [6]. These results can be compared to

behavioural experiments that have shown that complex interactions

occur between visual and olfactory stimuli. These interactions

depend on the particular colours and odours used [7].

The mushroom body is also important for learning. Rapid and

flexible learning to associate a colour or an odour individually with a

reward has been demonstrated in honeybees, butterflies and moths

[8–17]. In honeybees, three pairings of stimulus and reward are

enough to retain the association for life [13], while a single trial can

be enough for hawkmoths [18]. It has been shown in Drosophila that

the mushroom body is necessary for olfactory associative learning

[19–25]. During classical conditioning in honeybees, activation in

the mushroom bodies was enhanced when one of the odours was

rewarded [26]. The cellular response properties in the brain also

changed during learning [27,26]. However, the role of the

mushroom body in visual processing is much less understood,

although it has been shown that intact mushroom bodies are

required for experience-dependent visual cognition in Drosophila

[28].

There are several ways to train animals to distinguish different

stimuli. In a discrimination experiment [29–31], the animals are
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presented with two different stimuli, one at a time, but only one of

them is rewarded. As the result of repeated training with the two

stimuli, the animal should learn to respond only to the stimulus

that has been rewarded. During training, the animals will initially

respond to both stimuli but as the learning progresses the response

to the unrewarded stimuli vanishes. Hawkmoths can easily learn

such discriminations [7,32,33].

Configural learning has been demonstrated in insects using

classical as well as instrumental conditioning [34,35]. When

configural stimuli are used that consist of several stimulus

components, for example a colour A and an odour B, several

learning protocols become possible. The protocol where only the

configural stimulus AB is rewarded, and A and B on their own are

not (A/B/AB+), is called positive patterning [36]. Such a discrimi-

nation is often learned relatively quickly.

A discrimination that is more difficult to learn is called negative

patterning, where only the individual components A and B are

rewarded but not the multimodal stimulus AB. It is also possible to

train animals to perform discriminations that are not symmetrical.

The training protocol A/B+/AB is a form of feature negative

discrimination that can be interpreted as meaning that the feature A

signals that the target stimulus B is not rewarded [37].

We have in earlier experiments shown that free-flying

hawkmoths can learn combinations of stimuli [7], which suggests

that they are capable of configural learning [38]. We have also

shown that M. sexta are fast learners and learn a previously

unpreferred colour after as little as one single rewarded trial [18].

In the present study we were interested in investigating

discrimination learning in real time in the mushroom body. We

hypothesised that because the mushroom body is involved in

odour processing, it should become increasingly active for odour

stimuli that have been rewarded during training, while the activity

should decrease for odour stimuli that were not rewarded. Our

previous studies have shown that even though the mushroom body

does not show any significant activation by visual stimuli, odour-

evoked responses can still be modulated by these [6]. We expected

this modulation to change depending on which stimulus was

rewarded during discrimination training.

To address these questions, we used functional imaging in vivo to

measure calcium dynamics in the calyx of the mushroom body

during discrimination training, where visual, olfactory and reward-

ing sugar stimuli were presented to the animals in different

combinations. The fully automated technique made detailed

temporal control of the stimuli possible, while simultaneously

recording how neural activation changed with each trial. The results

suggest that the responses to multimodal stimuli in the mushroom

body of the hawkmoth are tuned by learning and that a reward is

necessary to maintain responses in the mushroom body. These

activity changes can be explained by a connectionist model.

Results

Differential response decrease to a rewarded multimodal
stimulus

In the main experiment, moths were presented with three types of

stimuli: unimodal presentation of the visual stimulus (V), unimodal

presentation of an odour (O), and multimodal presentation of the

visual stimulus together with odour (VO). The moths were rewarded

during the presentation of the multimodal stimulus (Fig. 1A–C), but

did not receive any reward with the unimodal stimuli, resulting in a

positive patterning protocol (V/O/VO+).

At the first trial, the measured mushroom body activation was

not significantly different for the unrewarded odour stimulus (O)

compared to the rewarded multimodal stimulus (VO+; Fig. 2A

and B) (Mann-Whitney U = 1640, n1 = 89, n2 = 41, p = 0.36),

which shows that there was no preference for the multimodal

stimulus before training. However, after 10 trials, the response to

VO+ became significantly lower than at the first trial (Mann-

Whitney U = 1509, n1 = 89, n2 = 27, p,0.05) indicating that

learning changes the activity in the mushroom body (Fig. 2A and

B). In contrast, there is no significant difference in the response to

O (Mann-Whitney U = 550, n1 = 41, n2 = 25, p = 0.62).

After the first trial, the activity for both O and VO+ decreased,

but after approximately 6 trials the curves began to diverge

(Fig. 2C). The curve for VO+ activity showed a significant

negative linear trend (F(1, 475) = 7.963, p,0.01, b = 20.001), but

this was not the case for the unrewarded stimulus O (F(1,

359) = 0.03423, p = 0.85).

The activity after presentation of the uni-modal unrewarded

visual stimulus (V) remained low and showed no response (Fig. 2C).

No significant differences in the motion of the images for the

different conditions were observed excluding that the results were

motion artefacts (Mann-Whitney U = 38414, n1 = 227, n2 = 280,

p = 0.85). The median of all responses to each stimulus and the first

and third quartile in the main experiment were VO+: [0.0093,

0.018, 0.033], O: [0.012, 0.024, 0.046], V: [0.0059, 0.0087, 0.011].

Also the onset of the response to the rewarded multimodal

stimulus (VO+) and the uni-modal unrewarded odour stimulus (O)

changed over the trials (Fig. 2D). The onset of the response to

VO+ gradually became slower, while the onset to O got slightly

faster with time (ANOVA,F(2, 969) = 7.446, p,0.001).

At the end of the main experiment, 73% of the animals showed a

proboscis extension reflex (PER) to the previously rewarded

stimulus.

Differential response decrease to a rewarded odour
stimulus

The second group of moths were used as a control group. They

were rewarded only during the presentation of the odour stimulus,

and did not receive any reward with the multimodal or unimodal

visual stimuli (V/O+/VO, Fig. 1A–C).

The mushroom body activity elicited by the rewarded unimodal

stimulus (O+), and by the bimodal stimulus (VO), started out at

similar levels and gradually decreased in parallel during the first

half of the experiment but then started to diverge (Fig. 3). There

was no significant difference between the means for the two

conditions (ANOVA, F(1, 553) = 0.1663, p = 0.68), but a signifi-

cant interaction between the condition (O+, VO) and the activity

change over time (ANOVA, F(2, 553) = 5.7895, p,0.01) indicat-

ing that the training changed the mushroom body activity also in

this experiment.

The activity for VO showed a weak but significant negative

linear trend over all trials (F(1, 275) = 4.182, p,0.05,

b = 20.0010). However, analysing the slope of the activity change

from trial 8 indicated a strong and significant positive linear trend

for VO for the last five trials (F(1, 74) = 4.994, p,0.05,

b = 0.005). In contrast, the curve for O showed a significant

negative linear trend over all trials (F(1, 275) = 7.267, p,0.01,

b = 20.0018).

As in the main experiment, the activity after presentation of the

visual stimulus remained at the same level throughout the

experiment (Fig. 3). There were no significant differences in the

motion of the images for the different conditions excluding that the

results were motion artefacts (Mann-Whitney U = 38414,

n1 = 277, n2 = 280, p = 0.84). The median of all responses to each

stimulus and the first and third quartile in the first control

experiment were VO+: [0.017, 0.031, 0.046], O: [0.018, 0.030,

0.043], V: [0.0060, 0.0094, 0.017].

Multimodal Activation of the Mushroom Body
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Response decrease to unrewarded stimuli
In control experiment 2, we tested if the reward was necessary

for the measured response changes in the mushroom body. The

animals were presented with the same three stimuli as in the main

experiment but no reward was given (V/O/VO).

The activity for the unimodal stimulus (O) and the bimodal

stimulus (VO) started out at approximately the same level, and

both decreased gradually over the trials (Fig. 4). There was no

significant difference in the means for the two conditions

(ANOVA, F(1, 271) = 0.0032, p = 0.95) and no interaction

between the condition and the trials (F(2, 271) = 2.9379,

p = 0.054). The curves for the two conditions both showed a

significant negative linear trend (VO: F(1, 129) = 10.65, p,0.01, b:

20.0033, O: F(1, 126) = 12.63, p,0.001, b = 20.0032).

The activity of the visual stimulus remained at the same level

during the experiment (Fig. 4). There were no significant

differences in the motion of the images for the different conditions

excluding that the results were motion artefacts (Mann-Whitney

U = 10604, n1 = 152, n2 = 147, p = 0.45). The median of all

responses to each stimulus and the first and third quartile in the

second control experiment were VO+: [0.017, 0.030, 0.070], O:

[0.019, 0.032, 0.074], V: [0.0091, 0.012, 0.020].

Figure 1. Stimulus timing. The timing of the three stimulus configurations and the sugar rewards for the three experiments. In the main
experiment the odour and the visual stimulus were presented simultaneously followed by the sugar reward. This was followed by individual
presentations of the visual and odour stimuli. In the first control experiment, the reward followed the unimodal presentation of the odour instead.
Finally, in the second control experiment, the stimuli where presented without reward.
doi:10.1371/journal.pone.0032133.g001

Figure 2. Activity changes during discrimination learning. A. The imaged location of the mushroom and the recorded signals at trial 1, 4, 8,
and 12 for a single animal (Me: medulla, AL: antennal lobe, MB: mushroom body, Es: esophagus). B. The mean response of the mushroom body of all
animals at the first and last training trials. The error bars show the standard error. C. The development of the activity of the mushroom body as a
response to an unrewarded unimodal visual stimulus (V), an unrewarded unimodal odour stimulus (O), and a rewarded multimodal stimulus (VO+).
Each point represents the median response of all animals in one trial. D. The latency of the mushroom body response to the multimodal and
unimodal odour stimuli.
doi:10.1371/journal.pone.0032133.g002

Multimodal Activation of the Mushroom Body
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Sugar Control
To make sure that the sugar reward did not produce the

responses seen in the experiments, we tested five moths with only

sugar and no colour or odour stimulus. The protocol was the same

as for the main experiment but without any visual or odour

stimulus. Measurements with only sugar reward were recorded

and showed no response in the mushroom body.

Discussion

Here we show that multimodal training with two modalities,

odour and colour, changes the stimulus-induced activity in the

mushroom body in the sphinx moth, Manduca sexta. For the

mushroom body to exhibit a strong activation, it is necessary that

the stimulus contains an odour component. A unimodal visual

stimulus does not produce any measurable activity using our

paradigm, although the visual component clearly influences the

odour-induced activity in the mushroom body.

During training, the activity in the mushroom body for the

stimulus configuration that is rewarded decreases over time (Fig. 2

and 3). The activity for the unrewarded stimulus also decreases

initially, but starts to increase again at later trials. After training,

the rewarded stimulus thus produces a weaker response than the

unrewarded stimulus. The onset of the response for the rewarded

stimulus configuration also increases over time (Fig. 2D). However,

the stronger response for the unrewarded stimulus is only observed

when at least one stimulus is rewarded. When no reward is

involved at all, the activity decreases for all stimuli (Fig. 4).

All the experimental results can be explained by a small number

of assumptions that are summarised in the connectionist model in

Figure 5. Connectionist models assume that measured responses

can be explained by the operation of a number of units with

connections of varying strengths that map the input signals to a

response in a number of steps [39]. These connections are

assumed to change their strengths during training.

First we assume that the mushroom body is activated initially by

the olfactory stimulus through excitatory connections to the

mushroom body. The presence of such connections, antennal lobe

projection neurons, is well established [40]. A higher odour

concentration leads to higher activation [41]. In the extension, this

activation could be responsible for olfactory control of flight

towards a nectar flower. If the presentation of the odour stimulus

does not lead to a reward, these connections will be extinguished

to make the animal less likely to approach that odour again [42].

This explains the result of control experiment 2, where the activity

for both O and VO decreases over time (Fig. 4).

It is also clear that a unimodal visual stimulus will not produce

any measurable response in the mushroom body (Fig. 2, 3, 4).

Instead we assume that there is some other brain region X that

controls visual responses, possibly part of the lateral protocer-

ebrum [43–45]. We further assume that this region suppresses the

odour response in the mushroom body, presumably to maintain

visual control over the flight toward a flower [46]. Finally, we

assume that activity in the region X reflects learning of the

discrimination between unimodal and multimodal stimuli. To this

end it receives a connection from a configural unit (&) that detects

the presence of a multimodal stimulus. Although behavioural

models of positive patterning usually do not need a configural unit,

in this study the aim was to predict the activity of the mushroom

body which makes a configural unit necessary to explain the result.

Figure 3. Activity changes with a rewarded odour. The
development of the activity of the mushroom body as a response to
an unrewarded unimodal visual stimulus (V), a rewarded unimodal
odour stimulus (O+), and an unrewarded multimodal stimulus (VO).
Each point represents a median response of all animals during a single
trial.
doi:10.1371/journal.pone.0032133.g003

Figure 4. Activity changes without any reward. The development
of the activity of the mushroom body as a response to an unrewarded
unimodal visual stimulus (V), an unrewarded unimodal odour stimulus
(O), and an unrewarded multimodal stimulus (VO). Each point
represents a median response of all animals during a single trial.
doi:10.1371/journal.pone.0032133.g004

Figure 5. A connectionist model that explains the observed
results. V: visual input, O: olfactory input, &: coding of the configural
stimulus, X: the hypothesised region X, MB: mushroom body. The
region X learns which stimulus configurations to associate with reward
and subsequently suppresses the mushroom body. The mushroom
body is directly activated by olfactory stimuli by the pathway from O to
MB.
doi:10.1371/journal.pone.0032133.g005
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The result of the main experiment, where the multimodal

stimulus was rewarded can now be explained: initially, both the

unimodal odour stimulus and the multimodal stimulus activate the

mushroom body since they have the odour component in

common. The unimodal visual stimulus does not have any initial

influence on the mushroom body.

During conditioning, the activity of region X gradually starts to

discriminate between the rewarded multimodal stimulus and the

two unrewarded unimodal stimuli. This learning can be explained

by the type of model proposed by Kehoe [47], which can reproduce

the temporal unfolding of discrimination learning (see also [30,48]).

Since the region X suppresses activation in the mushroom body, the

measured activity will be lower for stimuli where region X is active,

and as learning progresses, the activation of the mushroom body will

decrease for the rewarded stimulus. The activity changes in the

mushroom body we obtained in the current experiments for the pure

odour and multimodal stimuli resembles classical learning curves for

discrimination learning [46], except that they are inverted. This is

consistent with inhibition of the mushroom body from a region that

learns the discrimination. Since we have assumed that the

mushroom body must be excited by an odour stimulus to show

any activation, this also explains why there is no reaction to the

unimodal visual stimulus.

Also the result of control experiment 1 is a direct consequence of

this model. As in the main experiment, the mushroom body is

initially activated by both the unimodal odour stimulus and the

multimodal stimulus. As the odour is only rewarded when the

visual stimulus is not present, the final activity after training is

higher for the multimodal stimulus than for the unimodal odour

stimulus, which is consistent with a stronger suppression from

region X by the rewarded stimulus.

In control experiment 1, the suppression by the odour and

multimodal stimuli is almost the same until the differential

response becomes evident at the last two trials. This discrimination

is thus learned more slowly compared to in the main experiment.

This reflects the difference between the two types of learning in the

main experiment and control 1. In the main experiment, the

moths learn a positive patterning, which is the simplest form of

multimodal interaction. In control experiment 1, however, they

learn a (simultaneous) feature negative discrimination [36], which

is typically much more difficult and involves both a configural unit

and inhibitory learning [47].

Because the mushroom body is a site of integration of different

modalities, and it has been shown in honeybee that sucrose or

water elicited responses in the antennal lobe [49], we also tested if

sucrose stimulation increased the calcium release. However, we

did not observe any such responses in the mushroom body after

sugar stimulation. Since the measured signal was recorded before

the administration of the rewards in each trial, we could also rule

out that the sugar reward was responsible for the different activity

for different stimuli. In addition, the responses to our rewarded

multimodal stimulus decreased over time excluding that the

animals became aroused with the repeated rewards.

In conclusion, we have shown that discrimination training with

multimodal stimuli consisting of visual and odour cues leads to

changes in the in vivo responses of the mushroom body of the

hawkmoth. The results can be explained by a connectionist model.

Materials and Methods

Animals
The animals used were both males and females of the hawkmoth

Manduca sexta (Lepidoptera: Sphingidae). Larvae were reared on an

artificial diet modified from Bell and Joachim [50] with 200 mg

beta-carotene/l added [51]. The animals were kept under a

16 h:8 h light/dark cycle at 23–25uC, 40–50% relative humidity.

Experiments were performed on 2–4 days post-emergent naive

moths.

The moths were secured in a plastic tube and fixed by dental wax.

The head capsule was cut open between the eyes and neck. Muscle,

glands and trachea were removed to expose the mushroom bodies.

The eyes were covered by a flexible tube and fixed by dental wax.

During recordings, light-guides were connected to the tubes. The

proboscis was extended through a piece of flexible tubing, leaving

the distal end of the proboscis exposed.

A calcium green-2-AM dye (Molecular Probes, Eugene) was

dissolved in 20% Pluronic F-127 in dimethyl sulfoxide (Molecular

Probes, Eugene) and diluted in moth Ringer solution to 30 mM. The

calcium dye was applied directly to the brain and the preparation

was left in a dark and cold (13uC) environment for 1–2 hours.

Recordings were made in vivo after incubation and washing.

Odour stimuli
The antennae were ventilated from a glass tube (7 mm internal

diameter) with a continuous charcoal-filtered and moistened air

stream (30 ml/s). The glass tube ended 10 mm from the antenna.

The odourant consisting of phenylacetaldehyde (PAA) dissolved in

paraffin oil was applied on filter paper (5615 mm) and inserted

into a Pasteur pipette [6]. The pipette was inserted trough a small

hole in the continuous airflow glass tube with an air stream of

15 ml/s. Another air stream (5 m/s) was blown through the

pipette by an automatically triggered puffer device (Syntech,

Hilversum, The Netherlands) for 1 s into the continuous air

stream. During odour stimulation, the air stream was switched

from an empty pipette to an odour-laden one to minimise the

influence of added air volume. Some animals were tested without

any stimuli as a controls.

Visual stimuli
The visual stimulus (V) was generated by a 3 mm LED of

430 nm and an intensity of approximately 0.01 cd/m2. This blue

colour is known to be attractive to the moths during foraging [52].

The light source was controlled by a custom made interface, which

controlled the intensity of the visual stimulus. A fiber-optic light

guide was used to transfer the visual stimulus to the eyes of the

moth. The optically isolated light guides where docked to the eyes

using small rubber tubes that were kept in place using dental wax.

Reward
The reward was a 20% sugar solution automatically adminis-

tered by computer control. The animal was rewarded automat-

ically using a container with the sugar solution that was moved

toward the tip of the proboscis using a small servo-controlled

micro-actuator to allow the animal to feed from the sugar solution.

Optical recordings
An Olympus microscope was used for the measurement (filter

settings: dichroic: 500 nm; emission LP 515 nm). The preparation

was illuminated at 475 nm and responses were recorded through a

10x air objective (NA 0.50; Olympus, Hamburg, Germany). TILL

Photonics imaging software (Gräfling, Germany) was used to

record the brain responses and used sequences of 50 frames (4 Hz,

200 ms exposure time). The same regions of the calyces of the left

and right mushroom bodies were recorded.

Multimodal Activation of the Mushroom Body
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Experimental procedure
Stimulus generation and data collection was fully automatic and

controlled by the TILL-vision 4.0 software (TILL Photonics). Each

trial consisted of three presentations using different protocols

(Fig. 1): one with only vision (V), one with only odour (O) and one

with both stimuli presented together (VO). These where always

presented in the same order. The stimulus presentation started

after 2.4 s and lasted for 2.4 s. On rewarded presentations, the

sugar solution was offered 1 s later than the odour, colour or

multimodal stimulus and lasted for 2 s. To avoid learning of

temporal interval between the trails, the inter-trail interval was set

to 180 s6120 s [53].

The number of animals in the main experiment was 47. The

first control experiment used 27 animals and the second control

experiment used 15 animals.

In control 3, five moths were not exposed to any visual or

olfactory stimuli, but they were fed sugar solution to investigate if

sugar would activate the mushroom body on its own. The

experimental procedure for this sugar test group was identical to

the other experiments except that no stimuli were presented.

Data evaluation
The recorded images where first spatially filtered using a

Gaussian filter to remove noise (s= 4.7 pixels). This was followed

by an estimation of DF/F for each frame, where F was estimated

using a linear function fitted to the parts of the Calcium

fluorescence decay curve outside the potential response. The

response magnitude was calculated as the average DF/F between

the onset of the stimuli and the onset of the reward to avoid any

influence of the sugar reward on the recorded signal. The latency

of the response was set to the time of the first frame with a positive

average DF/F after the stimulus presentation. The resolution of

the onset measurement was thus identical to the frame rate. To

check that the PER reflex did not produce motion in the recorded

images would be incorrectly detected as calcium activity all image

sequences where also analysed for motion using a block matching

algorithms between successive frames.

For the statistical analysis, trial 1–10 were used for the main

experiment, trial 1–12 were used for control experiment 1 and trial

1–8 were used for control experiment 2. The experiments

continued as long as reliable signals could be recorded from the

animals.

Mann-Whitney U Test was used to compare the responses to

the different stimuli in the study since it is robust to outliers in the

data. ANOVA was used to compare the slopes of the signal onset

and magnitude change.
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